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Abstract: Taiwan’s electronics industry usually outsources most of its important components for
production to enhance market competitiveness and operational flexibility. The quality of all compo-
nent products is important to ensure the quality of the final product. In electronic assembly, printed
circuit boards (PCBs) are key components that carry other electronic components to provide a stable
circuit working environment. Surface Mounted Technology (SMT) is the mainstream technology
in electronic assembly plants. Obviously, good SMT process quality is relatively important to the
final product quality. The process capability index (PCI) is the most widely used process quality
evaluation tool in the industry. Therefore, this paper used the PCI representing quality as the green
outsourcer selection tool for the SMT process, derived the confidence interval of PCI to develop a
quality evaluation model of green outsourcers, and considered the model as the green outsourcer
selection model. Meanwhile, this model can be provided to enterprises, outsourcers, or suppliers to
evaluate and improve the process quality of components to ensure the quality of components and
final products. Since the selection model is based on confidence intervals, it can reduce the risk of
misjudgment due to sampling error.

Keywords: surface-mounted technology; process capability index; green outsourcer; confidence
interval; pairwise comparison test

1. Introduction

Some studies believe that with the development and rapid evolution of emerging
technologies, such as the Internet of Things (IOT), innovation in various industries around
the world is being pushed forward, and the manufacturing industry is also moving toward
the goal of smart manufacturing by integrating and applying related technologies [1–3]. In
addition, some studies have pointed out that in order to enhance market competitiveness
and operational flexibility, enterprises usually outsource most of their components for
production or procurement, except for some of the important components that they are
good at manufacturing [4–7]. In fact, the quality of all component products is relatively
important, and the quality of all component products must meet the required quality
level to ensure the quality of the final product. According to this concept, Lin et al. [8]
and Besseris [9] believe that through the information and communication technology
(ICT) and the production data analysis model, a cloud platform for the evaluation and
analysis of production data and process quality can be constructed, providing enterprises,
outsourcers, or suppliers with a tool to evaluate, analyze, and improve the process quality
evaluation of component products [1,2]. At the same time, enterprises can also collect and
integrate relevant production data offered to the design and production of next-generation
products for reference. Furthermore, they can help outsourcers or suppliers improve their
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processes, form partnerships, and grow together. The cooperation between enterprises and
outsourcers or suppliers can assist in moving toward the goal of smart manufacturing and
smart management [10,11].

In addition, driven by a strong clustering effect, Taiwan’s electronics industry has
established an important position in the global electronics industry. With respect to wafer
foundry or IC packaging and testing, their output values and market shares rank among
the best in the world [3,12]. According to some studies, making electronic products thin
and light has become the trend of the future [13–15]. In order to achieve the goal of making
products thinner and lighter, the miniaturization of chips and other electronic components
is bound to develop rapidly, and the material technologies needed are constantly innovated.
Therefore, the easiest way to achieve the goal of miniaturizing electronic products is to use
smaller electronic components. In electronic assembly, printed circuit boards (PCBs) are
key components that carry other electronic components to provide a stable circuit working
environment [16]. In SMT, the electronic parts are welded on the surface of PCBs and can
greatly reduce the volume of electronic products and render them lighter, thinner, shorter,
and smaller [17,18]. Due to the volume and lightweight after assembly, they provide good
technical support for subsequent processes [19].

