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Abstract: The Three–North Shelter Forest Program Area (TNSFPA), covering the three subregions of
Northwest, North and Northeast China, is an important green ecological barrier in northern China.
Research on spatiotemporal variation of land use and vegetation in this area can help us understand
the evolution of vegetation recovery. Based on MODIS image data, we built a dataset including land
use/cover, annual and seasonal vegetation coverage and vegetation productivity in the TNSFPA from
2000 to 2020, then analyzed their spatiotemporal dynamics’ characteristics and further explored the
driving factors. The results demonstrate that 90.05% of land area in the TNSFPA remained unchanged
from 2001 to 2020. The area of barren decreased, whereas the area of all other land use types increased.
From 2000 to 2020, the vegetation coverage generally presented a spatial pattern of high in the east
and low in the west, and the interannual fluctuation of high coverage area was small. More than
90% of the TNSFPA had an increasing vegetation coverage (0.41%·a−1), with the change rates of
0.51%·a−1, 0.54%·a−1 and 0.37%·a−1 in Northeast, North and Northwest China, respectively. The
spatial distribution of vegetation productivity was generally consistent with the vegetation coverage,
and the interannual fluctuation in areas with low productivity was small. The area with an increasing
vegetation productivity (3.41 gC·m−2·a−1) occupied 51.66% of the TNSFPA, mainly in the basic stable
state and significantly increased state. The change rates in Northeast, North and Northwest China
were 7.34 gC·m−2·a−1, 6.72 gC·m−2·a−1 and 2.10 gC·m−2·a−1, respectively. The vegetation coverage
and productivity were positively correlated with climate factors, and the correlation with precipitation
is significantly higher than that with temperature. The ecological protection and restoration activities
in the TNSFPA have accelerated the recovery of the vegetation ecosystem. Meanwhile, the rapid
growth of population has led to the acceleration of urbanization. The intensification of the interaction
between humans and land has led to the reclamation and development of barren, which has a great
impact on the small–scale vegetation ecosystem.

Keywords: land use and cover change; vegetation coverage; vegetation productivity; TNSFPA

1. Introduction

Land use and vegetation information are the linkage between human socioeconomic
activities and natural ecosystem processes. Both of them have been a staple and hot topic
in the research of socioeconomic and environmentally sustainable development [1]. In the
IPCC Special Report on Climate Change and Land (SPCCL), issues involving desertification,
land degradation, sustainable land management and food security have been paid more
attention [2]. Land use and cover change (LUCC) is the most direct signal to reveal the
impact of human activities on the natural ecosystems of the Earth’s surface [2] and has a
close connection with the mass cycle and life processes of the terrestrial surface, directly
influencing biosphere–atmosphere interactions, biodiversity and surface radiation [1,3–6].
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Vegetation, an important node among the atmosphere, soil, biosphere and hydrosphere [7],
can indicate the change in terms of global energy transfer, biogeochemistry and hydro-
logical cycle [8,9]. As the producer of organic matter and the input carrier of energy in
terrestrial ecosystem, the growth of vegetation is influenced by many factors and plays
an irreplaceable role in regional ecological security and sustainable development [10–16].
Therefore, in the context of global climate change, quantifying LUCC and vegetation change
at different spatial scales and their relationship with climate change has become a common
scientific issue of climate change and terrestrial surface ecosystem, as well as one of the
main elements of global change research [17,18].

The evolution of LUCC and vegetation induced by climate change is mainly reflected
in changes of land use types, vegetation coverage and productivity [2]. Therefore, it is of
strategic importance to grasp their spatiotemporal evolution characteristics and driving
mechanisms for improving land use efficiency, promoting rational utilization of land
resources and comprehensively managing land degradation. At present, studies on LUCC
mainly focus on its effects on land productivity [19–22], land use efficiency [23–26] and
carbon emissions [27–29]. In the fields of vegetation coverage and productivity, scholars
paid attention to regional monitoring and trend analysis [30] and their response to climate
change. Most of these studies were concluded in this study area (e.g., administrative
divisions [31,32], ecological zones [33–35], watersheds [18,36–38] and project areas [39–41])
and found that vegetation coverage and productivity in most areas showed an increasing
trend. However, the overall understanding of LUCC and vegetation changes in the Three–
North Shelter Forest Program Area (TNSFPA) and their response to climate change in the
past two decades is lacking due to differences in research periods, data sources, methods
and indicators.

