An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices
Abstract
:1. Introduction
1.1. General Context
1.2. Motivation
1.3. State of the Art
1.4. Scope and Main Contributions
- i.
- A characterization of data and technical, economic, and environmental parameters for grid-connected and standalone DC grids located in urban and rural regions of Colombia.
- ii.
- A new energy management system approach to operate PV generation sources in standalone and grid-connected DC networks, which is based on a master–slave methodology. The master stage involves the salp swarm algorithm with a continuous codification that considers PV generators with variable generation instead of the traditionally used maximum power point operations. The slave stage implements a matrix hourly power flow that evaluates all of the solutions provided by the master stage in order to guarantee shorter processing times and excellent convergence.
- iii.
- The inclusion of three different objective functions in the proposed energy management system approach allows the distribution company and the users to select the best performance indicator as a function of operating policies. These objective functions are the minimization of the operating costs associated with energy purchasing and PV maintenance costs, the minimization of the total CO emissions, and the minimization of the energy losses. The three objective functions are formulated for evaluating a single day of operation.
- iv.
- A new matrix hourly power flow methodology based on the successive approximation method, whose aim is to calculate the impact of the different power generation and demand levels of an operation day on the grid. This allows the reducing of the processing times in comparison with the traditional methods used in the literature.
1.5. Paper Structure
2. Mathematical Formulation
2.1. Objective Functions
2.1.1. Reduction of Operational Costs
2.1.2. Reduction of Energy Losses
2.1.3. Reduction of CO Emissions
2.2. Set of Constraints
2.3. Fitness Function
3. Optimization Methodology
3.1. Salp Swarm Algorithm
3.1.1. Initial Population
3.1.2. Salp Chain Movement
- Case 1: Movement with respect to the leader’s positionIn the first half of the population, the salp chain moves around the leader, as shown in (18).In addition, is the most important parameter in the SSA, as it is responsible for a correct balance between the exploration and exploitation of the solution space. This parameter is shown in (19), where t is the current iteration, and denotes the maximum number of iterations.
- Case 2: Movement based on the principles of classical mechanicsTo update the position of the second half of the population, Newton’s laws of motion are employed in order to represent their movement, as shown in (20).
3.1.3. Leader Updating
3.2. Matrix Hourly Power Flow
4. Test Systems, Input Data, and Considerations
4.1. Power PV Generation and Demand Curves
4.2. Grid-Connected System
4.3. Standalone System
Comparison Methods
5. Simulation Results and Discussion
5.1. Matrix Hourly Power Flow Results
5.2. Master–Slave Simulation Results
5.2.1. Grid-Connected System
5.2.2. Standalone System
5.2.3. Processing Time Analysis
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable Energy Transition for Renewable and Low Carbon Grid Electricity Generation and Supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Singh, G.; Das, R. Experimental study of a combined biomass and solar energy-based fully grid-independent air-conditioning system. Clean Technol. Environ. Policy 2021, 23, 1889–1912. [Google Scholar] [CrossRef]
- Lamb, W.F.; Wiedmann, T.; Pongratz, J.; Andrew, R.; Crippa, M.; Olivier, J.G.J.; Wiedenhofer, D.; Mattioli, G.; Khourdajie, A.A.; House, J.; et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 2021, 16, 073005. [Google Scholar] [CrossRef]