According to the above, if the evaluation model of production data and process quality
constructed by the cloud platform can be used directly as a selection tool for outsourcers or
suppliers, it will help promote the process quality of the entire industry chain, including the
enterprise itself and all outsourcers or suppliers. As noted by some studies, when the quality
level of the outsourcer’s process is raised, it can lower the ratio of process scrap and rework
and reduce the social losses of environmental pollution, such as carbon emissions caused
by breakdown maintenance after the product is sold [3,7]. For example, Chen et al. [11]
pointed out that for every 10,000 products, 668 products were reworked or scrapped, fewer
than ever. As a result, the outsourcer becomes the so-called green outsourcer forming a
green sustainable industry chain. Therefore, according to this concept, this paper proposes
a quality-based green outsourcer selection model for the surface-mounted technology
process in the electronics industry. Since the process capability index (PCI) is a unitless
numerical quantification method adopted to present the process quality performance, it
is generally regarded as a tool to evaluate whether the process quality meets customer
requirements [20,21]. Consequently, this paper will use the PCI to represent quality and
view it as a green outsourcer selection tool of the surface-mounted technology process.
Since the index has unknown parameters, if the index is selected directly based on the point
estimate of the index, the risk of misjudgment due to sampling error will increase [22–24].
Hence, this paper will develop a quality evaluation model of green outsourcers based on
the confidence interval of the index, serving as a green outsourcer selection model at the
same time. Since the applied evaluation tool is the PCI widely used in the industry, the
outsourcer selection model is highly likely to be adopted and promoted by the industry.
The outsourcer selection method is a statistical testing model, so the risk of misjudgment
caused by sampling error can be reduced. In addition to the evaluation of the outsourcer
selection, the PCI can also evaluate the process capabilities of outsourcers, in order to
help them improve their process capabilities, reduce the cost loss of rework and scrap for
poor process quality, diminish pollution caused by maintenance or failure, and become
green outsourcers.

The remainder of this paper is organized as follows. Section 2 is the literature review.
Section 3 is the research method, deriving the 100 (1 – α)% confidence interval of the out-
sourcer selection index. Then, based on this confidence interval of the outsourcer selection
index, the selection model is constructed. In Section 4, this paper will take the green out-
sourcer selection of the surface-mounted technology process as an example to demonstrate
the applicability of the proposed approach. Finally, Section 5 provides conclusions.
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2. Literature Review

Some studies have pointed out that third-party logistics (3PL) service providers are
critical and important to achieving the sustainable development of enterprises. A large
number of theoretical model studies have applications in real-world situations. Many of the
developed theoretical selection models are applicable to survey studies in the automotive
industry, agricultural industry, aquatic products, etc. [25,26]. Different from the above
outsourcer or supplier investigation and research model, the green outsourcer selection
model proposed in this paper is based on the relevant literature viewpoints concerning
the quality of energy-saving and carbon-reducing green manufacturing [3,7]. In addition,
based on the actual production data, the selection rules established by the theoretical model
of statistical testing can lower the risk of poor selections [11,27–29]. Thus, this paper aims
to discuss the green outsourcer selection model, which can develop energy-saving and
carbon reduction based on the electronics industry. Many studies have pointed out that
improving product quality can not only enhance the value and competitiveness of products
but also reduce the proportion of rework and scrap to achieve energy saving and carbon
reduction [30–32]. Therefore, this paper adopted the quality tool most widely used in the
industry, that is, the confidence interval of the process capability index, to develop the
green outsourcer selection model. Then, we will review and discuss the relevant literature.

As mentioned earlier, miniaturization, making electronic products smaller, thinner
and lighter, has become a future trend, and using smaller electronic parts is the easiest way
to achieve miniaturization [16,33]. Many studies have indicated that Taiwan’s electronics
industry has established an important position in the global electronics industry [34,35].
Enterprises in the industrial chain pay more and more attention to their core technologies.
Accordingly, they outsource non-core processes, at which they are less proficient. The future
trend of business models is that enterprises moderately obtain appropriate resources from
the outside to jointly participate in production and services [36]. Some studies believe that
moderately outsourcing non-core processes can make companies more flexible in using their
internal resources and make the entire industry chain develop its specialization [4,5,12].
The outsourcer selection process is based on various kinds of performance metrics of
outsourcers. Many research studies point out that the quality of the production process
is one of the important indicators in the outsourcer selection [37,38]. Some studies have
also suggested that when enterprises choose good outsourcers, the quality performance of
raw materials, components, services, and equipment used by outsourcers is very important
because it will affect the quality or function of the final product [39–41]. Good process
quality can lower the ratio of rework and scrap as well as prolonging the time intervals
between product failures according to the concept of the Taguchi loss function. Furthermore,
it can increase product lifetime as well as reducing total carbon emissions [27].