Satellite remote sensing technology enables us to classify land use and monitor vege-
tation on a large extent and long time series; therefore, remote sensing data have become
the main data source for long-term vegetation studies [30,42,43]. Data products such as the
common vegetation index and primary productivity can fully reflect the growth status of
plants. The TNSFPA is a very important natural resource reserve and agricultural and live-
stock production area in China, which has a harsh ecological environment because of the
comprehensive influence of natural, human and historical factors. Meanwhile, the TNSFPA
is a complicated climate system and land use process, as well as a sensitive ecosystem, due
to the impact of significant geographical heterogeneity [44,45]. It leads to large variations in
the vegetation and ecological environment within this region [46]. Therefore, it is of great
significance to explore the current situation and changing trends of land use and vegetation
in the TNSFPA, especially for optimizing the structure of regional land use types, as well
as coordinating eco–environment protection and economic development. In this study,
we constructed a dataset including land use, annual and seasonal vegetation coverage
and productivity in the TNSFPA from 2000 to 2020 based on MCD12Q1, MOD/MYD13A1
and MOD/MYD17A2H data. Moreover, their spatiotemporal evolution characteristics
and impact factors were analyzed. This study aims to provide the theoretical support
and scientific basis for the quantitative and dynamic monitoring of vegetation coverage,
ecological benefits and sustainable development in the TNSFPA.

2. Materials and Methods
2.1. Research Area

The TNSFPA (33◦30′~50◦12′ N, 73◦26′~127◦50′ E) is the most important green eco-
logical barrier in in northern China and is known as the “Green Great Wall”. It connects
to Binxian County in Heilongjiang Province in the east to the Wuziberi Pass in Xinjiang
Uygur Autonomous Region in the west, starting from the Mongolian Plateau in the north,
and to the Karakorum Mountains, the Buchang Khanda Mountains, the tributaries of the
Yellow River and the Haihe River Basin in the south (Figure 1). It covers 13 provincial
administrative regions in China, involving 559 counties (banners and districts), with a total
area of 406.90 × 104 km2. This area spans the three gradient terrains in China, featuring
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high in the west and low in the east [47]. There are intricate landform types in the TNSFPA,
including eight deserts, four sandy areas and the vast Gobi Desert, accounting for about
85% of the windswept land area in China [48]. The climate is mainly temperate continental
and temperate monsoon, with the characteristics of long sunshine hours, strong radiation
and the synchronization of rain and heat. Influenced by the topography and the location
of land and sea, the average annual temperature in this area is 2~8 ◦C, and the annual
precipitation generally shows a decreasing trend from east to west and from south to
north. On 25 November 1978, the statement “The State Council approved the State Forestry
Administration’s plan for building large protective forests in the key areas of wind and
sand hazards and soil erosion in the Three–North” was issued, marking the official launch
of the construction of the TNSFPA. Over the past forty years, the actual investment was
56.33 billion yuan, including a national investment of 33.86 billion yuan.
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Figure 1. Map of Land use and land cover type in the Three–North Shelter Forest Program Area
in 2020.

2.2. Data
2.2.1. Land Use and Land Cover

In this study, we used MCD12Q1 Land Cover products to obtain LUCC. It is a suite of
science data sets (SDSs) that map global land cover at 500 m spatial resolution at annual
time step for six different land cover legends, including 5 legacy classification schemes
(IGBP, UMD, LAI, BGC, and PFT), a new three-layers legend based on the Land Cover
Classification System (LCCS) from the Food and Agriculture Organization [49–51] and a
quality assurance layer. It is created using supervised classification of MODIS reflectance
data [52,53]. We selected the International Geosphere–Biosphere Program (IGBP) legend to
reflect LUCC in the study area during 2001–2020.

The IGBP scheme was classified using the C4.5 decision tree algorithm that ingested
a full year of 8-days MODIS Nadir BRDF–Adjusted Reflectance data (MCD43A2 and
MCD43A4) [54]. There are seventeen land use types in this dataset. In order to better
analyze LUCC in the study area, the original 17 categories were integrated into 6 categories
(Table 1). It was obtained from the National Space Administration of the United States of
America (https://modis.gsfc.nasa.gov/ (accessed on 22 November 2022)).

https://modis.gsfc.nasa.gov/
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Table 1. The classification system of LUCC.