- Singh, G.; Das, R. Comparative assessment of different air-conditioning systems for nearly/net zero-energy buildings. Int. J. Energy Res. 2020, 44, 3526–3546. [Google Scholar] [CrossRef]
- Hossain, J.; Mahmud, A. (Eds.) Renewable Energy Integration; Springer: Singapore, 2014. [Google Scholar] [CrossRef]
- Bayer, B.; Marian, A. Innovative measures for integrating renewable energy in the German medium-voltage grids. Energy Rep. 2020, 6, 336–342. [Google Scholar] [CrossRef]
- Emmanuel, M.; Rayudu, R. Evolution of dispatchable photovoltaic system integration with the electric power network for smart grid applications: A review. Renew. Sustain. Energy Rev. 2017, 67, 207–224. [Google Scholar] [CrossRef]
- Aziz, S.; Wang, H.; Liu, Y.; Peng, J.; Jiang, H. Variable universe fuzzy logic-based hybrid LFC control with real-time implementation. IEEE Access 2019, 7, 25535–25546. [Google Scholar] [CrossRef]
- García, C.A.; Moncada, J.; Aristizábal, V.; Cardona, C.A. Techno-economic and energetic assessment of hydrogen production through gasification in the Colombian context: Coffee Cut-Stems case. Int. J. Hydrogen Energy 2017, 42, 5849–5864. [Google Scholar] [CrossRef]
- Castillo-Ramírez, A.; Mejía-Giraldo, D. Measuring Financial Impacts of the Renewable Energy Based Fiscal Policy in Colombia under Electricity Price Uncertainty. Sustainability 2021, 13, 2010. [Google Scholar] [CrossRef]
- López, A.R.; Krumm, A.; Schattenhofer, L.; Burandt, T.; Montoya, F.C.; Oberländer, N.; Oei, P.Y. Solar PV generation in Colombia—A qualitative and quantitative approach to analyze the potential of solar energy market. Renew. Energy 2020, 148, 1266–1279. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Perea-Moreno, A.J. Optimal Investments in PV Sources for Grid-Connected Distribution Networks: An Application of the Discrete–Continuous Genetic Algorithm. Sustainability 2021, 13, 13633. [Google Scholar] [CrossRef]
- Hernandez, J.; Velasco, D.; Trujillo, C. Analysis of the effect of the implementation of photovoltaic systems like option of distributed generation in Colombia. Renew. Sustain. Energy Rev. 2011, 15, 2290–2298. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Ramos-Paja, C.A. An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. J. Energy Storage 2020, 29, 101488. [Google Scholar] [CrossRef]
- Cortés-Caicedo, B.; Molina-Martin, F.; Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. Optimal Design of PV Systems in Electrical Distribution Networks by Minimizing the Annual Equivalent Operative Costs through the Discrete-Continuous Vortex Search Algorithm. Sensors 2022, 22, 851. [Google Scholar] [CrossRef] [PubMed]
- Aziz, S.; Peng, J.; Wang, H.; Jiang, H. Admm-based distributed optimization of hybrid mtdc-ac grid for determining smooth operation point. IEEE Access 2019, 7, 74238–74247. [Google Scholar] [CrossRef]
- Ishaq, S.; Khan, I.; Rahman, S.; Hussain, T.; Iqbal, A.; Elavarasan, R.M. A review on recent developments in control and optimization of micro grids. Energy Rep. 2022, 8, 4085–4103. [Google Scholar] [CrossRef]
- Zhang, R.; Li, G.; Bu, S.; Aziz, S.; Qureshi, R. Data-driven cooperative trading framework for a risk-constrained wind integrated power system considering market uncertainties. Int. J. Electr. Power Energy Syst. 2023, 144, 108566. [Google Scholar] [CrossRef]
- Hernandez, J.A.; Arredondo, C.A.; Rodriguez, D.J. Analysis of the law for the integration of non-conventional renewable energy sources (law 1715 of 2014) and its complementary decrees in Colombia. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019. [Google Scholar] [CrossRef]
- Cuervo, F.I.; Arredondo-Orozco, C.A.; Marenco-Maldonado, G.C. Photovoltaic power purchase agreement valuation under real options approach. Renew. Energy Focus 2021, 36, 96–107. [Google Scholar] [CrossRef]
