Well-Being and Geography: Modelling Differences in Regional Well-Being Profiles in Case of Spatial Dependence—Evidence from Turkey
Abstract
:1. Introduction
2. Literature Review
3. Data
4. Methodology
5. Empirical Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kalimeris, P.; Bithas, K.; Richardson, C.; Nijkamp, P. Hidden Linkages between Resources and Economy: A “Beyond-GDP” Approach Using Alternative Welfare Indicators. Ecol. Econ. 2020, 169, 106508. [Google Scholar] [CrossRef]
- Levy, C. Gender and the environment: The challenge of cross-cutting issues in development policy and planning. Environ. Urban. 1992, 4, 134–149. [Google Scholar] [CrossRef]
- Ballas, D. The Economic Geography of Happiness. In Handbook of Labor, Human Resources and Population Economics; Zimmermann, K.F., Ed.; Springer: Cham, Switzerland, 2021; pp. 1–24. [Google Scholar] [CrossRef]
- Kourtit, K.; Nijkamp, P.; Östh, J. My home is my castle—Assessment of city love in Sweden. Int. J. Inf. Manag. 2020, 58, 102213. [Google Scholar] [CrossRef]
- Dang, Y.; Chen, L.; Zhang, W.; Zheng, D.; Zhan, D. How does growing city size affect residents’ happiness in urban China? A case study of the Bohai rim area. Habitat Int. 2020, 97, 102120. [Google Scholar] [CrossRef]
- Wang, D.; Schwanen, T.; Mao, Z. Does exposure to richer and poorer neighborhoods influence wellbeing? Cities 2019, 95, 102408. [Google Scholar] [CrossRef]
- Morrison, P.S. Whose Happiness in Which Cities? A Quantile Approach. Sustainability 2021, 13, 11290. [Google Scholar] [CrossRef]
- Headey, B.; Muffels, R.; Wooden, M. Money Does not Buy Happiness: Or Does It? A Reassessment Based on the Combined Effects of Wealth, Income and Consumption. Soc. Indic. Res. 2008, 87, 65–82. [Google Scholar] [CrossRef]
- Frey, B.S. Economics of Happiness; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Diener, E.; Oishi, S.; Lucas, R.E. Subjective Well-Being: The Science of Happiness and Life Satisfaction. In Handbook of Positive Psychology; Snyder, C., Lopez, S., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 463–473. [Google Scholar] [CrossRef]
- Wilson, W.R. Correlates of avowed happiness. Psychol. Bull. 1967, 67, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.; Suh, E.M.; Lucas, R.E.; Smith, H.L. Subjective Well-Being: Three Decades of Progress. Psychol. Bull. 1999, 125, 276. [Google Scholar] [CrossRef]
- Easterlin, R.A. Does Economic Growth Improve the Human Lot? Some Empirical Evidence. In Nations and Households in Economic Growth: Essays in Honor of Moses Abramovitz; Academic Press: New York, NY, USA, 1974; pp. 89–125. [Google Scholar]
- Frey, B.S.; Stutzer, A. What can Economists Learn from Happiness Research? J. Econ. Lit. 2002, 40, 402–435. [Google Scholar] [CrossRef]
- Blanchflower, D.G. Is happiness U-shaped everywhere? Age and subjective well-being in 145 countries. J. Popul. Econ. 2021, 34, 575–624. [Google Scholar] [CrossRef]
- Sen, A.K. Commodities and Capabilities; North-Holland: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Stiglitz, J.E.; Sen, A.; Fitoussi, J.P. The Measurement of Economic Performance and Social Progress Revisited: Reflections and Overview; Sciences Po Publications 2009-33: Paris, France, 2009. [Google Scholar]