Obviously, process quality is an important selection indicator for process outsourcing.
According to numerous studies, PCIs can provide unitless quantitative values to evaluate
outsourcers’ manufacturing capability and performance [42,43]. Let random variable X
represent the normal process distribution. Then, the mean of random variable X is µ, and
the standard deviation is σ, denoted as X ∼ N(µ, σ). Kane [44] proposed the process
capability index CPK, which not only can reflect process capability and process yield but is
also the most widely used process quality evaluation tool in the industry nowadays [45–47].
The index CPK is defined as follows:

CPK = Min{CPU , CPL} = Min
{

USL− µ

3σ
,

µ− LSL
3σ

}
(1)

where USL and LSL are the upper and lower specification limits, respectively. Let the
random variable be:

Y =
X− T

d
(2)

where T = (USL + LSL)/2 is target value and d = (USL − LSL)/2. Then, Y is normally
distributed with mean δ and standard deviation γ, denoted by Y ∼ N(δ, γ), where γ is the
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precision index and δ is the accuracy index. When the accuracy index δ is a positive value,
it represents a right deviation of the process; when it is a negative value, it represents a left
deviation of the process. The ratios of the values deviated from the target values to the
upper and lower specification limits are displayed as follows:

accuracy index : δ =
µ− T

d
(3)

and
precision index : γ =

σ

d
(4)

According to the above-stated, the process capability index CPK is defined as follows:

CPK = Min{CPU , CPL} (5)

where
CPU =

1− δ

3γ
(6)

and
CPL =

1 + δ

3γ
(7)

In addition, since the index has unknown parameters, the chance of misjudgment will
be caused by sampling error if an outsourcer’s process capability is evaluated directly by
its point estimate [22–24]. Accordingly, many scholars deduced the confidence interval of
CPK to evaluate the process capability of the product [48,49]. In addition, some scholars
applied the confidence interval of CPK to the verification model developed for process
improvement [50–53]. Moreover, based on the difference and ratio of two values of CPK,
Wu and Pear [54] and Wu et al. [55] employed four double-sampling methods so that lower
confidence limits were constructed, a simulation analysis was conducted, and performances
of all models were compared; meanwhile, these four methods were regarded as the supplier
selection rules. Then, this paper will develop the research method based on the literature
review on the process capability index. We will derive the confidence interval of process
capability indices for statistical testing.

3. Research Method

This study first derived the 100 (1− α)% confidence interval of the outsourcer selection
index. Next, a selection model was constructed based on this confidence interval of the
outsourcer selection index. Therefore, Section 3 consists of two subsections. Section 3.1
details the confidence interval of the outsourcer selection index, and Section 3.2 constructs
the selection model based on the confidence interval of the outsourcer selection index.

3.1. Confidence Interval of Outsourcer Selection Index

As noted above, the SMT process is currently the mainstream technology in electronic
assembly plants. There are 5 measurement points (one point in each of the four corners
and one point in the center) for solder paste film thickness in PCBs, as shown in Figure 1.
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In the production control plan of the SMT process, when the thickness of the solder
paste film is abnormal, then it cannot effectively prevent the occurrence of short circuits
caused by less tin or more tin in the solder joints. Therefore, the thickness of the solder
paste film is one of the most important quality characteristics in the SMT process, which
belongs to the nominal-the-best quality characteristic. Generally speaking, the tolerance
of the solder paste film thickness is T ± d, where T represents the thickness of the steel
plate and d = 10 µm. Let random variable X represent the solder paste film thickness.
Based on some studies, random variable X is distributed as N(µ, σ), and Y = (X− T)/d
is distributed as N(δ, γ) [11,55]. As noted above, the process capability index proposed
by Kane [44] can reflect process capability and process yield. Thus, this paper used this
indicator as the outsourcer selection indicator for the SMT process. The selection indicator
for the hth outsourcer evaluation is displayed as follows:

CPKh = Min{CPUh, CPLh} = Min
{

1− δh
3γh

,
1 + δh

3γh

}
(8)

Let
(

Yh,i,1, . . . , Yh,i,j, . . . , Yh,i,n

)
i = 1, 2, 3, 4, 5 indicate the sample data of outsourcer

h for five measurement points of solder paste film thickness, and let the sample size be n.
According to Chen et al. [11], the maximum likelihood estimators (MLEs) of δh and γh for
outsourcer h can be shown as follows:

δ̂h =
1

5n

5

∑
i=1

n

∑
j=1

Yh,i,j (9)

and

γ̂h =

√√√√ 1
5n

5

∑
i=1

n

∑
j=1

(
Yh,i,j − δ̂h

)2
(10)

Therefore, the estimator of the process capability index CPKh can be shown as follows:

ĈPKh = Min
{

ĈPUh, ĈPLh
}
= Min

{
1− δ̂h

3γ̂h
,

1 + δ̂h
3γ̂h

}
=

1−
∣∣δ̂h
∣∣

3γ̂h
(11)

Let random variables be ZU and K, expressed as follows:

ZU =
√

5n
(

CPUh − ĈPUh
γ̂h
γh

)
=
√

5n
(

ĈPLh
γ̂h
γh
− CPLh

)
(12)

and

K =
5nγ̂2

h
γ2

h
(13)

Based on Chen et al. [56], the random variables ZU and K are distributed as N(0, 1)
and χ2

5n−1, respectively. Thus,

p
{
−Z0.5−

√
1−α/2/2 ≤ ZU ≤ Z0.5−

√
1−α/2/2

}
=
√

1− α/2 (14)

and
p
{

χ2
0.5−

√
1−α/2/2;n−1 ≤ K ≤ χ2

0.5+
√

1−α/2/2;n−1

}
=
√

1− α/2 (15)

where Za is the upper a quantile of N(0, 1), χ2
a;n−1 is the lower a quantile of χ2

5n−1, where
N(0, 1) is a standard normal distribution. Under the assumption of normality, since δ̂h and
γ̂2

h are mutually independent, then ZU and K are also mutually independent. From these
relationships, we can further obtain the following equations:



Sustainability 2022, 14, 16667 6 of 12

p
{
−Z0.5−

√
1−α/2/2 ≤ Z ≤ Z0.5−

√
1−α/2/2, χ2

0.5−
√

1−α/2/2;n−1 ≤ K ≤ χ2
0.5+

√
1−α/2/2;n−1

}
= 1− α/2 (16)

p


ĈPUh

γ̂h
γh
− Z0.5−

√
1−α/2/2√
5n

≤ CPUh ≤ ĈPUh
γ̂h
γh

+
Z0.5−

√
1−α/2/2√
5n

,√
χ2

0.5−
√

1−α/2/2;5n−1
5n ≤ γ̂h

γh
≤
√

χ2
0.5+

√
1−α/2/2;5n−1

5n

 = 1− α/2 (17)

p

{
ĈPUh

√
χ2

0.5−
√

1−α/2/2;5n−1
5n − Z0.5−

√
1−α/2/2√
5n

≤ CPUh ≤ ĈPUh

√
χ2

0.5+
√

1−α/2/2;5n−1
5n +

Z0.5−
√

1−α/2/2√
5n

}
= 1− α/2

(18)

Similarly, let random variable ZL =
√

5n
(
ĈPLhγ̂h/γh − CPLh

)
; then, ZL and K are also

mutually independent. We can further obtain the following equation:

p

{
ĈPLh

√
χ2

0.5−
√

1−α/2/2;5n−1
5n − Z0.5−

√
1−α/2/2√
5n

≤ CPLh ≤ ĈPLh

√
χ2

0.5−
√

1−α/2/2;5n−1
5n +

Z0.5−
√

1−α/2/2√
5n

}
= 1− α/2

(19)