Code The Primary Classification The Secondary Classification and Code

1 cultivated land croplands (12), cropland/natural vegetation mosaics (14)

2 forest
evergreen needleleaf forests (1), evergreen broadleaf forests (2), deciduous needleleaf

forests (3), deciduous broadleaf forests (4), mixed forest (5), closed shrublands (6),
open shrublands (7)

3 grassland woody savannas (8), savannas (9), grasslands (10)

4 water body permanent wetlands (11), permanent snow and ice (15), water bodies (17)

5 constructive land urban and built-up lands (13)

6 barren barren (16)

2.2.2. Vegetation Information Data

In this study, we used MOD/MYD13A1 Vegetation Indices and MOD/MYD17A2H
Gross Primary Productivity products to obtain vegetation change information. MOD
and MYD with a spatial resolution of 500 m are acquired by the Moderate Resolution
Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, respectively. In
order to reduce the impact of atmospheric and geometric deformation on data accuracy,
we adopted the average value of MOD and MYD data in the same time period. They
were obtained from the National Space Administration of the United States of America
(https://modis.gsfc.nasa.gov/ (accessed on 31 May 2022)).

2.2.3. Meteorological Data

The meteorological data from 2000 to 2020 was adopted to analyze the climate’s trends
and its effect on vegetation changes, which have a spatial resolution of 0.5◦ × 0.5◦. Based
on the air temperature and precipitation data from 2472 national meteorological stations in
China newly compiled by the Basic Program of National Meteorological Information Center
(http://data.cma.cn/ (accessed on 31 May 2022)), this dataset was generated spatially using
the thin plate spline (TPS) interpolation method.

2.3. Methods

The global schema of data process is shown in Figure 2, and some key methods are
provided in the following sections.

2.3.1. Land Use Change Mapping

In this paper, we adopted the map fusion proposed by Bao [55] and Wang [56] to obtain
the pattern of land use change, which can be implemented by map algebraic operation on
each pixel of land use images in different periods. The operation is as follows:

C =
n

∑
i=1

(
Ai × 10i−1

)
(1)

where C is the evolution mapping of land use patterns during the study period; the values
of i are 1, 2 and 3, corresponding to different years (2020, 2010 and 2000), respectively. Ai
is the pixel values of land use types in different periods. The types of LUCC are listed in
Table 2.

Table 2. Types of LUCC.

Code AAA ABB AAB ABA ABC

Type No
change

Previous
change

Later
change

Repeated
change

Continuous
change

https://modis.gsfc.nasa.gov/
http://data.cma.cn/
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Figure 2. Mind map of this study.

(1) No change. It denotes that the type of land remains unchanged from 2000 to 2020.
(2) Previous change. It refers to the type of land transfer that occurred from 2000 to 2010.
(3) Later change. It refers to the type of land transfer that occurred from 2010 to 2020.
(4) Repeated change. It refers to the type of land that transferred only in 2010 and

remained consistent in 2000 and 2020.
(5) Continuous change. It denotes that the type of land was different in 2000, 2010

and 2020.

2.3.2. Vegetation Coverage Extraction

The vegetation coverage (VC) is the percentage of vegetation’s vertical projection on
the ground over the area of the statistical zone [57]. Common methods for calculating the
VC are mainly divided into ground survey and remote sensing monitoring. The former
includes sampling method and calculation by instrument, whereas the latter includes
regression model, vegetation index method and pixel decomposition model [58]. Limited
by the influence of the scope of the study area and the accuracy of the model, this study
chose remote sensing monitoring. Firstly, we used the maximum value composites method
to obtain the maximum of interannual and seasonal NDVI [59–61]. Then, the pixel dichoto-
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mous model was applied to calculate the VC, considering all pixels as mixed ones including
soil and vegetation [62].

VC =
NDVI − NDVIS

NDVIV − NDVIS
× 100% (2)

where VC is the vegetation coverage of individual pixels and NDVIS and NDVIV represent
the minimum (pure soil pixel) and maximum (pure vegetation pixel) of NDVI among all
pixels in the study area, respectively. Neither of them is constant, due to the influence
of some factors such as atmospheric environment, surface roughness, soil properties and
vegetation type [63]. Therefore, we selected the NDVI corresponding to the cumulative
frequency at 5% and 95% confidence intervals as NDVIS and NDVIV, respectively [64].