- Arcidiacono, A.; Torrisi, G. Decentralisation and Resilience: A Multidimensional Approach. Sustainability 2022, 14, 9919. [Google Scholar] [CrossRef]
- Calcagnini, G.; Perugini, F. A Well-Being Indicator for the Italian Provinces. Soc. Indic. Res. 2019, 142, 149–177. [Google Scholar] [CrossRef] [Green Version]
- OECD. How’s Life? 2015: Measuring Well-Being; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Fadda, G.; Jirón, P. Quality of Life and Gender: A Methodology for Urban Research. Environ. Urban. 1999, 11, 261–270. [Google Scholar] [CrossRef]
- Dardha, E.; Rogge, N. How’s Life in Your Region? Measuring Regional Material Living Conditions, Quality of Life and Subjective Well-Being in OECD Countries Using a Robust, Conditional Benefit-of-the-Doubt Model. Soc. Indic. Res. 2020, 151, 1015–1073. [Google Scholar] [CrossRef]
- Samuel, R.; Hadjar, A. How Welfare-State Regimes Shape Subjective Well-Being Across Europe. Soc. Indic. Res. 2015, 129, 565–587. [Google Scholar] [CrossRef] [Green Version]
- Facchinetti, S.; Siletti, E. Well-being Indicators: A Review and Comparison in the Context of Italy. Soc. Indic. Res. 2021, 159, 523–547. [Google Scholar] [CrossRef]
- Veenhoven, R. Greater Happiness for a Greater Number Is that Possible and Desirable? J. Happiness Stud. 2010, 11, 605–629. [Google Scholar] [CrossRef]
- Duranton, G. Viewpoint: From cities to productivity and growth in developing countries. Wiley Online Libr. 2008, 41, 689–736. [Google Scholar] [CrossRef] [Green Version]
- Želinský, T.; Hudec, O.; Mojsejová, A.; Hricová, S. The effects of population density on subjective well-being: A case-study of Slovakia. Socio-Economic Plan. Sci. 2021, 78, 101061. [Google Scholar] [CrossRef]
- Çevik, S.; Taşar, M.O. Urban-rural Differences in Subjective Well-Being: Turkey. Ann. Wars. Univ. Life Sci.-SGGW Hortic. Landsc. Archit. 2016, 37, 23–39. [Google Scholar]
- Melo, P.C.; Graham, D.J.; Noland, R.B. A meta-analysis of estimates of urban agglomeration economies. Reg. Sci. Urban Econ. 2009, 39, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Glaeser, E.L. Triumph of the City: How Our Greatest Invention Makes Us Richer, Smarter, Greener, Healthier, and Happier; Macmillan: London, UK, 2011. [Google Scholar]
- Berry, B.J.L.; Okulicz-Kozaryn, A. An Urban-Rural Happiness Gradient. Urban Geogr. 2011, 32, 871–883. [Google Scholar] [CrossRef]
- Okulicz-Kozaryn, A.; Valente, R.R. No urban malaise for Millennials. Reg. Stud. 2019, 53, 195–205. [Google Scholar] [CrossRef]
- Loschiavo, D. Big-city life (dis)satisfaction? The effect of urban living on subjective well-being. J. Econ. Behav. Organ. 2021, 192, 740–764. [Google Scholar] [CrossRef]
- Lawless, N.M.; Lucas, R. Predictors of Regional Well-Being: A County Level Analysis. Soc. Indic. Res. 2010, 101, 341–357. [Google Scholar] [CrossRef]
- Weckroth, M.; Kemppainen, T. (Un)Happiness, where are you? Evaluating the relationship between urbanity, life satisfaction and economic development in a regional context. Reg. Stud. Reg. Sci. 2021, 8, 207–227. [Google Scholar] [CrossRef]