Furthermore, let event A and event B be:

A =

ĈPUh

√
χ2

0.5−
√

1−α/2/2;5n−1

5n
−

Z0.5−
√

1−α/2/2√
5n

≤ CPUh ≤ ĈPUh

√
χ2

0.5+
√

1−α/2/2;5n−1

5n
+

Z0.5−
√

1−α/2/2√
5n

 (20)

and

B =

ĈPLh

√
χ2

0.5−
√

1−α/2/2;5n−1

5n
−

Z0.5−
√

1−α/2/2√
5n

≤ CPLh ≤ ĈPLh

√
χ2

0.5+
√

1−α/2/2;5n−1

5n
+

Z0.5−
√

1−α/2/2√
5n

 (21)

Then, p(A) = p(B) = 1− α/2 and p
(

AC) = p
(

BC) = α/2, where an event AC is
the complement of event A and an event BC is the complement of event B. Based on De
Morgan’s rule and Boole’s inequality [3,7], we have:

p

{
ĈPUh

√
χ2

0.5−
√

1−α/2/2;5n−1
5n − Z0.5−

√
1−α/2/2√
5n

≤ CPUh ≤ ĈPUh

√
χ2

0.5+
√

1−α/2/2;5n−1
5n +

Z0.5−
√

1−α/2/2√
5n

,

ĈPLh

√
χ2

0.5−
√

1−α/2/2;5n−1
5n − Z0.5−

√
1−α/2/2√
5n

≤ CPLh ≤ ĈPLh

√
χ2

0.5+
√

1−α/2/2;5n−1
5n +

Z0.5−
√

1−α/2/2√
5n

}
≥ 1− α

(22)

Then, we have

p

ĈPKh

√
χ2

0.5−
√

1−α/2/2;5n−1

5n
−

Z0.5−
√

1−α/2/2√
5n

≤ CPKh ≤ ĈPKh

√
χ2

0.5+
√

1−α/2/2;5n−1

5n
+

Z0.5−
√

1−α/2/2√
5n

 = 1− α (23)

where ĈPKh = Min
(
ĈPUh, ĈPLh

)
is the estimator of the index CPKh for outsourcer h. That is,

[LCPKh, UCPKh] is the 100(1− α)% confidence interval of the index CPKh, where

LCPKh = ĈPKh

√
χ2

0.5−
√

1−α/2/2;5n−1

5n
−

Z0.5−
√

1−α/2/2√
5n

(24)
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and

UCPKh = ĈPKh

√
χ2

0.5+
√

1−α/2/2;5n−1

5n
+

Z0.5−
√

1−α/2/2√
5n

(25)

3.2. Constructing the Selection Model Based on Confidence Interval

Let
(

yh,i,1, ..., yh,i,j, ..., yh,i,n

)
represent the observed values of

(
Yh,i,1, ..., Yh,i,j, ..., Yh,i,n

)
i = 1, 2, 3, 4, 5; then, observed values of δ̂h and γ̂h can be shown as follows:

δ̂h0 =
1

5n

5

∑
i=1

n

∑
j=1

yh,i,j (26)

and

γ̂h0 =

√√√√ 1
5n

5

∑
i=1

n

∑
j=1

(
yh,i,j − δ̂h0

)2
(27)

Therefore, [LCPKh0, UCPKh0] is the observed value of 100(1− α)% confidence interval
[LCPKh, UCPKh], where LCPKh0 is the observed value of lower confidence limit of CPKh and
UCPKh0 is the observed value of upper confidence limit of CPKh for outsourcer h as follows:

LCPKh0 = ĈPKh0

√
χ2

0.5−
√

1−α/2/2;5n−1

5n
−

Z0.5−
√

1−α/2/2√
5n

(28)