2.3.3. Linear Regression Analysis

The linear regression analysis method can calculate the slope of cells and reflect the
spatial distribution characteristics of variable changes [11,65]. In this study, we used the
least square method to calculate the parameters of the linear regression. The principle of
the method is to find the best function by minimizing the sum of error squares.

S =

n×
n
∑

i=1
(i× Xi)−

n
∑

i=1
i

n
∑

i=1
Xi

n×
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (3)

where S is the trend rate of change; n is the number of time points and Xi is the correspond-
ing ecological indicator.

2.3.4. Sen’s Trend Degree, M–K Significance Test

The Sen’s trend degree has been widely applied on qualitative description of time
series data. It mainly calculates by the median of the time series data, which can effectively
reduce the influence of the abnormal value and extreme value.

β = median(
Xj − Xi

j− i
), j>i (4)

where β is a Sen’s trend degree. Xi and Xj are the sequences of the ecological indicators; i
and y are the sequences of the time. When β is greater than 0, it means that the time series
data has an overall increasing trend. When β is less than 0, it means that the time series
data has a reducing trend. When β is equal to 0, it means that the time series data presents
a basic stability state.

The Mann–Kendall test method is a nonparametric statistical test method and has
been widely applied on time series data as well as raster data on a pixel scale [66,67]:

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(5)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(Xj − Xi) (6)

sgn(Xj − Xi) =


1, Xj − Xi > 0
0, Xj − Xi = 0
−1, Xj − Xi < 0

(7)
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VAR(S) =
n(n− 1)(2n + 5)

18
(8)

where Xi and Xj are the sequences of the ecological indicators. i and y are the sequences
of the time. We assumed that the confidence level α was set at 0.05; then, Z1-a/2 is the
corresponding value (1.96) of the distribution table of the standard normal function at this
confidence level. If |Z| > Z1-a/2, it indicates that there is a significant trend of change,
whereas if |Z| < Z1-a/2, it indicates that there is a slight trend of change.

According to the combination of β and Z values, five categories of vegetation coverage
and productivity trend theoretically exist. Table 3 provides the classification criteria and
their corresponding trends.

Table 3. Classification criteria of the trend.

Coefficient Reference Range Trend

β < 0, |Z| > 1.96 Significant reduction
β < 0, |Z| ≤ 1.96 Slight reduction

β = 0 Basic stability
β > 0, |Z| ≤ 1.96 Slight increase
β > 0, |Z| > 1.96 Significant increase

2.3.5. Correlation Analysis

In order to explore the correlation between climate factors and vegetation factors, we
used the Pearson correlation coefficient shown in the following formula.

r =

n
∑

i=1
[(ai − a)(yi − y)]√

n
∑

i=1
(ai − a)2 n

∑
i=1

(yi − y)2

(9)

where r is the correlation coefficient, ai, yi is the vegetation factor and climate factor of the i
year, respectively. ā, ȳ is the average of the vegetation factor and climate factor.

3. Results
3.1. Change of Land Use and Land Cover in the TNSFPA from 2001 to 2020

There is an obvious change of land use and land cover area in the TNSFPA from 2001
to 2020 (as shown in Table 4). In 2020, the land use type having the largest area was barren,
followed by grassland, accounting for 44.33% and 40.52%, respectively. The area of water
body and constructive land was less, accounting for 1.18% and 0.72%, respectively. From
2001 to 2020, the area of all land use types increases, except for the barren. Among them,
the water body witnessed the largest area change rate, which reflected the increasing trend
of warming and humidification in Northwest China.

Table 4. LUCC in the TNSFPA from 2001 to 2020.

Type
Area/km2 Change Rate/%

2001 2010 2020 2001~2010 2010~2020 2001~2020

cultivated land 408,632 428,480 465,158 4.86 8.56 13.83
forest 60,992 68,576 73,803 12.43 7.62 21.00

grassland 1,637,223 1,648,584 1,648,891 0.69 0.02 0.71
water body 34,259 40,942 47,936 19.50 17.08 39.92

constructive land 26,102 27,158 29,247 4.04 7.69 12.05
barren 1901,790 1,855,261 1,803,965 −2.45 −2.76 −5.14

Compared with MCD12Q1 IGBP legacy classification schemes in the TNSFPA during
2001–2020, we found that evergreen broadleaf forest, closed shrublands, woody savannas,
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grasslands and barren showed an obvious decreasing trend (as shown in Figure 3). In
addition, the other types showed an increasing trend. Grassland and barren decreased
at the rate of 1663.49 km2/a and 4542.32 km2/a, respectively. Savannas and croplands
increased at the rate of 1699.17 km2/a and 3098.16 km2/a, respectively.

