Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Corn Snacks Preparation
2.3. Physical Properties of Snacks
2.4. Sorption Characteristics of Extrudates
2.5. Color Analysis
2.6. Sensory Study
2.7. Statistical Analysis and Modeling
3. Results and Discussion
3.1. Physicochemical Properties of Snacks
3.2. Sorption Characteristics of Snacks
3.3. Color of Snacks
3.4. Sensory Analysis
3.5. Statistical Considerations on the Influence of Analyzed Parameters on Sensory Attractiveness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. World Population Prospects: The 2017 Revision. Available online: https://www.un.org/en/desa/world-population-projected-reach-98-billion-2050-and-112-billion-2100 (accessed on 24 October 2022).
- FAO. Edible Insects—Future prospects for food and feed security. In FAO Forestry Paper; FAO: Rome, Italy, 2013; Volume 171, ISBN 9789251075951. [Google Scholar]
- Berggren, Å.; Jansson, A.; Low, M. Approaching Ecological Sustainability in the Emerging Insects-as-Food Industry. Trends Ecol. Evol. 2019, 34, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Raheem, D.; Carrascosa, C.; Oluwole, O.B.; Nieuwland, M.; Saraiva, A.; Millán, R.; Raposo, A. Traditional consumption of and rearing edible insects in Africa, Asia and Europe. Crit. Rev. Food Sci. Nutr. 2019, 59, 2169–2188. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
- van Huis, A.; Rumpold, B.A.; van der Fels-Klerx, H.J.; Tomberlin, J.K. Advancing edible insects as food and feed in a circular economy. J. Insects Food Feed. 2021, 7, 935–948. [Google Scholar] [CrossRef]
- Ojha, S.; Bußler, S.; Schlüter, O.K. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 2020, 118, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Zielińska, E.; Zieliński, D.; Karaś, M.; Jakubczyk, A. Exploration of consumer acceptance of insects as food in Poland. J. Insects Food Feed. 2020, 6, 383–392. [Google Scholar] [CrossRef]
- Kröger, T.; Dupont, J.; Büsing, L.; Fiebelkorn, F. Acceptance of insect-based food products in Western Societies: A systematic review. Front. Nutr. 2022, 8, 759885. [Google Scholar] [CrossRef]
- Florença, S.G.; Guiné, R.P.F.; Gonçalves, F.J.A.; Barroca, M.J.; Ferreira, M.; Costa, C.A.; Correia, P.M.R.; Cardoso, A.P.; Campos, S.; Anjos, O.; et al. The motivations for consumption of edible insects: A systematic review. Foods 2022, 11, 3643. [Google Scholar] [CrossRef]
- Modlinska, K.; Adamczyk, D.; Maison, D.; Goncikowska, K.; Pisula, W. Relationship between acceptance of insects as an alternative to meat and willingness to consume insect-based food—A study on a representative sample of the Polish population. Foods 2021, 10, 2420. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Stull, V.J.; Finer, E.; Bergmans, R.S.; Febvre, H.P.; Longhurst, C.; Manter, D.K.; Patz, J.A.; Weir, T.L. Impact of edible cricket consumption on gut microbiota in healthy adults, a double-blind, randomized crossover trial. Sci. Rep. 2018, 8, 10762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielińska, E.; Pankiewicz, U.; Sujka, M. Nutritional, physiochemical, and biological value of muffins enriched with edible insects flour. Antioxidants 2021, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Bawa, M.; Songsermpong, S.; Kaewtapee, C.; Chanput, W. Nutritional, sensory, and texture quality of bread and cookie enriched with house cricket (Acheta domesticus) powder. J. Food Process Preserv. 2020, 44, e14601. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Gumienna, M.; Rybicka, I.; Górna, B.; Sarbak, P.; Dziedzic, K.; Kmiecik, D. Nutritional value and biological activity of gluten-free bread enriched with cricket powder. Molecules 2021, 26, 1184. [Google Scholar] [CrossRef] [PubMed]