UCPKh0 = ĈPKh0

√
χ2

0.5+
√

1−α/2/2;5n−1

5n
+

Z0.5−
√

1−α/2/2√
5n

(29)

and

ĈPKh0 =
1−

∣∣δ̂h0
∣∣

3γ̂h0
(30)

which is the observed value of the estimator ĈPKh. According to green outsourcer selection
rules, three outsourcers share the C3

2 pairwise comparison statistics test based on the
confidence interval of PCI for the SMT process. Subsequently, the outsourcer selection
model is established according to Equations (28) and (29). Based on Chen et al. [12], for any
two outsourcers a and b, a 6= b, pairwise comparison test rules for the outsourcer selection
are listed below:

(1) If UCPKa0 < LCPKb0, then outsourcer b is chosen because it ranks higher than out-
sourcer a;

(2) If [LCPKa0, UCPKa0] ∩ [LCPKb0, UCPKb0] 6= φ, then outsourcer a and outsourcer b are
both selected in equal order;

(3) If UCPKb0 < LCPKa0, then outsourcer a is chosen because it ranks higher than out-
sourcer b.

Based on statistical test rule (2) with ĈPKa0<ĈPKb0, then we have [LCPKa0, UCPKa0] ∩
[LCPKb0, UCPKb0] = [LCPKb0, UCPKa0]. Let l = UCPKa0 − LCPKb0, then we have

(1) If l ≥ 0, then [LCPKb0, UCPKa0] 6= φ
(2) If l ≥ 0 then, [LCPKb0, UCPKa0] = φ

In fact, l = D

√
χ2

0.5+
√

1−α/2/2;5n−1
5n + 2

Z0.5−
√

1−α/2/2√
5n

where D = ĈPKa0 − ĈPKb0 represents
the difference in the quality of the two outsourcers. Obviously, the value of l will be affected
by sample size n and D. Next, a sensitivity analysis is performed according to different n
and D, as shown in the Table 1 below:
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Table 1. Sensitivity analysis based on sample size n and D.

D=1.3 D=1.4 D=1.5

n = 10 l = 0.555 l = 0.455 l = 0.355
n = 20 l = 0.305 l = 0.205 l = 0.105
n = 30 l = 0.194 l = 0.094 l = −0.006
n = 40 l = 0.128 l = 0.028 l = −0.072
n = 50 l = 0.082 l = −0.018 l = −0.118
n = 60 l = 0.049 l = −0.051 l = −0.151
n = 70 l = 0.023 l = −0.077 l = −0.177
n = 80 l = 0.002 l = −0.098 l = −0.198
n = 90 l = −0.015 l = −0.115 l = −0.215

When the quality difference D of the two outsourcers is fixed, the larger the sample
size, the better the difference between the two outsourcers can be distinguished. When the
quality difference D of the two outsourcers is larger, the sample size does not need to be
too large to distinguish the difference between the two outsourcers.

Based on the pairwise comparison test rules for the outsourcer selection model, we
can list the selection ranking of all outsourcers for selection reference. Based on the above,
the selection procedure of SMT outsourcers is as follows:

Step 1: Decide sample size n and α then collect sample data of all outsourcers;
Step 2: Calculate observed values of δ̂10, γ̂10, ĈPK10, LCPK10 and UCPK10 for all out-

sourcers below:

δ̂h0 = 1
5n

5
∑

i=1

n
∑

j=1
y1,i,j

γ̂h0 =

√
1

5n

5
∑

i=1

n
∑

j=1

(
yh,i,j − δ̂h0

)2

ĈPKh0 =
1−|δ̂h0|

3γ̂h0

LCPKh0 = ĈPKh0

√
χ2

0.5−
√

1−α/2/2;5n−1
5n − Z0.5−

√
1−α/2/2√
5n

UCPKh0 = ĈPKh0

√
χ2

0.5+
√

1−α/2/2;5n−1
5n +

Z0.5−
√

1−α/2/2√
5n

Step 3: Perform a pairwise comparison statistic test for all outsourcers;
Step 4: Select excellent outsourcers based on pairwise comparison test rules.