In order to further analyze the change patterns of different land use types in the
TNSFPA, change pattern mapping was established by integrating the land use data of
2001, 2010 and 2020 (as shown in Figure 4). Among them, 90.05% of the land use area
remained unchanged from 2001 to 2020. The land use change pattern was dominated by
later change (58.06%) and previous change (28.94%). It implies that the transfer of land
use type from 2010 to 2020 was stronger than that from 2001 to 2010, which is closely
related to the national strategy for high–quality development and ecological civilization
construction as well as the impact of climate change. In addition, the previous change type
mainly showed the mutual transformation between cultivated land and grassland. The
later change type mainly showed the mutual transformation between grassland and barren.
The repeated change type mainly presented the “grassland–cultivated land–grassland”
model. The difference of the continuous change type (2.38%) is less than the other types.

LUCC patterns of cultivated land, forest and grassland show that cultivated land
and forest were mainly transformed into grassland, with an area of 9699.75 km2 and
43,705 km2 (60.92%), respectively. Grassland was mainly transformed into cultivated land
(102,090.25 km2) and barren (25,710.25 km2). It reflected the implementation of the policy
of “returning cultivated land to forest land and grassland” and the current situation of
grassland reclamation and degradation.

3.2. Change of Vegetation Coverage in the TNSFPA from 2000 to 2020

The vegetation coverage showed spatial differences of high in the east and low in the
west (Figure 5). Except for the northern Tianshan Mountain, the Altai Mountain and the
southern Qilian Mountain, the vegetation coverage in other regions of Northwest China
was at a low level. The vegetation coverage in North China showed a decreasing trend
from southeast to northwest, which is closely related to the distribution of precipitation.
Vegetation coverage was at a high level in Northeast China. The interannual fluctuation of
vegetation coverage was basically opposite to the distribution of the average value. Regions
with high vegetation coverage had low interannual fluctuation. The region with larger
interannual fluctuation was mainly concentrated in the middle and west of the Tarim Basin
and Hexi Corridor, which was mainly related to the interannual precipitation changes. The
area with an increasing vegetation coverage occupied 90.31% of the TNSFPA from 2000 to
2020. The region with slope between 0 and 0.25%·a−1 had the largest distribution (43.99%),
which was concentrated in Northwest China. The regions with slope greater than 0.5%·a−1

were concentrated in North China and Northeast China. Based on the Mann–Kendall test
for the linear trend of vegetation coverage, the results showed that 56.09% of the region
showed a significant increase from 2000 to 2020. The proportion of slight increase was
28.15%, which was concentrated in the southern foothills of the Altay Mountains and the
Xilingole grassland. The area with a stable state occupied 9.46% of the TNSFPA, which
was concentrated in the northwest and east end of the Tarim Basin and the east of the
Changbai Mountains.

Statistical analysis of vegetation coverage in the TNSFPA (Figure 6) showed that the
change of vegetation coverage from 2000 to 2020 ranged from 30.47% to 41.40%, with an
overall increasing trend at the rate of 0.41%·a−1. Although all three subregions of TNSFPA
experienced increasing vegetation coverage, the distribution and trend varied greatly. The
vegetation coverage in Northwest China ranged from 74.99% to 88.79%, with an overall
increasing trend at the rate of 0.51%·a−1. The range of vegetation coverage is from 52.27%
to 71.96% and from 18.59% to 27.41%, with a rate of 0.54%·a−1 and 0.37%·a−1 in North
China and Northwest China, respectively.
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The trend of vegetation coverage in different seasons of the TNSFPA were all domi-
nated by significant increase during the study period, but with large seasonal differences
(Figure 7). The proportion of significant increase in each season was greater than 50%,
with the highest in summer (55.90%). The proportion of slight increase in each season was
from 20% to 40%, with the highest in autumn (33.72%). The proportion of basic stability
was highest in winter (15.18%), whereas it was less than 10% in other seasons. The pro-
portion of both significant decrease and slight decrease was highest in spring (1.22% and
7.14%). In terms of the spatial distribution of vegetation coverage trends in seasons, the
regions with decreasing vegetation coverage trends in spring were concentrated in the
Loop Plain, the southern part of the Xilingol Steppe and the eastern part of the Greater
Khingan Mountains. The regions with decreasing vegetation coverage trends in summer
were concentrated in the Yili River valley, the Badain Jaran desert and the Liaohe river basin.
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The regions with decreasing vegetation coverage trends in autumn were concentrated in
the edge of the Tarim Basin and the eastern part of the Hexi corridor. The regions with
decreasing vegetation coverage trends in winter were concentrated in the edge of the Tarim
Basin, the northeastern part of the Xilingol Steppe and the eastern part of the Greater
Khingan Mountains.
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3.3. Change of Vegetation Productivity in the TNSFPA from 2000 to 2020