- Rodríguez-Urrego, D.; Rodríguez-Urrego, L. Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renew. Sustain. Energy Rev. 2018, 92, 160–170. [Google Scholar] [CrossRef]
- Barrera, N.G.; González, D.P.; Mesa, F.; Aristizábal, A. Procedure for the practical and economic integration of solar PV energy in the city of Bogotá. Energy Rep. 2021, 7, 163–180. [Google Scholar] [CrossRef]
- Planas, E.; Andreu, J.; Gárate, J.I.; de Alegría, I.M.; Ibarra, E. AC and DC technology in microgrids: A review. Renew. Sustain. Energy Rev. 2015, 43, 726–749. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Molina, A.; Montoya, O.D.; Gil-González, W. Exact minimization of the energy losses and the CO2 emissions in isolated DC distribution networks using PV sources. DYNA 2021, 88, 178–184. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Grisales-Noreña, L.F. Solar Photovoltaic Integration in Monopolar DC Networks via the GNDO Algorithm. Algorithms 2022, 15, 277. [Google Scholar] [CrossRef]
- Rosales-Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks. Sustainability 2021, 13, 8703. [Google Scholar] [CrossRef]
- Vlachogiannis, J.G.; Lee, K.Y. Economic load dispatch—A comparative study on heuristic optimization techniques with an improved coordinated aggregation-based PSO. IEEE Trans. Power Syst. 2009, 24, 991–1001. [Google Scholar] [CrossRef] [Green Version]
- Abou El Ela, A.; El-Sehiemy, R.A.; Shaheen, A.; Shalaby, A. Application of the crow search algorithm for economic environmental dispatch. In Proceedings of the 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017; pp. 78–83. [Google Scholar]
- Tawalbeh, M.; Al-Othman, A.; Kafiah, F.; Abdelsalam, E.; Almomani, F.; Alkasrawi, M. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Sci. Total Environ. 2021, 759, 143528. [Google Scholar] [CrossRef]
- Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [Google Scholar] [CrossRef]
- Urrego-Ortiz, J.; Martínez, J.A.; Arias, P.A.; Jaramillo-Duque, Á. Assessment and day-ahead forecasting of hourly solar radiation in Medellín, Colombia. Energies 2019, 12, 4402. [Google Scholar] [CrossRef] [Green Version]
- Hegazy, A.E.; Makhlouf, M.; El-Tawel, G.S. Improved salp swarm algorithm for feature selection. J. King Saud Univ.-Comput. Inf. Sci. 2020, 32, 335–344. [Google Scholar] [CrossRef]
- Abualigah, L.; Shehab, M.; Alshinwan, M.; Alabool, H. Salp swarm algorithm: A comprehensive survey. Neural Comput. Appl. 2020, 32, 11195–11215. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Ewees, A.A.; Oliva, D.; Abd Elaziz, M.; Lu, S. Improved salp swarm algorithm based on particle swarm optimization for feature selection. J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3155–3169. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, T.; Ye, X.; Heidari, A.A.; Liang, G.; Chen, H.; Pan, Z. Differential evolution-assisted salp swarm algorithm with chaotic structure for real-world problems. Eng. Comput. 2022, 1–35. [Google Scholar] [CrossRef]
- Wetzstein, G.; Lanman, D.R.; Hirsch, M.W.; Raskar, R. Tensor Displays: Compressive Light Field Synthesis Using Multilayer Displays with Directional Backlighting; Association for Computing Machinery: New York, NY, USA, 2012. [Google Scholar]
- Million, E. The hadamard product. Course Notes 2007, 3, 6. [Google Scholar]
- Hassan, Q.; Jaszczur, M.; Przenzak, E.; Abdulateef, J. The PV cell temperature effect on the energy production and module efficiency. Contemp. Probl. Power Eng. Environ. Prot. 2016, 33, 1. [Google Scholar]
- Schwingshackl, C.; Petitta, M.; Wagner, J.E.; Belluardo, G.; Moser, D.; Castelli, M.; Zebisch, M.; Tetzlaff, A. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation. Energy Procedia 2013, 40, 77–86. [Google Scholar] [CrossRef] [Green Version]
- NASA. NASA Prediction Of Worldwide Energy Resources, Washington, DC, United States. Available online: https://power.larc.nasa.gov/ (accessed on 21 September 2022).