- Morrison, P.S.; Weckroth, M. Human values, subjective well-being and the metropolitan region. Reg. Stud. 2017, 52, 325–337. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, J.; Zhang, X.; Yang, J. Income, Social Capital, and Subjective Well-Being of Residents in Western China. Sustainability 2022, 14, 9141. [Google Scholar] [CrossRef]
- Okulicz-Kozaryn, A.; Mazelis, J.M. Urbanism and Happiness: A Test of Wirth’s Theory of Urban Life. Urban Stud. 2018, 55, 349–364. [Google Scholar] [CrossRef] [Green Version]
- Florida, R.; Mellander, C.; Rentfrow, P.J. The Happiness of Cities. Reg. Stud. 2013, 47, 613–627. [Google Scholar] [CrossRef]
- Sørensen, J.F. The rural happiness paradox in developed countries. Soc. Sci. Res. 2021, 98, 102581. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.; Frediani, A.A.; Trani, J.-F. Gender, difference and urban change: Implications for the promotion of well-being? Environ. Urban. 2012, 25, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, J.F.L. Rural–Urban Differences in Life Satisfaction: Evidence from the European Union. Reg. Stud. 2013, 48, 1451–1466. [Google Scholar] [CrossRef]
- Lenzi, C.; Perucca, G. Urbanization and Subjective Well-Being. In Regeneration of the Built Environment from a Circular Economy Perspective; Della Torre, S., Cattaneo, S., Lenzi, C., Zanelli, A., Eds.; Research for Development; Springer: Cham, Switzerland, 2020; pp. 21–28. [Google Scholar]
- Diener, E.; Lucas, R.E.; Schimmack, U.; Helliwell, J.F. Well-Being for Public Policy; Oxford University Press: New York, NY, USA, 2009. [Google Scholar]
- Diener, E.; Diener, M.; Diener, C. Factors Predicting the Subjective Wellbeing of Nations. J. Personal. Soc. Psychol. 1995, 69, 851–864. [Google Scholar] [CrossRef]
- Inglehart, R.; Klingemann, H.D. Genes, Culture, Democracy and Happiness. In Culture and Subjective Well-Being; Diener, E., Suh, E., Eds.; MIT Press: Cambridge, UK, 2000; pp. 165–183. [Google Scholar]
- Ferrer-I-Carbonell, A. Income and well-being: An empirical analysis of the comparison income effect. J. Public Econ. 2005, 89, 997–1019. [Google Scholar] [CrossRef]
- Eren, K.A.; Aşıcı, A.A. Subjective Well-Being in an Era of Relentless Growth: The Case of Turkey Between 2004 and 2014. J. Happiness Stud. 2017, 19, 1347–1371. [Google Scholar] [CrossRef]
- Eren, K.A.; Aşıcı, A.A. The Determinants of Happiness in Turkey: Evidence from City-Level Data. J. Happiness Stud. 2016, 18, 647–669. [Google Scholar] [CrossRef]
- Rentfrow, P.J. Geographical Variation in Subjective Well-Being. In Handbook of Well-Being; Diener, E., Oishi, S., Tay, L., Eds.; DEF Publishers: Salt Lake City, UT, USA, 2018. [Google Scholar]
- Rentfrow, P.J.; Mellander, C.; Florida, R. Happy States of America: A state-level analysis of psychological, economic, and social well-being. J. Res. Pers. 2009, 43, 1073–1082. [Google Scholar] [CrossRef]
- TUIK. Life Satisfaction Survey. 2020. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Life-Satisfaction-Survey-2020-37209&dil=2 (accessed on 18 February 2021).
- TUIK. Life Satisfaction by Provinces. 2013. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Il-Duzeyinde-Yasam-Memnuniyeti-2013-18507 (accessed on 18 February 2021).
- TUIK. Well-Being Index for Provinces. 2015. Available online: https://data.tuik.gov.tr/Bulten/Index?p=Illerde-Yasam-Endeksi-2015-24561 (accessed on 18 February 2021).