- da Rosa Machado, C.; Thys, R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019, 56, 102180. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Smarzyński, K.; Thanh-Blicharz, J.L.; Kačániová, M.; Baranowska, H.M. LF NMR spectroscopy analysis of water dynamics and texture of gluten-free bread with cricket powder during storage. Food Sci. Technol. Int. 2021, 27, 776–785. [Google Scholar] [CrossRef]
- Smarzyński, K.; Sarbak, P.; Musiał, S.; Jeżowski, P.; Piątek, M.; Kowalczewski, P.Ł. Nutritional analysis and evaluation of the consumer acceptance of pork pâté enriched with cricket powder—Preliminary study. Open Agric. 2019, 4, 159–163. [Google Scholar] [CrossRef]
- Walkowiak, K.; Kowalczewski, P.Ł.; Kubiak, P.; Baranowska, H.M. Effect of cricket powder addition on 1H NMR mobility and texture of pork pate. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 191–194. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Siejak, P.; Jarzębski, M.; Jakubowicz, J.; Jeżowski, P.; Walkowiak, K.; Smarzyński, K.; Ostrowska-Ligęza, E.; Baranowska, H.M. Comparison of technological and physicochemical properties of cricket powders of different origin. J. Insects Food Feed. 2022. [Google Scholar] [CrossRef]
- Wieczorek, M.; Kowalczewski, P.; Drabińska, N.; Różańska, M.; Jeleń, H. Effect of cricket powder incorporation on the Profile of volatile organic compounds, free amino acids and sensory properties of gluten-free bread. Polish J. Food Nutr. Sci. 2022, 72, 431–442. [Google Scholar] [CrossRef]
- Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten free sourdough bread enriched with cricket flour for protein fortification: Antioxidant improvement and Volatilome characterization. Food Chem. 2020, 333, 127410. [Google Scholar] [CrossRef] [PubMed]
- Grasso, S. Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 2020, 99, 284–294. [Google Scholar] [CrossRef]
- Alam, M.S.; Kaur, J.; Khaira, H.; Gupta, K. Extrusion and extruded products: Changes in quality attributes as affected by extrusion process parameters: A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 445–473. [Google Scholar] [CrossRef]
- Makowska, A.; Cais-Sokolińska, D.; Waśkiewicz, A.; Tokarczyk, G.; Paschke, H. Quality and nutritional properties of corn snacks enriched with nanofiltered whey powder. Czech J. Food Sci. 2016, 34, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Arribas, C.; Cabellos, B.; Cuadrado, C.; Guillamón, E.; M. Pedrosa, M. Bioactive compounds, antioxidant activity, and sensory analysis of rice-based extruded snacks-like fortified with bean and carob fruit flours. Foods 2019, 8, 381. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, M.R.; Kuna, A.; Devi, M.P.; Sowmya, M.; Dasgupta, M. Fortification of ready–to–eat extruded snacks with tree bean powder: Nutritional, antioxidant, essential amino acids, and sensory properties. J. Food Sci. Technol. 2022, 59, 2351–2360. [Google Scholar] [CrossRef]
- Szymandera-Buszka, K.; Zielińska-Dawidziak, M.; Makowska, A.; Majcher, M.; Jędrusek-Golińska, A.; Kaczmarek, A.; Niedzielski, P. Quality assessment of corn snacks enriched with soybean ferritin among young healthy people and patient with Crohn’s disease: The effect of extrusion conditions. Int. J. Food Sci. Technol. 2021, 56, 6463–6473. [Google Scholar] [CrossRef]
- Makowska, A.; Zielińska-Dawidziak, M.; Niedzielski, P.; Michalak, M. Effect of extrusion conditions on iron stability and physical and textural properties of corn snacks enriched with soybean ferritin. Int. J. Food Sci. Technol. 2018, 53, 296–303. [Google Scholar] [CrossRef]