4. Results and Discussions: Application Example

An electronics factory located in central Taiwan would like to outsource its SMT
process. Assuming that a total of three outsourcers would be selected, this paper explains
the selection process based on the outsourcer selection model proposed in Section 3. First,
the sample data of the three outsourcers with sample size n = 60 and α = 0.01 were
collected. According to the research method proposed in Section 3, there are some relevant
statistics that were calculated by Equations (26)–(30) as follows:

Outsourcer 1: Based on the sample data of Outsourcer 1, we can calculate the observed
values of some relevant statistics (estimators), including δ̂10, γ̂10, ĈPK10, LCPK10 and UCPK10
as follows:

δ̂10 = 1
300

5
∑

i=1

60
∑

j=1
y1,i,j = 0.4

γ̂10 =

√
1

300

5
∑

i=1

60
∑

j=1

(
y1,i,j − δ̂10

)2
= 0.28

ĈPK10 =
1−|δ̂10|

3γ̂10
= 1−|0.40|

3×0.28 = 0.71

LCPKh0 = ĈPK10

√
χ2

0.00125;299
300 − Z0.00125√

300
= 0.71

√
230.46

300 −
3.023√

300
= 0.45
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UCPK10 = ĈPK10

√
χ2

0.99875;299
300 − Z0.00125√

300
= 0.71

√
378.38

300 + 3.023√
300

= 0.98

Outsourcer 2: Based on the sample data of Outsourcer 2, we can calculate the observed
values of some relevant statistics (estimators), including δ̂20, γ̂20, ĈPK20, LCPK20 and UCPK20
as follows:

δ̂20 = 1
300

5
∑

i=1

60
∑

j=1
y2,i,j = 0.15

γ̂20 =

√
1

300

5
∑

i=1

60
∑

j=1

(
y2,i,j − δ̂20

)2
= 0.19

ĈPK20 =
1−|δ̂20|

3γ̂20
= 1−|0.15|

3×0.19 = 1.49

LCPK20 = ĈPK20

√
χ2

0.00125;299
300 − Z0.00125√

300
=1.49

√
230.46

300 −
3.023√

300
= 1.13

UCPK20 = ĈPK20

√
χ2

0.99875;299
300 + Z0.00125√

300
=1.49

√
378.38

300 + 3.023√
300

= 1.85

Outsourcer 3: Based on the sample data of Outsourcer 3, this paper can calculate the
observed values of some relevant statistics (estimators), including δ̂30, γ̂30, ĈPK30, LCPK30
and UCPK30 as follows:

δ̂30 = 1
300

5
∑

i=1

60
∑

j=1
y3,i,j = 0.18

γ̂30 =

√
1

300

5
∑

i=1

60
∑

j=1

(
y2,i,j − δ̂30

)2
= 0.20

ĈPK30 =
1−|δ̂30|

3γ̂30
= 1−|0.18|

3×0.20 = 1.37

LCPK30 = ĈPK30

√
χ2

0.00125;299
300 − Z0.00125√

300
= 1.37

√
230.46

300 −
3.023√

300
= 1.02

UCPK30 = ĈPK30

√
χ2

0.99875;299
300 − Z0.00125√

300
= 1.49

√
378.38

300 + 3.023√
300

= 1.71

The summary of the above-mentioned outsourcer evaluation data is shown in
Table 2 below:

Table 2. Outsourcer evaluation data.