- Karahasan, B.C.; Pinar, M.; Deniz, P. Political climate and regional well-being in Turkey. Territ. Politi.-Gov. 2021, 1–27. [Google Scholar] [CrossRef]
- Hsiao, C. Panel Data Analysis–Advantages and Challenges. Test 2007, 16, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Bouayad, A.S.; Le Gallo, J.; Védrine, L. Spatial Econometrics on Panel Data. In Handbook of Spatial Analysis; de Bellefon, M.-P., Loonis, V., Eds.; INSEE Methods: Montrouge, France, 2018; Volume 131, pp. 185–212. [Google Scholar]
- Bavaud, F. Models for Spatial Weights: A Systematic Look. Geogr. Anal. 1998, 30, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Elhorst, J.P. Dynamic Models in Space and Time. Geogr. Anal. 2001, 33, 119–140. [Google Scholar] [CrossRef] [Green Version]
- Kelejian, H.H.; Prucha, I.R. Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Econ. 2010, 157, 53–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutl, J.; Pfaffermayr, M. The Hausman test in a Cliff and Ord panel model. Econ. J. 2011, 14, 48–76. [Google Scholar] [CrossRef]
- Baltagi, B.H.; Song, S.H.; Koh, W. Testing panel data regression models with spatial error correlation. J. Econ. 2003, 117, 123–150. [Google Scholar] [CrossRef]
- Ergüt, Ö.; Çilingirtürk, A.M. Türkiye’nin Yaşam Memnuniyetine Mekansal Etkinin Analizi. J. Life Econ. 2022, 9, 65–80. [Google Scholar] [CrossRef]
- Lin, C.-H.A.; Lahiri, S.; Hsu, C.-P. Happiness and Regional Segmentation: Does Space Matter? J. Happiness Stud. 2013, 15, 57–83. [Google Scholar] [CrossRef]
- Lin, C.-H.A.; Lahiri, S.; Hsu, C.-P. Happiness and Globalization: A Spatial Econometric Approach. J. Happiness Stud. 2016, 18, 1841–1857. [Google Scholar] [CrossRef]
- Elhorst, J.P. Spatial Panel Data Models. In Handbook of Applied Spatial Analysis; Fischer, M.M., Getis, A., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2010; pp. 377–407. [Google Scholar]
- Anselin, L. The Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kopczewska, K.; Kudła, J.; Walczyk, K. Strategy of Spatial Panel Estimation: Spatial Spillovers Between Taxation and Economic Growth. Appl. Spat. Anal. Policy 2015, 10, 77–102. [Google Scholar] [CrossRef]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
- LeSage, J.; Banerjee, S.; Fischer, M.M.; Congdon, P. Spatial Statistics: Methods, Models & Computation. Comput. Stat. Data Anal. 2009, 53, 2781–2785. [Google Scholar]
Well-Being Index | Median Age | Household Size | Population 0–4 | |
---|---|---|---|---|
Well-Being Index | 1 | |||
Median age | 0.843 *** | 1 | ||
Household size | −0.836 *** | −0.962 *** | 1 | |
Population aged 0–4 | −0.802 *** | −0.966 *** | 0.933 *** | 1 |
Component Matrix | Component | % of Variance | Cumulative % | Kaiser–Meyer–Olkin Measure | Bartlett’s Test of Sphericity | |
---|---|---|---|---|---|---|
Median age | 0.991 | PCA (Well-being) | 96.611 | 96.611 | 0.740 *** | 0.000 |
Household size | 0.979 | |||||
Population aged 0–4 | 0.978 |
Variable | Description | Source | Time Period | N | Min | Max | Mean |
---|---|---|---|---|---|---|---|
PCA (Well-Being) | New well-being value for regions | Authors’ calculation | 2012–2019 | 648 | −2.85 | 1.34 | 0.00 |
Typology (Urban) | 80% of the population lives in urban clusters | Eurostat | 2013 | 81 | 0.00 | 1.00 | 0.0671 |
Typology (Rural) | At least 50% of the population lives in rural grid cells | Eurostat | 2013 | 81 | 0.00 | 1.00 | 0.6049 |
City Size (Metropolitan) | Total population > 2,500,000 | TUIK | 2012–2019 | 648 | 0.00 | 1.00 | 0.1481 |
City Size (Medium) | 250,000 < Total population < 500,000 | TUIK | 2012–2019 | 648 | 0.00 | 1.00 | 0.358 |
