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Abstract: Current research on carbon emissions and economic development has tended to apply
more homogeneous low-frequency data to construct VAR models with impulse responses, ignoring
some of the sample information in high-frequency data. This study constructs a MIDAS model
to forecast GDP growth rate based on monthly carbon emission data and quarterly GDP data in
the context of the COVID-19 pandemic. The results show that: (1) The MIDAS model has smaller
RMSE than the VAR model in short-term forecasting, and provides more stable real-time forecasts
and short-term forecasts of quarterly GDP growth rates, which can provide more accurate reference
intervals; (2) China’s future macroeconomic growth rate has recently declined due to the impact of
the sudden epidemic, but the trend is generally optimistic. By improving urban planning and other
methods, the authorities can achieve the two-carbon goal of carbon capping and carbon neutrality at
an early date. In the context of the impact of COVID-19 on China’s economic development, we need
to strike a balance between ensuring stable economic growth and ecological protection, and build
environmentally friendly cities, so as to achieve sustainable economic and ecological development
and enhance human well-being.

Keywords: COVID-19; carbon dioxide emissions; sustainability; urban planning; environmentally
friendly cities

1. Introduction

The threat of climate change due to increased global warming has been a major
environmental issue in the past decades, and one of the main causes of global warming and
climate instability is the rise in carbon dioxide emissions. Anthropogenic activities such
as over-reliance on fossil fuel-based electricity and heat production, as well as industrial
production and construction that burn fossil fuels, have contributed to the emission of
CO2 [1,2]. The large amount of energy consumed as a result of economic growth has led to
large emissions of pollutants such as carbon dioxide, which have had a negative impact on
urban ecology and public health [3] while exacerbating the deterioration of environmental
quality [4]. The problem of carbon emission from the energy system mainly based on fossil
energy is becoming more and more prominent, and the response to climate change has
become a great challenge for human society.

Carbon dioxide emissions are chronically correlated with economic growth [5]. The
majority of CO2 emissions come from fossil fuel consumption, which is an important source
of industry that is closely linked to economic development and growth. Therefore, the
inextricable relationship between CO2 emissions and economic growth is an important
bridge between economic and environmental policies [6]. In fact, the increase of CO2
emissions is the main threat to climate change, which is a major ongoing concern for both
developing and developed countries. As the world’s largest developing country, China is
one of the fastest growing economies in the world. In recent decades, China has experi-
enced unprecedented development, brought about by large-scale industrial development,
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transformation of the service sector, agricultural mechanization, and development of the
construction industry. These rapid developments are supported by a large amount of en-
ergy consumption, which leads to the continuous and rapid growth of energy consumption
in China, and the level of energy consumption has been high, resulting in a significant
increase in carbon emissions and a series of environmental pollution problems [7–12].
Since 2006, China has become the world’s largest emitter of carbon emissions [13]. The
long-standing “coal-based” basic energy supply pattern and the high intensity of industrial
energy consumption have led to a “linkage” between carbon emissions and economic
growth. Therefore, it is important to study the relationship between economic growth and
CO2 emissions for the implementation of relevant policies [14].

In recent years, a large number of scholarly studies have confirmed the existence of
an inseparable relationship between carbon dioxide emissions and economic growth. In
terms of research on the causal relationship between CO2 emissions and economic growth,
it is widely accepted that there is a bidirectional causal relationship between GDP and
CO2 emissions [15–18]. For example, Omri studied the causal relationship between CO2
emissions, FDI and economic growth using a dynamic joint cubic equation panel data
model, and the results provided evidence for a bidirectional causal relationship between
FDI inflows and economic growth and between FDI and CO2 emissions for all panels [19].
However, not all studies show an inverted U-shaped curve between these two variables.
For example, Farhani and Ozturk provide direct evidence of a monotonic relationship
between economic growth and carbon dioxide emissions [20]; the results of Saboori and
Sulaiman show a significant non-linear relationship between carbon emissions and eco-
nomic growth [21]; Heidari also confirmed a non-linear relationship between per capita
CO2 emissions, per capita energy consumption, and GDP [22]. Saidi examined the effect of
energy consumption and carbon dioxide emissions on economic growth using a joint cubic
equation model with panel data for 58 countries over the period 1990–2012, and the results
showed that carbon dioxide emissions have a negative impact on economic growth [23].
Adams’ results based on the Panel Pooled Mean Group-Autoregressive Distributed lag
model show that economic growth contributes to CO2 emissions [24]. Wang conducted an
empirical analysis using panel data from 30 provincial levels in China, proving a positive
relationship between economic growth targets and carbon emissions [25]. Zhao quanti-
tatively analyzed the relationship between carbon emissions and economic development
through Tapio decoupling model and LMDI decomposition model, and the research results
showed that carbon emissions were positively correlated with economic development [26].
Despite many controversial and ambiguous results, the overall conclusion of these studies
is that there is a close relationship between CO2 emissions and economic growth. Hoa and
Limskul presented a quantitative structural modeling perspective and policy analysis in an
economic integration framework [27], and systematic estimation of the causal relationship
between aggregate growth and CO2 emissions, as well as for major developing countries
in Asia. Therefore, accurate forecasting of economic development based on estimating
the relationship between carbon emissions and economic growth is important because it
can provide important references for policy makers to take preventive measures in urban
planning, energy adjustment and other aspects, so as to promote sustainable economic and
ecological development.

