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Abstract: Flood frequency analysis is accepted as one of the most important applications of water
resource engineering. Measurements with higher and lower values, such as outliers, can be seen
in hydrological data sets based on longer observation periods that extend the overall range. This
study used 50 and 25 years of annual maximum flow data from 1962 to 2011 and from 1987 to 2011
from the Stream Gauging Stations (SGS) numbered 1712, 1717, and 1721 located within the borders
of the Eastern Mediterranean Basin. The flood discharges were estimated using Normal, Gumbel,
and Pearson Type III probability distributions. The study adopted Kolmogorov–Smirnov (K-S) and
Chi-squared goodness-of-fit tests to investigate the suitability of probability distribution functions.
The maximum flow rates were obtained by utilizing Normal distribution in the 2-year and 5-year
return periods for the flood values calculated with the raw data; however, after the modification of
the outliers, maximum flood discharges were estimated by adopting the Pearson Type III function.
While the maximum discharges for the 1717 SGS were determined using the Gumbel distribution,
the Pearson Type III distribution function was utilized for the 1712 and 1721 SGSs. As a result of
the K-S and Chi-squared tests, it was determined that adjustment of the outliers resulted in positive
goodness-of-fit results with the Pearson Type III function.

Keywords: Eastern Mediterranean Basin; flood frequency analysis; goodness-of-fit tests; outliers;
probability distributions

1. Introduction

Floods induced by natural and anthropic factors are considered to be among the most
damaging disasters on Earth [1]. Due to the increasing human population and the alteration
in the global climate, it is predicted that considerable changes in many meteorological
and hydrological data, such as mean precipitation, discharge, and temperature, could
increase the destructive effect of floods [2,3]. Structural solutions are generally sufficient
to prevent floods; however, the design of hydraulic structures can often vary according
to the streamflow conditions [4]. Hence, frequency analysis successfully represents the
relationship between the flood’s severity, magnitude, and return period together with the
rational method, the unit hydrograph method and the rainfall–runoff method [5–8]. This
analysis is defined as calculating the maximum flow data recorded at gauging stations
along a river or water resource using several probability distribution functions [9–13].

In the published literature, many studies have carried out flood frequency analyses
for various return periods in different drainage basins [1,14,15]. Moreover, the application
of goodness-of-fit tests to assess the suitability between observed streamflow data and
probability distribution produces more reliable results [16–18]. During long observation
periods, greater or fewer records may exist compared to the determined limit values. Thus,
outliers are specified as inconsistent observation values within datasets [19–21]. Errors may
occur due to data entry, so uncertainties in measurements such as decimal notation and
incorrect scaling can take place [19]. The outliers are hydrological parameters that differ
from the general distribution in the available dataset [22]. Thanks to the adjustment of the
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outliers, the new values obtained will prevent high costs in the design and construction
processes for water structures. Hydrological design is one of the main subjects of water
resource engineering applications. Any data obtained from the hydrological stages should
be as consistent as possible and reflect optimum engineering conditions. Consequently,
for an accurate and effective planning phase, it is essential to deal with the meteorological
and hydrological records in detail during the feasibility work [23]. Many studies have
been carried out on adjusting the effects of the outliers observed in hydrological data in
the literature [24–28].

Flood frequency analysis provides an estimate of discharges used to design of water
structures to be built on rivers. The Eastern Mediterranean Basin has a dense river system.
The regime of most rivers is a non-uniform characteristic, and this basin consists of areas
with a high flood risk. In this study, the outliers were determined. An attempt was made
to modify the effects of these values with graphical and statistical methods by using the
data from the Stream Gauging Stations (SGSs) numbered 1712, 1717, and 1721, located
in the Eastern Mediterranean Basin, which is one of the important basins in Turkey and
where flood events are frequent. Therefore, different probability distribution functions
such as Normal, Gumbel, and Pearson Type III have been used, and the effect of outliers on
the estimated flow rates has been examined. Furthermore, widely used in the literature,
Kolmogorov–Smirnov (K-S) and Chi-squared goodness-of-fit tests were applied to deter-
mine the most appropriate of these functions. As a result of the effect of the outliers, a more
realistic result will be produced, mainly for optimum cost calculations.

2. Materials and Methods

The Eastern Mediterranean Basin is located in the south of Turkey between 36◦ and
37◦ northern latitudes and between 32◦ and 35◦ eastern longitudes. The basin contains
approximately 3% of Turkey’s population with a drainage area of 21.676 km2. The basins
adjacent to the Eastern Mediterranean Basin are the Konya Closed Basin, the Seyhan Basin,
and the Antalya Basin [29]. In the Eastern Mediterranean Basin, significant water transfers
between sub-basins occur. Currently, the total water transfer is 220.46 hm3, and the highest
water transfer in the basin is 113.59 hm3 for agricultural purposes. A total of 106.87 hm3

of drinking and utility water is transferred from the Tarsus sub-basin to the Kızıldere
sub-basin, which has the highest population density in the basin area [30].