City Size (Small) | Total population < 250,000 | TUIK | 2012–2019 | 648 | 0.00 | 1.00 | 0.321 |
Density (Population density) | Gross population density per km2 | TUIK | 2012–2019 | 648 | 11 | 2987 | 125.699 |
GDP per capita | Gross domestic product per capita ($) | TUIK | 2012–2019 | 648 | 2946 | 20726 | 8301.27 |
Employment | Share of registered female employment | Social Security Institution | 2012–2019 | 648 | 11.37 | 35.85 | 24.31 |
Schooling ratio | Schooling ratio for secondary education | TUIK | 2012–2019 | 648 | 35.46 | 100 | 80.89 |
Health problems | Share of deaths caused by cancer, heart disease, obesity, respiratory problems | TUIK | 2012–2019 | 648 | 44.78 | 86.37 | 75.12 |
Model 1 (Pool) | Model 2 (Random Effects) | Model 3 (Fixed Effects) | |
---|---|---|---|
GDP per capita | 0.450 ** | 0.319 *** | 0.019 |
(0.194) | (0.057) | (0.076) | |
employment | 1.664 *** | 0.520 *** | 0.307 *** |
(0.280) | (0.062) | (0.072) | |
schooling | 2.432 *** | 0.469 *** | 0.404 *** |
(0.367) | (0.060) | (0.078) | |
health problems | 2.886 *** | −0.070 | −0.171 |
(0.714) | (0.077) | (0.131) | |
density | −0.310 *** | −0.596 *** | −0.920 *** |
(0.077) | (0.068) | (0.168) | |
typology (urban) | 0.232 | 0.836 *** | - |
(0.217) | (0.224) | ||
typology (rural) | 0.025 | −0.595 *** | - |
(0.098) | (0.120) | ||
city size (metropolitan) | −0.205 | 0.043 | 0.071 *** |
(0.195) | (0.061) | (0.014) | |
city size (medium) | 0.0003 | 0.068 *** | 0.069 *** |
(0.074) | (0.018) | (0.025) | |
city size (small) | −0.005 | 0.055 * | 0.050 *** |
(0.119) | (0.032) | (0.013) | |
constant | −30.765 *** | −3.522 *** | - |
−2.493 | (0.761) | ||
observations | 648 | 648 | 648 |
R2 | 0.885 | 0.809 | 0.464 |
adjusted R2 | 0.882 | 0.804 | 0.371 |
log-likelihood | −217 | 942 | 1160 |
AIC | 470 | −1848 | −2128 |
Model 4 (Fixed Effects) | Model 5 SAR-FE | Impacts (Direct) | Impacts (Indirect) | Impacts (Total) | |
---|---|---|---|---|---|
GDP per capita | 0.024 | 0.054 | 0.054 | 0.010 | 0.064 |
(0.081) | (0.038) | (0.036) | (0.007) | (0.043) | |
employment | 0.333 *** | 0.225 *** | 0.226 *** | 0.041 *** | 0.267 *** |
(0.073) | (0.039) | (0.041) | (0.007) | (0.049) | |
schooling | 0.369 *** | 0.300 *** | 0.296 *** | 0.054 *** | 0.351 *** |
(0.078) | (0.038) | (0.039) | (0.007) | (0.046) | |
health problems | −0.163 | −0.146 *** | −0.147 *** | −0.027 ** | −0.174 *** |
(0.134) | (0.048) | (0.047) | (0.009) | (0.056) | |
density | −0.958 *** | −0.834 *** | −0.836 *** | −0.154 *** | −0.989 *** |
(0.167) | (0.064) | (0.065) | (0.013) | (0.077) | |
Λ | - | 0.157 *** | |||
(0.005) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elburz, Z.; Kourtit, K.; Nijkamp, P. Well-Being and Geography: Modelling Differences in Regional Well-Being Profiles in Case of Spatial Dependence—Evidence from Turkey. Sustainability 2022, 14, 16370. https://doi.org/10.3390/su142416370
Elburz Z, Kourtit K, Nijkamp P. Well-Being and Geography: Modelling Differences in Regional Well-Being Profiles in Case of Spatial Dependence—Evidence from Turkey. Sustainability. 2022; 14(24):16370. https://doi.org/10.3390/su142416370
Chicago/Turabian StyleElburz, Zeynep, Karima Kourtit, and Peter Nijkamp. 2022. "Well-Being and Geography: Modelling Differences in Regional Well-Being Profiles in Case of Spatial Dependence—Evidence from Turkey" Sustainability 14, no. 24: 16370. https://doi.org/10.3390/su142416370
APA StyleElburz, Z., Kourtit, K., & Nijkamp, P. (2022). Well-Being and Geography: Modelling Differences in Regional Well-Being Profiles in Case of Spatial Dependence—Evidence from Turkey. Sustainability, 14(24), 16370. https://doi.org/10.3390/su142416370