- HewaNadungodage, N.D.; Torrico, D.D.; Brennan, M.A.; Brennan, C.S. Nutritional, physicochemical, and textural properties of gluten-free extruded snacks containing cowpea and whey protein concentrate. Int. J. Food Sci. Technol. 2022, 57, 3903–3913. [Google Scholar] [CrossRef]
- Szczesniak, A.S. Texture is a sensory property. Food Qual. Prefer. 2002, 13, 215–225. [Google Scholar] [CrossRef]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 110032. [Google Scholar] [CrossRef]
- Ribeiro, L.; Cunha, L.M.; García-Segovia, P.; Martínez-Monzó, J.; Igual, M. Effect of the house cricket (Acheta domesticus) inclusion and process temperature on extrudate snack properties. J. Insects Food Feed. 2021, 7, 1117–1129. [Google Scholar] [CrossRef]
- Téllez-Morales, J.A.; Hernández-Santos, B.; Navarro-Cortez, R.O.; Rodríguez-Miranda, J. Impact of the addition of cricket flour (Sphenarium purpurascens) on the physicochemical properties, optimization and extrusion conditions of extruded nixtamalized corn flour. Appl. Food Res. 2022, 2, 100149. [Google Scholar] [CrossRef]
- Tańska, M.; Konopka, I.; Ruszkowska, M. Sensory, physico-chemical and water sorption properties of corn extrudates enriched with spirulina. Plant Foods Hum. Nutr. 2017, 72, 250–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowska, A.; Baranowska, H.M.; Michniewicz, J.; Chudy, S.; Kowalczewski, P.Ł. Triticale extrudates—Changes of macrostructure, mechanical properties and molecular water dynamics during hydration. J. Cereal Sci. 2017, 74, 250–255. [Google Scholar] [CrossRef]
- Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, E.L.J. Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Sci. Today 1969, 14, 4–7. [Google Scholar]
- Ocieczek, A. Impact of comminution on adsorption properties of gluten-free wheat starch. Acta Agrophysica 2013, 20, 125–136. [Google Scholar]
- Tańska, M.; Konopka, I.; Korzeniewska, E.; Rotkiewicz, D. Colour of rapeseed (Brassica napus) surface and contamination by fungi during storage of dry and wet seeds. Int. J. Food Sci. Technol. 2011, 46, 2265–2273. [Google Scholar] [CrossRef]
- Resurreccion, A.V.A. Consumer Sensory Testing for Product Development; Springer: New York, NY, USA, 1998; ISBN 978-0-8342-1209-1. [Google Scholar]
- Mynarski, S. Analysis of Market and Marketing Data Using Statistica Program; AE Publishing House: Kraków, Poland, 2003. [Google Scholar]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Heidenreich, S.; Jaros, D.; Rohm, H.; Ziems, A. Relationship between water activity and crispness of extruded rice crisps. J. Texture Stud. 2004, 35, 621–633. [Google Scholar] [CrossRef]
- Tiwari, A.; Jha, S.N. Extrusion cooking technology: Principal mechanism and effect on direct expanded snacks—An overview. Int. J. Food Stud. 2017, 6, 113–128. [Google Scholar] [CrossRef]
- Meng, A.; Li, F.; Chen, F.; Luan, B.; Sun, T.; Zhang, B. Relationship between the physicochemical properties of soybean protein isolate and its extrudate based on high-moisture extrusion torque. J. Texture Stud. 2022. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, H.Q.; Tony Jin, Z.; Hsieh, F. Textural modification of soya bean/corn extrudates as affected by moisture content, screw speed and soya bean concentration. Int. J. Food Sci. Technol. 2005, 40, 731–741. [Google Scholar] [CrossRef]
- Day, L.; Swanson, B.G. Functionality of Protein-Fortified Extrudates. Compr. Rev. Food Sci. Food Saf. 2013, 12, 546–564. [Google Scholar] [CrossRef]