- XM SA ESP. Sinergox Database, Colombia. Available online: https://sinergox.xm.com.co/Paginas/Home.aspx (accessed on 21 September 2022).
- Instituto de Planificación y Promoción de Soluciones Energéticas para Zonas No Interconectadas. Informes Mensuales de Telimetría, Colombia. Available online: https://ipse.gov.co/cnm/informe-mensuales-telemetria/ (accessed on 21 September 2022).
- NTC 2050; Colombiano Código Eléctrico. El Instituto: Bogotá, Colombia, 1998.
- NTC1340; Tensiones y Frecuencia Nominales en Sistemas de Energía Eléctrica en redes de Servicio Público. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC): Bogotá, Colombia, 2004.
- XM SA EPS. En Colombia Factor de Emisión de CO2 por Generación Eléctrica del Sistema Interconectado: 164.38 Gramos de CO2 por Kilovatio Hora, Colombia. Available online: https://www.xm.com.co/noticias/en-colombia-factor-de-emision-de-co2-por-generacion-electrica-del-sistema-interconectado (accessed on 21 September 2022).
- Academia Colombiana de Ciencias Exactas Físicas. Factores de emisión de los Combustibles Colombianos, Colombia. 2016. Available online: https://bdigital.upme.gov.co/bitstream/handle/001/1285/17%20Factores%20de%20emision%20de%20combustibles.pdf;jsessionid=5016BD31B13035A5FBF551BC26B1293E?sequence=18 (accessed on 21 September 2022).
- Falaghi, H.; Ramezani, M.; Haghifam, M.R.; Milani, K.R. Optimal selection of conductors in radial distribution systems with time varying load. In Proceedings of the CIRED 2005—18th International Conference and Exhibition on Electricity Distribution, Turin, Italy, 6–9 June 2005; pp. 1–4. [Google Scholar]
- Monteiro, V.; Monteiro, L.F.; Franco, F.L.; Mandrioli, R.; Ricco, M.; Grandi, G.; Afonso, J.L. The Role of Front-End AC/DC Converters in Hybrid AC/DC Smart Homes: Analysis and Experimental Validation. Electronics 2021, 10, 2601. [Google Scholar] [CrossRef]
- Rosales-Muñoz, A.A.; Montano, J.; Grisales-Noreña, L.F.; Montoya, O.D.; Andrade, F. Optimal Power Dispatch of DGs in Radial and Mesh AC Grids: A Hybrid Solution Methodology between the Salps Swarm Algorithm and Successive Approximation Power Flow Method. Sustainability 2022, 14, 13408. [Google Scholar] [CrossRef]
Optimization Methodology | Year | Reference |
---|---|---|
Particle swarm Optimization algorithm | 2009 | [28] |
Crow search algorithm | 2017 | [29] |
Heuristic analysis based on regulation | 2021 | [22] |
Multiverse optimization algorithm | 2021 | [27] |
Convex optimization | 2021 | [25] |
Vortex search algorithm | 2022 | [15] |
