Green Outsourcer Selection Model Based on Confidence Interval of PCI for SMT Process
Abstract
:1. Introduction
2. Literature Review
3. Research Method
3.1. Confidence Interval of Outsourcer Selection Index
3.2. Constructing the Selection Model Based on Confidence Interval
- (1)
- If , then outsourcer b is chosen because it ranks higher than outsourcer a;
- (2)
- If , then outsourcer a and outsourcer b are both selected in equal order;
- (3)
- If , then outsourcer a is chosen because it ranks higher than outsourcer b.
- (1)
- If , then
- (2)
- If then,
4. Results and Discussions: Application Example
- 1.49
- 1.49
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gopalakrishnan, S.; Kumaran, M.S. Iiot framework based ml model to improve automobile industry product. Intell. Autom. Soft Comput. 2022, 31, 1435–1449. [Google Scholar] [CrossRef]
- Liu, J.; Ma, C.; Gui, H.; Wang, S. A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines. Mech. Syst. Signal Proc. 2022, 166, 108488. [Google Scholar] [CrossRef]
- Chen, K.S.; Wang, C.H.; Tan, K.H. Developing a fuzzy green supplier selection model using Six Sigma quality indices. Int. J. Prod. Econ. 2019, 212, 1–7. [Google Scholar] [CrossRef]
- Chu, C.Y.; Park, K.; Kremer, G.E. A global supply chain risk management framework: An application of text-mining to identify region-specific supply chain risks. Adv. Eng. Inform. 2020, 45, 101053. [Google Scholar] [CrossRef]
- Leng, J.; Jiang, P.; Zheng, M. Outsourcer-Supplier Coordination for Parts Machining Outsourcing under Social Manufacturing. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 231, 1078–1090. [Google Scholar] [CrossRef]
- Chang, T.C.; Chen, K.S. Statistical test of two Taguchi Six-Sigma quality indices to select the supplier with optimal processing quality. J. Test. Eval. 2022, 50, 674–688. [Google Scholar] [CrossRef]
- Chen, K.S.; Yu, C.M. Dual dimensional fuzzy testing based on the upper confidence limits for supplier selection. J. Intell. Fuzzy Syst. 2021, 40, 11145–11158. [Google Scholar] [CrossRef]
- Lin, K.P.; Yu, C.M.; Chen, K.S. Production data analysis system using novel process capability indices-based circular economy. Ind. Manag. Data Syst. 2019, 119, 1655–1668. [Google Scholar] [CrossRef]
- Besseris, G.J. Evaluation of robust scale estimators for modified Weibull process capability indices and their bootstrap confidence intervals. Comput. Ind. Eng. 2019, 128, 135–149. [Google Scholar] [CrossRef]
- Lin, C.T.; Hung, K.P.; Hu, S.H. Construction of a supplier evaluation model in the aerospace sector. J. Test. Eval. 2019, 47, 4223–4238. [Google Scholar] [CrossRef]
- Chen, K.S.; Huang, M.C.; Yu, C.M.; Chen, H.Y. Quality-based supplier selection model for products with multi-quality characteristics. Sustainability 2022, 14, 8532. [Google Scholar] [CrossRef]
- Chen, K.S.; Yu, C.M.; Huang, M.L. Fuzzy selection model for quality-based IC packaging process outsourcers. IEEE Trans. Semicond. Manuf. 2022, 35, 102–109. [Google Scholar] [CrossRef]
- Beltrão, M.; Duarte, F.M.; Viana, J.C.; Paulo, V. A review on in-mold electronics technology. Polym. Eng. Sci. 2022, 62, 967–990. [Google Scholar] [CrossRef]
- Buga, C.S.; Viana, J.C. The role of printed electronics and related technologies in the development of smart connected products. Flex. Print. Electron. 2022, 7, 043001. [Google Scholar] [CrossRef]