- Jin, Z.; Hsieh, F.; Huff, H. Effects of soy fiber, salt, sugar and screw speed on physical properties and microstructure of corn meal extrudate. J. Cereal Sci. 1995, 22, 185–194. [Google Scholar] [CrossRef]
- Robin, F.; Dubois, C.; Curti, D.; Schuchmann, H.P.; Palzer, S. Effect of wheat bran on the mechanical properties of extruded starchy foams. Food Res. Int. 2011, 44, 2880–2888. [Google Scholar] [CrossRef]
- Ačkar, Đ.; Jozinović, A.; Babić, J.; Miličević, B.; Panak Balentić, J.; Šubarić, D. Resolving the problem of poor expansion in corn extrudates enriched with food industry by-products. Innov. Food Sci. Emerg. Technol. 2018, 47, 517–524. [Google Scholar] [CrossRef]
- Nagaraju, M.; Tiwari, V.K.; Sharma, A. Effect of extrusion on physical and functional properties of millet based extrudates: A review. J. Pharmacogn. Phytochem. 2020, 9, 1850–1854. [Google Scholar] [CrossRef]
- Leonard, W.; Zhang, P.; Ying, D.; Fang, Z. Application of extrusion technology in plant food processing byproducts: An overview. Compr. Rev. Food Sci. Food Saf. 2020, 19, 218–246. [Google Scholar] [CrossRef]
- Kamau, E.; Mutungi, C.; Kinyuru, J.; Imathiu, S.; Tanga, C.; Affogon, H.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Moisture adsorption properties and shelf-life estimation of dried and pulverised edible house cricket Acheta domesticus (L.) and black soldier fly larvae Hermetia illucens (L.). Food Res. Int. 2018, 106, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Process. 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Uribe-Wandurraga, Z.N.; Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Influence of microalgae addition in formulation on colour, texture, and extrusion parameters of corn snacks. Food Sci. Technol. Int. 2020, 26, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Jamroz, J.; Sokołowska, Z.; Hajnos, M. Moisture sorption hysteresis in potato starch extrudates. Int. Agrophysics 1999, 13, 451–455. [Google Scholar]
- Włodarczyk-Stasiak, M.; Jamroz, J. Specific surface area and porosity of starch extrudates determined from nitrogen adsorption data. J. Food Eng. 2009, 93, 379–385. [Google Scholar] [CrossRef]
- Ruszkowska, M.; Kropisz, P.; Wiśniewska, Z. Evaluation of the stability of the storage of selected fruit and vegetables freeze-dried powder based on the characteristics of the sorption properties. Sci. J. Gdynia Marit. Univ. 2019, 109, 55–63. [Google Scholar] [CrossRef]
- Králik, M. Adsorption, chemisorption, and catalysis. Chem. Pap. 2014, 68, 1625–1638. [Google Scholar] [CrossRef]
- Brennan, M.A.; Derbyshire, E.; Tiwari, B.K.; Brennan, C.S. Ready-to-eat snack products: The role of extrusion technology in developing consumer acceptable and nutritious snacks. Int. J. Food Sci. Technol. 2013, 48, 893–902. [Google Scholar] [CrossRef]
- Paramita, E.L.; Sanjaya, W.R. The Determinants of purchasing decisions: The case of snack products. J. Organ. Dan Manaj. 2020, 16, 73–84. [Google Scholar] [CrossRef]
- Steele, K.M.; Rash, L.L. Is the suppression effect of the color red on snack food consumption reliable? Exp. Psychol. 2021, 68, 214–220. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Mishyna, M.; Chen, J.; Benjamin, O. Sensory attributes of edible insects and insect-based foods—Future outlooks for enhancing consumer appeal. Trends Food Sci. Technol. 2020, 95, 141–148. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Wadhwa, S.S. Industry-relevant approaches for minimising the bitterness of bioactive compounds in functional foods: A Review. Food Bioprocess Technol. 2013, 6, 607–627. [Google Scholar] [CrossRef]