The spatial distribution of vegetation productivity was basically consistent with veg-
etation coverage, and the overall spatial differences were higher in the east and lower
in the west (Figure 8). Among them, the percentage of vegetation productivity less than
200 gC·m−2 is 58.11%. Different from vegetation coverage, the annual fluctuation of vege-
tation productivity was basically consistent with the distribution of the average value. The
region with low productivity had small interannual fluctuation, and the regions with large
interannual fluctuation were mainly distributed in the northern part of Tianshan Mountain,
the eastern part of Helan Mountain and the western part of Greater Khingan Mountain, and
the central part of Northeast China. The area with an increasing vegetation productivity
occupied 51.66% of the TNSFPA from 2000 to 2020. The proportion of slope between −10
and 0 gC·m−2·a−1 was 43.99%, which was basically consistent with the distribution in
the low vegetation productivity area. The Mann–Kendall test shows that the changes of
vegetation productivity from 2000 to 2020 were mainly in the basic stable state (44.28%)
and the significant increase state (42.38%).
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Statistical analysis of vegetation productivity in the TNSFPA (Figure 9) showed that the
change of vegetation productivity from 2000 to 2020 ranged from 175.62 to 258.86 gC·m−2,
with an overall increasing trend at the rate of 3.41 gC·m−2·a−1. Although vegetation pro-
ductivity of all three subregions in the TNSFPA showed an increasing trend, the differences
in distribution and trend varied greatly. The vegetation productivity in Northwest China
ranged from 469.62 to 631.92 gC·m−2·a−1, with an overall increasing trend at the rate of
7.34 gC·m−2·a−1. The range of vegetation productivity is from 341.75 to 505.92 gC·m−2

and from 93.13 to 147.57 gC·m−2, with a rate of 6.72 gC·m−2·a−1 and 2.10 gC·m−2·a−1 in
North China and Northwest China, respectively.

The trend of vegetation productivity in different seasons of the TNSFPA were all dom-
inated by basic stability from 2000 to 2020, but with large seasonal differences (Figure 10).
Among them, the proportion of basic stability in each season was more than 40%, with the
highest in winter (68.07%). Followed by significant increasing, except for the proportion
in winter (11.67%), the proportion in other seasons was from 30% to 40%. The proportion
of slight increasing in winter (18.93%) was the highest, whereas in other seasons it was
less than 15%. The proportion of both significant decrease and slight decrease was highest
in spring (1.95%) and autumn (5.10%), respectively. In terms of the spatial distribution
of vegetation productivity trends in seasons, the regions with decreasing trends in spring
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were concentrated in the northern part of the Qilian Mountains, the Hetao Plain and the
eastern part of the Greater Khingan Mountains. The regions with decreasing vegetation
productivity trends in summer were concentrated in the Ili River Valley and the Liao
River Basin. The region with decreasing vegetation productivity trends in autumn was
concentrated in the northern part of the Tianshan Mountains. The regions with decreasing
vegetation productivity trends in winter were concentrated in the northern part of the
Tianshan Mountains and the edge of Tarim Basin.
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4. Discussions
4.1. Climate Drivers of Vegetation Change