Generalized normal distribution optimization approach | 2022 | [26] |
Region | Medellín (GCN) | Capurganá (SN) | ||||
---|---|---|---|---|---|---|
Hour | ||||||
1 | 0 | 16.14132 | 0 | 0 | 24.44252 | 0 |
2 | 0 | 15.90636 | 0 | 0 | 24.32474 | 0 |
3 | 0 | 15.68132 | 0 | 0 | 24.22545 | 0 |
4 | 0 | 15.46022 | 0 | 0 | 24.14674 | 0 |
5 | 0 | 15.27545 | 0 | 0 | 24.08422 | 0 |
6 | 0 | 15.10329 | 0 | 0 | 24.03482 | 0 |
7 | 46.02425 | 15.15718 | 0.04541 | 29.14570 | 24.10367 | 0.02770 |
8 | 190.83559 | 16.15636 | 0.18424 | 142.11066 | 24.78126 | 0.13277 |
9 | 362.83753 | 17.43868 | 0.34100 | 291.61926 | 25.68211 | 0.26622 |
10 | 526.64647 | 18.87312 | 0.48161 | 431.95384 | 26.63671 | 0.38547 |
11 | 640.99058 | 20.27438 | 0.57375 | 540.61581 | 27.47515 | 0.47362 |
12 | 709.05312 | 21.36342 | 0.62572 | 605.16362 | 28.10252 | 0.52397 |
13 | 701.86370 | 21.98721 | 0.61809 | 606.93027 | 28.46775 | 0.52442 |
14 | 626.82690 | 22.12107 | 0.55716 | 583.07479 | 28.56923 | 0.50519 |
15 | 499.86074 | 21.83071 | 0.45236 | 490.55904 | 28.42334 | 0.43065 |
16 | 346.26581 | 21.20351 | 0.32052 | 359.22033 | 28.03460 | 0.32148 |
17 | 186.66671 | 20.38668 | 0.17693 | 204.48775 | 27.44945 | 0.18722 |
18 | 52.33403 | 19.35951 | 0.05066 | 64.51775 | 26.69008 | 0.06034 |
19 | 0.50986 | 18.32258 | 0.00050 | 3.17460 | 25.89016 | 0.00300 |
20 | 0 | 17.72414 | 0 | 0 | 25.39227 | 0 |
21 | 0 | 17.29586 | 0 | 0 | 25.09285 | 0 |
22 | 0 | 16.96148 | 0 | 0 | 24.87663 | 0 |
23 | 0 | 16.67395 | 0 | 0 | 24.70841 | 0 |
24 | 0 | 16.40545 | 0 | 0 | 24.56926 | 0 |
Branch | Node i | Node j | R () | Pj (kW) | Imax (A) |
---|---|---|---|---|---|
1 | 1 | 2 | 0.0922 | 100 | 320 |
2 | 2 | 3 | 0.4930 | 90 | 280 |
3 | 3 | 4 | 0.3660 | 120 | 195 |
4 | 4 | 5 | 0.3811 | 60 | 195 |
5 | 5 | 6 | 0.8190 | 60 | 195 |
6 | 6 | 7 | 0.1872 | 200 | 95 |
7 | 7 | 8 | 17114 | 200 | 85 |
8 | 8 | 9 | 10300 | 60 | 70 |
9 | 9 | 10 | 10400 | 60 | 55 |
10 | 10 | 11 | 0.1966 | 45 | 55 |
11 | 11 | 12 | 0.3744 | 60 | 55 |
12 | 12 | 13 | 14.680 | 60 | 40 |
13 | 13 | 14 | 0.5416 | 120 | 40 |
14 | 14 | 15 | 0.5910 | 60 | 25 |
15 | 15 | 16 | 0.7463 | 60 | 20 |
16 | 16 | 17 | 12890 | 60 | 20 |
17 | 17 | 18 | 0.7320 | 90 | 20 |
18 | 2 | 19 | 0.1640 | 90 | 30 |
19 | 19 | 20 | 15042 | 90 | 25 |
20 | 20 | 21 | 0.4095 | 90 | 20 |
21 | 21 | 22 | 0.7089 | 90 | 20 |
22 | 3 | 23 | 0.4512 | 90 | 85 |
23 | 23 | 24 | 0.8980 | 420 | 70 |
24 | 24 | 25 | 0.8900 | 420 | 40 |
25 | 6 | 26 | 0.2030 | 60 | 85 |
26 | 26 | 27 | 0.2842 | 60 | 85 |
27 | 27 | 28 | 10590 | 60 | 70 |
28 | 28 | 29 | 0.8042 | 120 | 70 |
29 | 29 | 30 | 0.5075 | 200 | 55 |