The present study used 50 and 25 years of annual maximum flow data from 1962 to
2011 and from 1987 to 2011, respectively, from the SGS belonging to the Electricity Works
Survey Administration (known as EIEI) and The General Directorate State Hydraulic Works
(known as DSI) numbered 1712, 1717, and 1721, which are located within the borders of
the Eastern Mediterranean Basin (Table 1). The locations and information of the specified
SGSs is shown in in Figure 1 [30,31]. Streamflow data of the stations used for this study is
only available until 2011. These stations were closed after 2011. Although at least 30 years
of historical hydrometeorological data have been evaluated in the literature, it is stated
that data of at least 22 years and above can be used in hydrological studies [32]. In light
of this information, historical flood frequency analyzes were conducted for the Eastern
Mediterranean Basin.

Table 1. Flow observation station information [31].

Station Station
No Stream Observed

Period (Year)
Average

Rainfall (mm)
Elevation

(m)
Average

Temperature (◦C)
Drainage

Area (km2)

Bucakkışla 1712 Göksu River 50 38.6 393 18.2 2702
Kızılgeçit 1717 Lamas Creek 25 44.4 975 12.7 1005.2
Alaköprü 1721 Anamur Creek 25 96.3 37 19.1 313.2
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The Göksu River, Lamas Creek, and Anamur Creek are listed as the water sources 
where the stations are located. In 2004, a major flood event occurred in Silifke and its sur-
roundings after the Göksu River overflowed. The reason for the flood was said to be the 
increase in the discharge due to snowmelt rather than precipitation. This disaster greatly 
damaged agricultural lands [33]. It is stated that sudden floods have been seen over the 
years in the regions where the stations used in the study are located, and there is a great 
flood potential in this region [34]. Therefore, the basin has the potential for flash floods to 
occur in many ways. Within the scope of this study, it is thought that essential contribu-
tions can be provided to the literature in terms of effective flood management by fre-
quency analysis. 

The Eastern Mediterranean Basin, where a Mediterranean climate prevails, has hot 
and dry summers and mild and rainy winters. While continental climate features are dom-
inant in the northern and upper parts of the basin, it has been observed that winters are 
cold and generally snowy. From a climate change perspective, the basin can be considered 
vulnerable to such changes. Significant temperature increases and precipitation irregular-
ities can produce negative impacts associated with climate change [35]. 

 
Figure 1. Locations of gauging stations [30]. 

Outliers Term and Probability Distribution Functions 
The term outlier usually refers to data that differs from specific limit values within 

the available observed data [36]. Flood analysis can employ many different methods to 
detect and modify these outliers. It is possible to specify these methods as graphical and 
statistical methods [37]. The present study compared the obtained results by the graphical 
method with the results of the Grubbs–Beck test (1972) [38], which is frequently used to 
detect outliers. The formulas for this test are detailed in Equations (1)–(3) [36]: 

Xmin = µො − Kn𝜎ො (1) 

Xmax = µො + Kn𝜎ො (2) 

Kn = −0.9043 + 3.345ඥlogଵ(𝑛) − 0.4046logଵ(𝑛) (3) 

n: is the number of samples; µො : is the mean value;  

Figure 1. Locations of gauging stations [30].

The Göksu River, Lamas Creek, and Anamur Creek are listed as the water sources
where the stations are located. In 2004, a major flood event occurred in Silifke and its
surroundings after the Göksu River overflowed. The reason for the flood was said to
be the increase in the discharge due to snowmelt rather than precipitation. This disaster
greatly damaged agricultural lands [33]. It is stated that sudden floods have been seen
over the years in the regions where the stations used in the study are located, and there is
a great flood potential in this region [34]. Therefore, the basin has the potential for flash
floods to occur in many ways. Within the scope of this study, it is thought that essential
contributions can be provided to the literature in terms of effective flood management by
frequency analysis.

The Eastern Mediterranean Basin, where a Mediterranean climate prevails, has hot and
dry summers and mild and rainy winters. While continental climate features are dominant
in the northern and upper parts of the basin, it has been observed that winters are cold and
generally snowy. From a climate change perspective, the basin can be considered vulnerable
to such changes. Significant temperature increases and precipitation irregularities can
produce negative impacts associated with climate change [35].