The annual average temperature and precipitation in the TNSFPA from 2000 to 2020
were 5.43 ◦C and 267.37 mm and showed a warm and humid trend, with annual slopes of
0.02 ◦C·a−1 and 3.03 mm·a−1. The increase of temperature and precipitation is conducive
to the growth of vegetation. The former extends the growth period of vegetation to a certain
extent and improves the vegetation coverage; meanwhile, the latter provides sufficient
water for the growth of vegetation and is conducive to the improvement of the production
function of vegetation [68–70]. By comparing the correlations of vegetation coverage and
vegetation productivity with temperature and precipitation in the TNSFPA (Figure 11), the
correlation between vegetation growth factors and climate factors all showed a positive
correlation, and the correlation between vegetation growth factors and precipitation was
significantly higher than temperature, which was consistent with the results of previous
studies [8,45].
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To further explore the response regularity of regional vegetation growth indicators to
climate factors, the data of vegetation growth indicators was resampled, and the spatial
resolution was consistent with that of climate factors. There were obvious spatial differ-
ences in the correlation between vegetation growth factors and climate factors (Figure 12).
The regions with a positive correlation between vegetation coverage and temperature
were mainly distributed in the central and western regions, accounting for 64.06% of the
study area. While the regions with positive correlation between vegetation coverage and
precipitation were mainly distributed in the eastern regions, accounting for 86.58% of the
study area. The regions with positive correlation between vegetation productivity and
temperature was mainly distributed in the central region, accounting for 40.70% of the
study area, whereas the regions with a positive correlation between vegetation productivity
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and precipitation were mainly distributed in the central and eastern regions, accounting for
53.51% of the study area. From the perspective of the distribution of correlation coefficient,
the correlation of factors was mainly low. The proportion of low correlation between
vegetation factor and temperature was greater than 80%. The proportion of medium and
high correlation between vegetation factor and precipitation was greater than temperature,
which indicated that precipitation is the main climatic factor that restricts vegetation growth
in the TNSFPA.
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4.2. Effects of LUCC on Vegetation Coverage and Productivity

The influencing mechanism of LUCC on vegetation growth is complex. The vegetation
coverage and productivity of cultivated land and forest are greater than grassland [71].
Therefore, on the basis of exploring the mechanism of climate change on vegetation growth,
it is necessary to explore the impact of LUCC on vegetation growth. Taking the mutual
transformation of cultivated land, forest and grassland as an example, the average and
slope of vegetation coverage and productivity in the TNSFPA from 2000 to 2020 were
36.29%, 220.97 gC·m−2, 0.41%·a−1 and 3.41 gC·m−2·a−1, respectively (Figure 13). The slope
of vegetation coverage was lower than in the TNSFPA, whereas the slope of vegetation
productivity was greater than in the TNSFPA, except that the type is forest and previous
change (coded 211). Among them, the vegetation coverage of unchanged cultivated
land (coded 111), forest and grassland (coded 333) were 89.64%, 99.27% and 54.53%, and
the vegetation productivity were 611.11 gC·m−2, 1015.85 gC·m−2 and 336.51 gC·m−2,
respectively. When the cultivated land was changed into forest (coded 112 and 122), the
vegetation coverage and productivity were greater than the unchanged cultivated land.
When the cultivated land was changed into grassland (coded 113 and 133), the vegetation
coverage and productivity were lower than the unchanged cultivated land. The vegetation
coverage and productivity of the unchanged forest were greater than the changed forest
(coded 211, 213, 223, 231 and 233), whereas the vegetation coverage and productivity of the
unchanged grassland were lower than the changed grassland (coded 311, 312, 321, 322, 331
and 332). It is worth noting that many studies on vegetation coverage and productivity
focused on single land use type or did not consider the impact of LUCC on it. However,
our study area is usually a relatively complex ecosystem containing multi land use types.
Therefore, the impact and contribution of LUCC on vegetation coverage and productivity
are worthy of further study.
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4.3. Comparison of Current Research

Vegetation change is a long–term dynamic process, and many studies are of great
importance for the monitoring of regional ecosystems and the formulation of policy [72]. In
this study, we quantified the vegetation ecological quality and its changes in the TNSFPA
from the aspects of the macroscopic distribution structure and production function of
vegetation using vegetation coverage and productivity. As an important indicator of
the regional ecological changes, vegetation coverage is of great significance to reveal
the environmental change of ecosystem and vegetation restoration [73]. Gross primary
productivity is the amount of organic carbon fixed by photosynthesis of terrestrial green
vegetation per unit area and time and is the starting point and an important component
of atmospheric CO2 into the terrestrial ecosystem [74,75]. At present, studies based on
regional ecological assessment are usually based on principal component analysis, weight
method and model to fuse multiple indicators into one ecological quality index, such as
RESI [76], but the integrated indicators make it difficult to distinguish the change of detailed
information, such as the distribution structure and production function of vegetation [70].