30 | 30 | 31 | 0.9744 | 150 | 40 |
31 | 31 | 32 | 0.3105 | 210 | 25 |
32 | 32 | 33 | 0.3410 | 60 | 20 |
Parameter | GCN | SN | Unit |
---|---|---|---|
0.1302 | 0.2913 | USD/kWh | |
0.2913 | 0.2913 | USD/kWh | |
0.0019 | 0.0019 | Kg/kWh | |
0.1644 | 0.2671 | Kg/kWh | |
0 | 0 | Kg/kWh |
Branch | Node i | Node j | R () | Pj (kW) | Imax (A) |
---|---|---|---|---|---|
1 | 1 | 2 | 0.0140 | 0 | 195 |
2 | 2 | 3 | 0.7463 | 0 | 145 |
3 | 3 | 4 | 0.4052 | 297.5 | 85 |
4 | 4 | 5 | 1.1524 | 0 | 70 |
5 | 5 | 6 | 0.5261 | 255 | 70 |
6 | 6 | 7 | 0.7127 | 0 | 55 |
7 | 7 | 8 | 1.6628 | 212.5 | 55 |
8 | 8 | 9 | 5.3434 | 0 | 20 |
9 | 9 | 10 | 2.1522 | 266.05 | 20 |
10 | 2 | 11 | 0.4052 | 85 | 70 |
11 | 11 | 12 | 1.1524 | 340 | 55 |
12 | 12 | 13 | 0.5261 | 297.5 | 40 |
13 | 13 | 14 | 1.2358 | 19,125 | 25 |
14 | 14 | 15 | 2.8835 | 106.25 | 20 |
15 | 15 | 16 | 5.3434 | 255 | 20 |
16 | 3 | 17 | 1.2942 | 255 | 55 |
17 | 17 | 18 | 0.7027 | 127.5 | 40 |
18 | 18 | 19 | 3.3234 | 297.5 | 40 |
19 | 19 | 20 | 1.5172 | 340 | 20 |
20 | 20 | 21 | 0.7127 | 85 | 20 |
21 | 4 | 22 | 8.2528 | 106.25 | 20 |
22 | 5 | 23 | 9.1961 | 55.25 | 20 |
23 | 6 | 24 | 0.7463 | 69.7 | 20 |
24 | 8 | 25 | 2.0112 | 255 | 20 |
25 | 8 | 26 | 3.3234 | 63.75 | 20 |
26 | 26 | 27 | 0.5261 | 170 | 20 |
Method | Optimization Parameter | Value |
---|---|---|
Number of particles | 141 | |
SSA | Maximum iterations | 1577 |
Non-improvement iterations | 547 | |
Number of particles | 41 | |
Maximum iterations | 1326 | |
MVO | Non-improvement iterations | 188 |
-min | 0.68125 | |
-max | 0.51768 | |
P parameter | 3 | |
Number of particles | 159 | |
Maximum iterations | 492 | |
Non-improvement iterations | 229 | |
PSO | Maximum inertia () | 0.99456 |
Minimum inertia () | 0.32458 | |
Cognitive component () | 0.061368 | |
Social component () | 1.5456 | |
Number of particles | 177 | |
Maximum iterations | 471 | |
CSA | Non-improvement iterations | 295 |
Awareness probability () | 0.65826 | |
Flight length () | 3.25058 |
Method | Avg. Time (ms) | Total Iterations | Energy Losses (kWh) |
---|---|---|---|
SA | 0.7449 | 185 | 2186.2803 |
MSA | 0.2405 | 8 | 2186.2803 |
Average Solution | |||
---|---|---|---|
Algorithm | Eloss (kWh) | Costs (USD) | Emissions (kgCO) |
Base case | 2186.2803 | 9776.3892 | 12345.1497 |
SSA | 1225.3323 | 7297.9712 | 9166.6746 |
MVO | 1231.2531 | 7298.7157 | 9187.9682 |
PSO | 1268.5973 | 7392.0432 | 9282.4081 |
CSA | 1270.1562 | 7407.9046 | 9328.7685 |
Percentage of average reduction (%) | |||
Algorithm | Eloss | Costs | Emissions |