Outliers Term and Probability Distribution Functions

The term outlier usually refers to data that differs from specific limit values within
the available observed data [36]. Flood analysis can employ many different methods to
detect and modify these outliers. It is possible to specify these methods as graphical and
statistical methods [37]. The present study compared the obtained results by the graphical
method with the results of the Grubbs–Beck test (1972) [38], which is frequently used to
detect outliers. The formulas for this test are detailed in Equations (1)–(3) [36]:

Xmin = µ̂−Knσ̂ (1)

Xmax = µ̂+ Knσ̂ (2)

Kn = −0.9043 + 3.345
√

log10(n)− 0.4046 log10(n) (3)

n: is the number of samples;
µ̂: is the mean value;
σ̂: is the standard deviation.
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It is difficult to determine which one of the probability distribution functions is appro-
priate for flood frequency analysis. Normal, Gumbel, and Pearson Type III distributions are
frequently used in the literature. Various statistical parameters of the data series are needed
to apply the probability distribution functions, such as the mean (µ̂), standard deviation (σ̂),
and skewness coefficient (γ) [39]. Xmin and Xmax parameters represent lower and higher
outlier boundary values. The parameters of the selected probability distributions and
parameter estimation methods are given in Table 2. While two parameters, the mean and
standard deviation, are used in the calculation of Normal distribution and flood flow rates,
in the Gumbel and Pearson Type III distributions, the skewness coefficient is also necessary
to add these two parameters.

Table 2. Probability distribution calculation stages.

Distribution Constrains Estimation
Techniques Probability Function fx(x) Frequency Factor (Kt)

Normal Scale (σ)
Location (µ)

Method of
Moments

fx(x) = 1√
2Πσ

exp
[
− 1

2

(
x− µ

σ

)2
]

−∞ < x < +∞

Standard normal deviate z with
exceedance probability 1/T

Gumbel
(GEV Type II)

Shape (k)
Scale (σ)

Location (µ)

Method of
L-moments

fx(x) =
1
σ e(−1+2

√
( x− µ

σ ))
(

1 + 2
(

x− µ
σ

)− 3
2
)

Kt =
√

6
Π

[
0.5772 + ln

[
ln
(

T
T−1

)]]
Kt = frequency factor =

(
x− µ

σ

)
T = 1

1−e−e
−(0.5772+

ΠKt√
6

)

T = return period

Pearson
Type III

Shape (α)
Scale (β)

Location (γ)

Maximum
likelihood

α = σ/
√

β,
β=(2/γ)2, Є= µ − σ

√
β

fx(x) =
1

αГ(β)
exp

[(
x− Є

α

)β−1
]

e−[(x−Є)/α]

x: refers discharge values
γ: skewness coefficient of x

µ: mean of x
σ: standard deviation of x

Kt = z +
((

z2 − 1
) γ

6 + 1
3
(
z3 − 6z

)( γ
6
)2

−
(
z2 − 1

)( γ
6
)3

+ z
( γ

6
)4− 1

3
( γ

6
)4

Standard normal deviate z with
exceedance probability 1/T

3. Results

The main objective of this study was to examine the effect of the modification of
the outliers on the flood flow rates obtained with Normal, Gumbel, and Pearson Type III
distributions for the data from the 1712, 1717, and 1721 SGSs in the Eastern Mediterranean
Basin. At first, it is vital to investigate the series for homogeneity to determine that
there is no significant difference in the causative hydrological processes. The Buishand
homogeneity test, frequently used in the literature, has been evaluated to determine no
significant change in the data series [40–43]. Accordingly, from the data of these three
stations, it is seen that there is no significant difference in the limit values between the 99%
and 95% confidence intervals, and it is accepted that the series are suitable for frequency
analysis. Figure 2 shows the graphs generated as a result of the adjustment of the outliers
in the maximum flow values of 50 years for 1712 SGS in the 1962 to 2011 period and
the 25-year maximum flow values measured between 1987 and 2011 for 1717 SGS and
1721 SGS. Considering the graphical method and Grubbs–Beck test results, to determine
these outliers, deviations of ±1.5σ from the mean value were determined as an acceptable
level calculated for each station. The statistical parameters calculated with the raw state
data and the state after the outliers have been modified are shown in Table 3.
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Skewness 1.011 0.376 2.762 1.010 0.347 −0.005 
Kurtosis 1.381 −0.293 9.742 0.247 −0.075 −0.914 
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Figure 2. Graph of the selected outliers in the streamflow data set for (a) 1712 SGS, (b) 1717 SGS, and
(c) 1721 SGS.