The spatial and temporal evolution of land use and vegetation coverage is influenced
by the combination of climate change and human activities [77–79]. In particular, the
growth of vegetation is more correlated with precipitation when the average annual tem-
perature is greater than 0 ◦C (Figure 14). Human activities not only have caused changes
in the surface landscape, but also led to changes in carbon fluxes in surface ecosystems,
which are mainly reflected in the promotion and destruction of vegetated ecosystems, such
as ecological engineering, mining and urban expansion [36]. Ecological protection and
restoration activities include a series of measures, such as returning farmland to forest or
grassland, afforestation and the establishment of nature reserves, which have accelerated
the restoration of vegetation ecosystems under the background of warmer and more humid
climate and played an important role in improving the quality of the ecological environ-
ment on a large scale. Meanwhile, excessive population growth has led to accelerated
urbanization. From 2000 to 2020, the area of constructive land increased by 3145 km2

(12.05%). The low vegetation coverage and productivity of the project area was mainly
distributed in barren, mainly sandy land and the Gobi Desert, and the part was reclaimed as
cultivated land in the process of development and utilization. It has a great impact on small
vegetation ecosystems. In conclusion, human activities have an important influence on the
spatial and temporal evolution of land use and vegetation, so the quantitative analysis and
driving mechanisms of human activity factors leading to land use and vegetation changes
need to be further explored.
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5. Conclusions

Based on MODIS products, the spatial–temporal evolution characteristics and influenc-
ing factors of land use and vegetation in the TNSFPA from 2000 to 2020 were analyzed by
using a land use change map, line regression analysis, Sen’s and Mann–Kendall significance
test and correlation analysis. The main conclusions are as follows:

(1) The percentage of unchanged land was 90.05% in the TNSFPA from 2001 to 2020.
Except for the increase in the area of cultivated land and constructive land, all other
land use types showed a decreasing trend. The late change (58.06%) was the main
change pattern, followed by the early change (28.94%) and repeated change (10.62%).
The change of land use showed the characteristics of cultivated land and forest were
mainly transformed into grassland, whereas grassland was mainly transformed into
cultivated land and barren, which fully reflected the national policy of “returning
farmland to forest land or grassland” and the current situation of grassland reclama-
tion and degradation.

(2) From 2000 to 2020, vegetation coverage in the study area generally presented a spatial
distribution pattern of high coverage in the east and low coverage in the west, and
the regional interannual fluctuation of high coverage was small. A total of 90.31%
of the area showed an increasing trend (0.41%·a−1); 62.30% of the area showed a
significant increasing trend, and the change rates in northeastern, northern, and
northwestern China were 0.51%·a−1, 0.54%·a−1 and 0.37%·a−1, respectively. The
trend of vegetation coverage in different seasons of the TNSFPA were all dominated
by significant increase from 2000 to 2020.

(3) From 2000 to 2020, the distribution space of vegetation productivity in the TNSFPA
was basically the same as the coverage, and the interannual fluctuation in areas with
low productivity was small. A total of 51.66% of the area showed an increasing
trend (3.41 gC·m−2·a−1), mainly in the basic stable state and significantly increased
state. The change rates in northeastern, northern, and northwestern China were
7.34 gC·m−2·a−1, 6.72 gC·m−2·a−1 and 2.10 gC·m−2·a−1, respectively. The trend of
vegetation productivity in different seasons of the TNSFPA were all dominated by
basic stability from 2000 to 2020.

(4) The vegetation coverage and productivity in the TNSFPA were positively correlated
with climate factors, and the correlation of precipitation was significantly higher than
that of temperature. The proportion of areas with positive correlation between vegeta-
tion coverage and temperature and precipitation was 64.06% and 86.58%, respectively.
The proportion of areas with a positive correlation between vegetation productivity
and temperature and precipitation was 40.70% and 53.51%, respectively. The climatic
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factor restricting vegetation growth in the study area was mainly precipitation. The
ecological protection and restoration activities of the TNSFPA have accelerated the
restoration of the vegetation ecosystem. The rapid growth of population has led to
the acceleration of urbanization. The intensification of the interaction of humans and
land has led to the reclamation and development of barren, which had a great impact
on the small–scale vegetation ecosystem.
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