- Hong, F.; Tendera, L.; Myant, C.; Boyle, D. Vacuum-formed 3D printed electronics: Fabrication of thin, rigid and free-form interactive surfaces. SN Comput. Sci. 2022, 3, 275. [Google Scholar] [CrossRef]
- Wu, C.H.; Hsu, Y.C.; Pearn, W.L. An improved measure of quality loss for notching processes. Qual. Reliab. Eng. Int. 2021, 37, 108–122. [Google Scholar] [CrossRef]
- Schipfer, C.; Gschwandl, M.; Fuchs, P.; Antretter, T.; Feuchter, M.; Morak, M.; Tao, Q.; Schingale, A. Towards virtually optimized curing cycles for polymeric encapsulations in microelectronics. Microelectron. Reliab. 2022, 139, 114799. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Yu, X. A novel subpixel industrial chip detection method based on the dual-edge model for surface mount equipment. IEEE Trans Ind. Inform. 2023, 19, 232–242. [Google Scholar] [CrossRef]
- Jager, J.; Buschkamp, S.; Werum, K.; Glaser, K.; Grozinger, T.; Eberhardt, W.; Zimmermann, A. Contacting inkjet-printed silver structures and SMD by ICA and solder. IEEE Trans. Compon. Pack. Manuf. Technol. 2022, 12, 1232–1240. [Google Scholar] [CrossRef]
- Nikzad, E.; Amiri, A.; Amirkhani, F. Estimating total and specific process capability indices in three-stage processes with measurement errors. J. Stat. Comput. Simul. 2018, 88, 3033–3064. [Google Scholar] [CrossRef]
- de-Felipe, D.; Benedito, E. Monitoring high complex production processes using process capability indices. Int. J. Adv. Manuf. Technol. 2017, 93, 1257–1267. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.M.; Lai, K.K.; Chen, K.S.; Chang, T.C. Process-quality evaluation for wire bonding with multiple gold wires. IEEE Access 2020, 8, 106075–106082. [Google Scholar] [CrossRef]
- Chen, K.S. Fuzzy testing of operating performance index based on confidence intervals. Ann. Oper. Res. 2022, 311, 19–33. [Google Scholar] [CrossRef]
- Wang, C.H.; Chen, K.S. New process yield index of asymmetric tolerances for bootstrap method and six sigma approach. Int. J. Prod. Econ. 2020, 219, 216–223. [Google Scholar] [CrossRef]
- Qureshi, M.R.N.M. A bibliometric analysis of third-party logistics services providers (3PLSP) selection for supply chain strategic advantage. Sustainability 2022, 14, 11836. [Google Scholar] [CrossRef]
- Reyes, B.O.V.; Colmenero, J.C. A fuzzy decision-making methodology for third-party logistics selection in the existence of the company’s policy priorities: Case of household appliance manufacturer. Int. J. Logist. Syst. Manag. 2022, 43, 193–237. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lin, K.P. Fuzzy supplier selection model based on lifetime performance index. Expert Syst. Appl. 2022, 208, 118135. [Google Scholar] [CrossRef]
- Wu, C.W.; Liao, M.Y.; Yang, T.T. Efficient methods for comparing two process yields—Strategies on supplier selection. Int. J. Prod. Res. 2013, 51, 1587–1602. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, K.; Zeng, B.; Xu, H.; Yang, Y. Supplier selection in nuclear power industry with extended VIKOR method under linguistic information. Appl. Soft Comput. 2016, 48, 444–457. [Google Scholar] [CrossRef]