Table 3. Statistical parameters of the data used in the calculations (M.: Modified).

Statistical
Parameters

1712 SGS 1717 SGS 1721 SGS

Value M. Value Value M. Value Value M. Value

Mean (m3/s) 224 218 22 20 243 239
Variance (m6/s2) 8574 5862 295 129 9340 7228

Standard Deviation (m3/s) 92.60 76.56 17.19 11.34 96.64 85.02
Skewness 1.011 0.376 2.762 1.010 0.347 −0.005
Kurtosis 1.381 −0.293 9.742 0.247 −0.075 −0.914

In Figure 2 the green lines represent average discharge values, and the red lines show
Xmax and Xmin. As can be seen in Figure 2, it was concluded that the SGS data between the
red lines are at an acceptable level, and that those outliers within a±1.5σ level limit outside
these lines have been included. However, since the lower boundary condition line (Xmin) in
Figure 2b is a negative value, it was not considered necessary to be included in this figure.
Afterwards, six values for 1712 SGS, one value for 1717 SGS, and three values for 1721 SGS
were detected and modified. The statistical parameters calculated with the raw state data
and the state after the outliers were adjusted is shown in Table 3. Since modified outliers
were above the +1.5σ limit, the statistical parameters for the standardized values declined
compared to the parameters for the raw values (Figure 3). Although a few data below the
−1.5σ level were set to the limit values, the parameter values decreased due to more values
being drawn back to the +1.5σ level.
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Figure 3. Modification in statistical parameters: mean (m3/s) and standard deviation (m3/s)
(M.: Modified).

The outliers for all stations were modified, and a decrease was observed in all pa-
rameters. Still, the skewness coefficient and kurtosis parameters showed more significant
variation in 1717 SGS compared to the other stations. In the 1717 SGS, the skewness coeffi-
cient for the raw values shows substantial deviations from the Normal distribution with a
value of 2.762. After the adjustment, the difference compared to the Normal distribution
decreased considerably.

Flood discharges for 2, 5, 10, 25, 50, 100, 200, 500, and 1000 years of return periods
were calculated using Normal, Gumbel, and Pearson Type III probability distributions
applied to the raw and outlier-modified flow data. As seen in Table 4, while the maximum
flow values for 1712 SGS and 1721 SGS were obtained with the Gumbel distribution at high
periods, minimum flow values were estimated with the Normal distribution. The results
seem to be compatible with various other studies [8,15,44]. Additionally, for 1712 SGS, the
maximum flood discharges were calculated with Pearson Type III distribution in the 2-year
and 5-year return periods. With the adjustment of the outliers for all stations, a decrease
was observed in all parameters. Still, the skewness coefficient and kurtosis parameters
showed more significant variation in 1717 SGS compared to other stations (Table 5). In
the 1717 SGS, the skewness coefficient for the raw values showed substantial deviations
from the Normal distribution with a value of 2.762. After the adjustment, the difference
compared to the Normal distribution decreased considerably. Tables 4 and 5 show the
raw discharge value and the discharges after the outliers have been modified for all three
stations according to the different return periods.

Table 4. Raw discharge values (m3/s).

Return
Period

1712 SGS 1717 SGS 1721 SGS

Normal Gumbel Pearson
Type III Normal Gumbel Pearson

Type III Normal Gumbel Pearson
Type III

2 224 209 209 22 19 15 243 229 237
5 303 291 295 36 38 30 325 333 322

10 343 345 349 44 50 43 367 401 370
25 387 414 414 52 65 61 412 488 423
50 415 465 460 57 77 75 442 552 459

100 440 515 505 62 88 90 468 616 492
200 463 565 548 66 99 105 492 679 523
500 491 631 604 71 114 125 521 763 562
1000 510 682 645 75 126 140 541 826 590
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Table 5. Modified discharge values (m3/s).

Return
Period

1712 SGS 1717 SGS 1721 SGS

Normal Gumbel Pearson
Type III Normal Gumbel Pearson

Type III Normal Gumbel Pearson
Type III

2 218 206 214 20 19 18 239 227 239
5 283 274 281 30 31 29 311 318 311

10 317 318 319 35 39 35 348 378 348
25 352 375 352 40 49 43 388 455 388
50 376 417 391 43 56 49 414 511 414

100 397 459 417 47 64 54 437 567 437
200 416 500 442 49 71 60 458 623 458
500 439 555 474 53 81 67 484 697 484
1000 454 596 496 55 89 72 501 752 515

4. Discussion

The changes in the flow rates when the effect of the outliers is modified for the
determined probability functions are shown in detail in Figure 4a–c. The distributions
determined that the modified flow rates were lower than those calculated with the raw
values [45]. Nonetheless, the exact condition occurred in the Pearson Type III distribution
but with a 2-year return period (Figure 4c).