- Pauter, P.; Różańska, M.; Wiza, P.; Dworczak, S.; Grobelna, N.; Sarbak, P.; Kowalczewski, P.Ł. Effects of the replacement of wheat flour with cricket powder on the characteristics of muffins. Acta Sci. Pol. Technol. Aliment. 2018, 17, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Ho, I.; Peterson, A.; Madden, J.; Huang, E.; Amin, S.; Lammert, A. Will it cricket? Product development and evaluation of cricket (Acheta domesticus) powder replacement in sausage, pasta, and brownies. Foods 2022, 11, 3128. [Google Scholar] [CrossRef] [PubMed]
Parameter | R | E2CP | E4CP | E6CP | E8CP | E8CP2BP |
---|---|---|---|---|---|---|
Water content (%) | 8.38 ± 0.01 d | 7.49 ± 0.07 a | 7.90 ± 0.04 b | 8.29 ± 0.04 c | 9.02 ± 0.06 e | 9.19 ± 0.01 f |
aw (-) | 0.339 ± 0.011 c | 0.311 ± 0.005 a | 0.329 ± 0.010 b | 0.322 ± 0.003 c | 0.386 ± 0.004 e | 0.377 ± 0.005 d |
ER (-) | 4.02 ± 0.35 d | 4.04 ± 0.20 d | 3.91 ± 0.20 cd | 3.84 ± 0.21 c | 1.32 ± 0.09 a | 1.72 ± 0.09 b |
BD (g/cm) | 0.11 ± 0.01 a | 0.11 ± 0.01 a | 0.13 ± 0.01 a | 0.11 ± 0.01 a | 0.64 ± 0.09 c | 0.47 ± 0.03 b |
WAI (g/g) | 5.19 ± 0.02 c | 5.37 ± 0.03 c | 5.20 ± 0.03 c | 5.11 ± 0.01 c | 4.02 ± 0.04 b | 3.42 ± 0.03 a |
WSI (%) | 9.36 ± 3.38 b | 13.07 ± 0.61 c | 13.37 ± 1.55 c | 14.60 ± 0.48 c | 10.46 ± 0.01 b | 6.43 ± 0.02 a |
Parameter | R | E2CP | E4CP | E6CP | E8CP | E8CP2BP |
---|---|---|---|---|---|---|
Parameters of BET equation | ||||||
vm | 6.01 | 5.51 | 5.71 | 6.01 | 6.16 | 6.34 |
ce | 26.00 | 25.20 | 15.98 | 56.77 | 44.79 | 40.78 |
R2 | 0.993 | 0.985 | 0.990 | 0.982 | 0.982 | 0.981 |
SKO | 0.99 | 0.68 | 0.84 | 0.54 | 1.60 | 0.54 |
RMS (%) | 1.31 | 1.12 | 1.77 | 0.51 | 0.76 | 0.54 |
FitStdErr | 0.180 | 0.221 | 0.240 | 0.249 | 0.224 | 0.214 |
Fstat | 280.59 | 204.28 | 137.70 | 110.82 | 112.76 | 180.70 |
Sorption specific surface (m2/g) | 211.08 | 193.65 | 200.45 | 211.06 | 216.49 | 222.66 |
Parameter | R | E2CP | E4CP | E6CP | E8CP | E8CP2BP |
---|---|---|---|---|---|---|
L* (%) | 84.50 ± 0.04 e | 81.26 ± 0.05 d | 78.63 ± 0.28 c | 76.76 ± 0.14 b | 75.48 ± 0.02 a | 77.02 ± 0.05 b |
a* (-) | −2.94 ± 0.01 a | −2.12 ± 0.02 b | −1.11 ± 0.16 c | 0.16 ± 0.05 d | 0.29 ± 0.06 e | −0.21 ± 0.21 de |
b* (-) | 40.76 ± 0.02 f | 35.77 ± 0.04 e | 35.58 ± 0.55 d | 30.43 ± 0.12 c | 27.08 ± 0.03 b | 26.44 ± 0.44 a |
ΔE (-) | - | 6.00 | 9.45 | 13.28 | 16.70 | 16.39 |
Water Content (%) | aw (-) | ER (-) | WAI (g/g) | WSI (%) | BD (g/cm3) | L* (%) | a* (-) | b* (-) | |
---|---|---|---|---|---|---|---|---|---|
Attractiveness | −0.857 * | −0.929 * | 0.990 * | 0.969 * | 0.648 | −0.962 * | 0.697 | −0.681 | 0.868 * |
R2 | sy | b | Standard Error from b | |
---|---|---|---|---|
y-intercept | 0.902 | 0.196 | 1.947 | 0.646 |
ER | 0.27 | 0.127 | ||
WAI | 0.325 | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruszkowska, M.; Tańska, M.; Kowalczewski, P.Ł. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability 2022, 14, 16578. https://doi.org/10.3390/su142416578
Ruszkowska M, Tańska M, Kowalczewski PŁ. Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability. 2022; 14(24):16578. https://doi.org/10.3390/su142416578
Chicago/Turabian StyleRuszkowska, Millena, Małgorzata Tańska, and Przemysław Łukasz Kowalczewski. 2022. "Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance" Sustainability 14, no. 24: 16578. https://doi.org/10.3390/su142416578
APA StyleRuszkowska, M., Tańska, M., & Kowalczewski, P. Ł. (2022). Extruded Corn Snacks with Cricket Powder: Impact on Physical Parameters and Consumer Acceptance. Sustainability, 14(24), 16578. https://doi.org/10.3390/su142416578