SSA | 43.9536 | 25.3511 | 25.7468 |
MVO | 43.6827 | 25.3434 | 25.5743 |
PSO | 41.9746 | 24.3888 | 24.8093 |
CSA | 41.9033 | 24.2266 | 24.4337 |
STD (%) | |||
Algorithm | Eloss | Costs | Emissions |
SSA | 0.0131 | 0.7089 | 0.6306 |
MVO | 2.2694 | 1.2190 | 1.5868 |
PSO | 2.4065 | 2.2579 | 2.0891 |
CSA | 1.3806 | 1.8500 | 1.6987 |
Time (s) | |||
Algorithm | Eloss | Costs | Emissions |
SSA | 20.8476 | 21.4690 | 21.2944 |
MVO | 2.4479 | 2.4748 | 2.4791 |
PSO | 5.9597 | 6.4713 | 6.5950 |
CSA | 36.3663 | 36.4465 | 36.8687 |
Average solution | |||
---|---|---|---|
Algorithm | Eloss (kWh) | Costs (USD) | Emissions (kgCO) |
Base case | 489.3042 | 18485.0507 | 16951.2974 |
SSA | 359.8537 | 12074.5543 | 11039.5781 |
MVO | 360.0291 | 12231.1691 | 11131.5617 |
PSO | 362.0496 | 12340.2908 | 11267.5734 |
CSA | 369.1944 | 13663.8328 | 12534.4183 |
Percentage of average reduction (%) | |||
Algorithm | Eloss | Costs | Emissions |
SSA | 26.4560 | 34.6794 | 34.8747 |
MVO | 26.4202 | 33.8321 | 34.3321 |
PSO | 26.0073 | 33.2418 | 33.5297 |
CSA | 24.5471 | 26.0817 | 26.0563 |
STD(%) | |||
Algorithm | Eloss | Costs | Emissions |
SSA | 0.0230 | 0.4363 | 0.4329 |
MVO | 0.2356 | 2.4301 | 2.0192 |
PSO | 0.4095 | 1.7711 | 1.6491 |
CSA | 1.7548 | 2.3077 | 2.1093 |
Time (s) | |||
Algorithm | Eloss | Costs | Emissions |
SSA | 12.5902 | 12.9024 | 13.1151 |
MVO | 2.0234 | 1.7957 | 1.8956 |
PSO | 4.2122 | 4.4286 | 4.4410 |
CSA | 6.5367 | 6.7566 | 6.7413 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grisales-Noreña, L.F.; Ocampo-Toro, J.A.; Rosales-Muñoz, A.A.; Cortes-Caicedo, B.; Montoya, O.D. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices. Sustainability 2022, 14, 16429. https://doi.org/10.3390/su142416429
Grisales-Noreña LF, Ocampo-Toro JA, Rosales-Muñoz AA, Cortes-Caicedo B, Montoya OD. An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices. Sustainability. 2022; 14(24):16429. https://doi.org/10.3390/su142416429
Chicago/Turabian StyleGrisales-Noreña, Luis Fernando, Jauder Alexander Ocampo-Toro, Andrés Alfonso Rosales-Muñoz, Brandon Cortes-Caicedo, and Oscar Danilo Montoya. 2022. "An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices" Sustainability 14, no. 24: 16429. https://doi.org/10.3390/su142416429
APA StyleGrisales-Noreña, L. F., Ocampo-Toro, J. A., Rosales-Muñoz, A. A., Cortes-Caicedo, B., & Montoya, O. D. (2022). An Energy Management System for PV Sources in Standalone and Connected DC Networks Considering Economic, Technical, and Environmental Indices. Sustainability, 14(24), 16429. https://doi.org/10.3390/su142416429