- Ertz, M.; Sun, S.; Boily, E.; Kubiat, P.; Quenum, G.G.Y. How transitioning to industry 4.0 promotes circular product lifetimes. Ind. Mark. Manag. 2022, 101, 125–140. [Google Scholar] [CrossRef]
- Feng, Y.; Hong, Z.; Tian, G.; Li, Z.; Tan, J.; Hu, H. Environmentally friendly MCDM of reliability-based product optimisation combining DEMATEL-based ANP, interval uncertainty and vlse kriterijumska optimizacija kompromisno resenje (VIKOR). Inf. Sci. 2018, 442–443, 128–144. [Google Scholar] [CrossRef]
- Roul, J.N.; Maity, K.; Kar, S.; Maiti, M. Multi-item reliability dependent imperfect production inventory optimal control models with dynamic demand under uncertain resource constraint. Int. J. Prod. Res. 2015, 53, 4993–5016. [Google Scholar] [CrossRef]
- Lee, J.R.; Aziz, M.S.A.; Ishak, M.H.H.; Khor, C.Y. A review on numerical approach of reflow soldering process for copper pillar technology. Int. J. Adv. Manuf. Technol. 2022, 121, 4325–4353. [Google Scholar] [CrossRef]
- Kao, F.C.; Huang, S.C.; Lo, H.W. A rough-fermatean DEMATEL approach for sustainable development evaluation for the manufacturing industry. Int. J. Fuzzy Syst. 2022, 24, 3244–3264. [Google Scholar] [CrossRef]
- Suppipat, S.; Hu, A.H. Achieving sustainable industrial ecosystems by design: A study of the ICT and electronics industry in Taiwan. J. Clean. Prod. 2022, 369, 133393. [Google Scholar] [CrossRef]
- Wetzstein, A.; Hartmann, E.; Benton, W.C., Jr.; Hohenstein, N.O. A systematic assessment of supplier selection literature—State-of-the-art and future scope. Int. J. Prod. Econ. 2016, 182, 304–323. [Google Scholar] [CrossRef]
- Thevenin, S.; Ben-Ammar, O.; Brahimi, N. Robust optimization approaches for purchase planning with supplier selection under lead time uncertainty. Eur. J. Oper. Res. 2022, 303, 1199–1215. [Google Scholar] [CrossRef]
- Tsai, C.K.; Phumchusri, N. Fuzzy analytical hierarchy process for supplier selection: A case study in an electronic component manufacturer. Eng. J. Thail. 2021, 25, 73–86. [Google Scholar] [CrossRef]
- Awasthi, A. Supplier quality evaluation using a fuzzy multi criteria decision making approach. Stud. Fuzziness Soft Comput. 2015, 319, 195–219. [Google Scholar]
- Liao, M.Y. Assessing process incapability when collecting data from multiple batches. Int. J. Prod. Res. 2015, 53, 2041–2054. [Google Scholar] [CrossRef]
- Alkahtani, M.; Kaid, H. Supplier selection in supply chain management: A review study. Int. J. Bus. Perform. Supply Chain Model. 2018, 10, 107–130. [Google Scholar] [CrossRef]
- Sardesai, S.; Klingebiel, K. Maintaining viability by rapid supply chain adaptation using a process capability index. Omega 2023, 115, 102778. [Google Scholar] [CrossRef]
- Chatterjee, M. Two-phase multivariate supplier selection for symmetric specification region and correlated quality characteristics. Qual. Reliab. Eng. Int. 2022, 38, 3291–3303. [Google Scholar] [CrossRef]
- Kane, V.E. Process capability indices. J. Qual. Technol. 1986, 18, 41–52. [Google Scholar] [CrossRef]
- Yalçın, S.; Kaya, I. Analyzing of process capability indices based on neutrosophic sets. Comput. Appl. Math. 2022, 41, 287. [Google Scholar] [CrossRef]
- Barreto, R.; Roberto, H.A. Application of a proposed reliability analysis multivariate capability index on manufacturing processes. Qual. Eng. 2022, 34, 1–15. [Google Scholar] [CrossRef]