However, it is remarkable that the Normal distribution gives the maximum flow in a
2-year return period. Fewer flood discharges were obtained for the 1717 SGS compared
to the other two stations (Figure 4a). Similarly, while the maximum flood value for the
1717 SGS was calculated with the Gumbel distribution, maximum values at 1712 and
1721 SGS were estimated with Pearson Type III distribution (Figure 4b,c) [46,47].

The Kolmogorov–Smirnov (K-S) and Chi-squared tests were applied to investigate
which probability distribution gives more compatible results in the estimation of flood
discharges. In the goodness-of-fit tests, the probability distribution function with the
minimum error value was determined to be the most compatible (Figure 5). In Figure 5a–c,
the modified, expected, and raw values are shown with different scatter plots. As seen in
Figure 5, the probability distributions in both tests showed compliance at a 90% confidence
interval, regardless of the adjustment of the outliers. Nonetheless, the Chi-squared results
decreased significantly after the modification, and the fitness level increased prominently
(Figure 5a–c).

The K-S and Chi-squared expected values in Figure 5 were selected from relevant tables
in the literature according to the number of samples and the significance level. Considering
the Chi-squared test, the most appropriate probability distribution with the data available
for the 1712 SGS was acquired by Normal distribution, similar to many studies in the
literature [48]. However, for the results of some other studies, the lowest performance
was achieved with the Normal distribution [49,50]. After adjusting the outliers, Pearson
Type III showed compatible distribution with similar studies [18]. For the 1717 SGS, the
Normal distribution was found to be the most appropriate one, and showed similarity to
many studies [10,51]. However, the adjustment of the 1721 SGS outliers did not cause any
difference in the probability distribution functions.

Although all probability functions provide a 90% confidence interval for the K-S test,
the modification of outliers did not seem to improve the results of the Normal and Gumbel
distributions. Dmax values for these probability distributions for each SGSs were examined.
The Dmax refers to the maximum value chosen from the absolute differences between
the expected and calculated values. It was remarked that they produce the same Dmax
results in the modified discharges. Modification of the outliers significantly increased the
compatibility of the Pearson Type III distribution for each station. It was seen that there are
parallel results for similar studies in the published literature [51–54].
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Figure 5. (a) Kolmogorov–Smirnov test results. (b) Chi-squared results: outliers extracted. (c) Chi-
squared results: raw discharge values.

5. Conclusions

In this study, 1712, 1717, and 1721 SGSs in the Eastern Mediterranean Basin were
chosen as the study area, and the effect of the outliers on the flood discharges obtained
by investigating with various probability distributions. Both the Kolmogorov–Smirnov
(K-S) and Chi-squared goodness-of-fit tests were applied to determine the reliability of the
results. In the short-term 2-year and 5-year return periods, while the maximum raw flood
values were calculated with the Normal distribution function, the modified flow rates were
estimated with the Pearson Type III distribution function. Furthermore, as the adjustment
of the outliers led to a decrease in flood discharges, it is seen that this situation is due to the
withdrawal of the outliers beyond the limit values.

In high return periods, it was noticed that the probability distributions differ according
to the SGSs. While the maximum flow rates for 1717 SGS were obtained with the Gumbel
distribution, it was determined that the Pearson Type III distribution for 1712 and 1721 SGSs
gave the largest flood discharge values. For the K-S test, the modification of the outliers
did not improve the fitness level of the Gumbel and Normal distributions, but it was
seen to have had a positive effect on the consistent Pearson Type III distribution level.
According to the Chi-square test, the most compatible distribution for the raw values
was the Normal distribution, while this situation changes to the Pearson Type III as a
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result of the modification of outliers. Considering both tests, the most suitable probability
distribution calculated with the raw values used the Pearson Type III function.

As a result, by modifying the outliers in the observed streamflow data, a more reliable
result will be obtained in the design processes of hydraulic structures, especially optimum
cost calculations. In future studies, more detailed analysis can be performed for the
estimation of discharges by using different statistical distribution functions and methods for
the overall basin. Structural and non-structural measures should be assessed by preparing
emergency action plans for areas where flood events are intense.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author sincerely appreciates the Electrical Works Survey Administration
(known as EIEI, location: Ankara, Turkey) for sharing the specified streamflow gauge station data. In
addition, the author would like to thank Serin DEĞERLİ ŞİMŞEK, research assistant, for her valuable
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