Outsourcer h ĈPKh0 LCPKh0 UCPKh0

h = 1 0.71 0.45 0.98
h = 2 1.49 1.13 1.85
h = 3 1.37 1.02 1.71

As noted above, there is a C3
2 pairwise comparison statistic test based on the confidence

interval of the process capability index for the SMT Process, where C3
2 = 3. These three

pairwise comparisons test rules for the outsourcer selection are illustrated as follows:
Outsourcer 1 vs. Outsourcer 2:
Since UCPK10 = 0.98 < LCPK20 = 1.13, then Outsourcer 2 is chosen because it ranks

higher than Outsourcer 1.
Outsourcer 1 vs. Outsourcer 3:
Since UCPK10 = 0.98 < LCPK30 = 1.02, then Outsourcer 3 is chosen because it ranks

higher than Outsourcer 1.
Outsourcer 2 vs. Outsourcer 3:
Since [LCPK20, UCPK20] ∩ [LCPK30, UCPK30] 6= φ, then Outsourcer 2 and Outsourcer 3

are both selected in equal order.
According to the above results, the selection ranking of Outsourcer 2 and Outsourcer 3

is equal, whereas that of Outsourcer 1 is the lowest. According to the principle of statistical
hypothesis testing and based on the 300 sample data formed by these three outsourcers’
60 samples, after the statistical test, there is no significant difference in the quality of
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Outsourcer 2 and Outsourcer 3. In contrast, the quality level of Outsourcer 2 is significantly
higher than that of Outsourcer 1. The quality level of Outsourcer 3 is also significantly
higher than that of Outsourcer 1. Therefore, either Outsourcer 2 or Outsourcer 3 can be
considered, instead of Outsourcer 1, according to decision rules based on statistical tests.
When the number of outsourcers is small, one of the two outsourcers can be chosen for its
lower cost; when the number of outsourcers is large, both outsourcers can be considered.

As noted by Chen et al. [3], as global warming becomes increasingly serious, improving
product quality can not only reduce carbon emissions during production but also reduce
environmental pollution caused by product maintenance or failure, which is very beneficial
to the sustainable operation of enterprises and the environment. Although numerous
studies have indicated that quality, price, and delivery date are three important indicators
for the selection of outsourcers [10–12,41], this paper still developed the green outsourcer
selection model based on quality, hoping to help enterprises and the environment achieve
the goal of sustainable management.

Additionally, this paper adopted the index CPK, most widely used in the industry,
as the quality evaluation tool of outsourcers. Therefore, the developed outsourcer selec-
tion model is easily understood and adopted by the industry [3,6,7,11,12], so that it can
contribute to enhancing the product quality of the industry and outsourcers as well as
achieving the goal of fulfilling social responsibility, energy saving, and carbon reduction.
Furthermore, the selection method developed by this paper is based on the confidence
interval of the index, and the confidence interval is used as a testing tool for selection. Thus,
the risk of evaluation misjudgment can be diminished [3,7,12,27,40].

5. Conclusions

Driven by a strong clustering effect, Taiwan’s electronics industry has established an
important position in the global electronics industry. To enhance market competitiveness
and operational flexibility, companies usually outsource most components for production or
procurement, except for some of the important components they are good at manufacturing.
The quality of the component products manufactured by outsourcers is relatively important,
and the quality of all component products must meet the required quality level so that the
quality of the final product can be guaranteed. In addition, PCBs are key components of
electronic assembly. SMT is currently the mainstream technology in electronic assembly
plants. Therefore, this paper applied the most widely used index CPK in the industry as
the quality evaluation tool for outsourcers. The developed outsourcer selection model
is easily understood and adopted by the industry. Furthermore, this paper established
pairwise statistical comparison test rules for the outsourcer selection with the confidence
interval of CPK. This model can also be provided to enterprises and outsourcers or suppliers
to evaluate, analyze, and improve the process quality (process capability) of component
products in order to ensure the quality of green outsourcers’ components. Since the selection
model is based on the confidence interval of the process capability index of outsourcers, it
can reduce the risk of misjudgment caused by sampling error.

The quality-based green outsourcer selection model proposed by this paper helps
enterprises and outsourcers enhance their quality to reduce the increase in carbon emissions
and environmental pollution caused by rework or scrap in production. At the same time,
carbon emissions and various losses caused by maintenance can also be cut down. These
carbon emissions and losses have not been actuarially calculated. Hence, future research
can focus on the benefit evaluation of carbon reduction, contributing to the carbon reduction
in global warming.
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version of the manuscript.
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