- Aslam, M.; Rao, G.S.; Ahmad, L.; Jun, C.H. A new control chart using GINI CPK. Commun. Stat. Theory Methods 2022, 51, 197–211. [Google Scholar] [CrossRef]
- Somkhuean, R.; Wongkhao, A. Confidence intervals for the common process capability index cp of normal distributions. J. Stat. Appl. Probab. 2022, 11, 175–185. [Google Scholar]
- Yang, J.; Meng, F.; Huang, S.; Cui, Y. Process capability analysis for manufacturing processes based on the truncated data from supplier products. Int. J. Prod. Res. 2020, 58, 6235–6251. [Google Scholar] [CrossRef]
- Wu, C.H.; Pearn, W.L. Yield assessment for dynamic etching processes with variance change. IEEE Trans. Compon. Pack. Manuf. Technol. 2020, 10, 1745–1753. [Google Scholar] [CrossRef]
- Park, C.; Dey, S.; Ouyang, L.; Byun, J.H.; Leeds, M. Improved bootstrap confidence intervals for the process capability index cpk. Commun. Stat. Simul. Comput. 2020, 49, 2583–2603. [Google Scholar] [CrossRef]
- Meng, F.; Yang, J.; Huang, S. Hypothesis testing of process capability index cpk from the perspective of generalized fiducial inference. Qual. Reliab. Eng. Int. 2021, 37, 1578–1598. [Google Scholar] [CrossRef]
- Khamkanya, A.; Cho, B.R.; Goethals, P.L. The development of target-based posterior process capability indices and confidence intervals. Int. J. Qual. Eng. Technol. 2017, 6, 269–301. [Google Scholar] [CrossRef]
- Wu, C.W.; Pearn, W.L. A variables sampling plan based on cpmk for product acceptance determination. Eur. J. Oper. Res. 2008, 184, 549–560. [Google Scholar] [CrossRef]
- Yu, C.M.; Huang, T.H.; Chen, K.S.; Huang, T.Y. Construct Six Sigma DMAIC improvement model for manufacturing process quality of multi-characteristic products. Mathematics 2022, 10, 814. [Google Scholar] [CrossRef]
- Chen, K.S.; Yu, C.M. Fuzzy decision-making model for process quality improvement of macine tool industry chain. J. Intell. Fuzzy Syst. 2022, 42, 1547–1558. [Google Scholar] [CrossRef]
n = 10 | 0.555 | 0.455 | 0.355 |
n = 20 | 0.305 | 0.205 | 0.105 |
n = 30 | 0.194 | 0.094 | −0.006 |
n = 40 | 0.128 | 0.028 | −0.072 |
n = 50 | 0.082 | −0.018 | −0.118 |
n = 60 | 0.049 | −0.051 | −0.151 |
n = 70 | 0.023 | −0.077 | −0.177 |
n = 80 | 0.002 | −0.098 | −0.198 |
n = 90 | −0.015 | −0.115 | −0.215 |
Outsourcer h | |||
---|---|---|---|
h = 1 | 0.71 | 0.45 | 0.98 |
h = 2 | 1.49 | 1.13 | 1.85 |
h = 3 | 1.37 | 1.02 | 1.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.-S.; Li, F.-C.; Lai, K.-K.; Lin, J.-M. Green Outsourcer Selection Model Based on Confidence Interval of PCI for SMT Process. Sustainability 2022, 14, 16667. https://doi.org/10.3390/su142416667
Chen K-S, Li F-C, Lai K-K, Lin J-M. Green Outsourcer Selection Model Based on Confidence Interval of PCI for SMT Process. Sustainability. 2022; 14(24):16667. https://doi.org/10.3390/su142416667
Chicago/Turabian StyleChen, Kuen-Suan, Feng-Chia Li, Kuei-Kuei Lai, and Jung-Mao Lin. 2022. "Green Outsourcer Selection Model Based on Confidence Interval of PCI for SMT Process" Sustainability 14, no. 24: 16667. https://doi.org/10.3390/su142416667
APA StyleChen, K. -S., Li, F. -C., Lai, K. -K., & Lin, J. -M. (2022). Green Outsourcer Selection Model Based on Confidence Interval of PCI for SMT Process. Sustainability, 14(24), 16667. https://doi.org/10.3390/su142416667