In the current COVID-19 environment, coronavirus disease has a significant impact
on both carbon dioxide emissions and economic development [28]. Around the globe,
countries and cities have taken drastic measures to try to stop the spread of the virus, which
has brought major economic and transportation activities to a sudden halt. As a result, the
temporary lockdown period contributed to a sharp drop in global daily carbon dioxide
emissions [29]. For example, Cioca has demonstrated a 12% reduction in air pollution after
lockdown in European urban areas, with a substantial decrease in all air pollutants [30].
Many studies predict that current CO2 reductions will be temporary and that if the nec-
essary measures are not taken, emissions will return to pre-COVID-19 levels as economic
activity partially recovers [31–33]. Long-term monetary and fiscal policies therefore need to
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be adjusted to accommodate green and healthy economies [34], while addressing climate
change and the health crisis to promote well-being of the population [35].

However, the current research on carbon emissions and economic development tends
to use low-frequency data of the same frequency to construct models, ignoring some of the
sample information in high-frequency data and erasing the fluctuations of high-frequency
data. Because traditional forecasting models require the same data frequencies, higher
frequency daily and monthly data are usually converted to lower frequency quarterly
data, such as averaging, bridging [36], and temporal aggregation [37]. However, these
frequency conversion methods may result in the loss of a considerable portion of the
information contained in high-frequency data, such as fluctuations in high-frequency data,
thus reducing the efficiency of using sample information to some extent [38]. In order to
solve the above problems of different frequencies, Ghysels et al. proposed a hybrid data
sampling model [39] and conducted some exploration and application [40–42]. Compared
with the traditional model, the mixed-frequency data sampling regression model (MIDAS)
constructs the distribution lag polynomial [43] to balance the relationship between retaining
valid information of high-frequency data and reducing the number of parameters to be
estimated [44]. The MIDAS model can effectively use high-frequency data to improve
the prediction accuracy of low-frequency variables and avoid a large amount of loss of
sample information. Without the limitation of requiring the same frequency data to build
the model, MIDAS model has great advantages in using high-frequency data to forecast
quarterly GDP growth in real time [45–49].

The research objectives of this paper are as follows: firstly, based on monthly CO2
emissions and quarterly GDP data of China from 2019 to 2021 in the context of COVID-19,
MIDAS models with different weight functions will be established. Secondly, different fore-
casting models will be established after choosing the optimal lag order. Finally, according
to the forecast results, the change trend of China’s GDP in recent years will be analyzed,
and the corresponding carbon emission reduction countermeasures will be put forward.
This will help China meet the challenge of maintaining its economic growth rate until 2030,
reaching peak CO2 emissions around 2030 [50] and reducing CO2 emissions per unit of
GDP by 60–65% compared to 2005 [51], as promised to the international community.

The rest of the paper is organized as follows: Section 2 presents the modeling approach
used in this paper. Section 3 provides an empirical analysis of GDP growth forecasts, which
demonstrates the validity of the MIDAS model proposed in this study. Section 4 discusses
the differences between the study results and the latest literature. Section 5 discusses the
theoretical contributions, policy implications, limitations, and future research perspectives
of the study.

2. Materials and Methods
2.1. Data

Currently, China, as the world’s largest coal-fired country in terms of total carbon
emissions, uses energy consumption to drive its rapid economic development. Therefore,
this paper examines the impact of monthly CO2 emissions on quarterly economic growth
and makes accurate forecasts of economic growth. The sample data covers monthly CO2
emissions and corresponding quarterly GDP data from January 2019 to June 2022 during
the COVID-19 pandemic. The data used for the high-frequency monthly variable carbon
emissions are obtained from a global real-time carbon data site called carbon monitor, and
the data used for the low-frequency quarterly variable GDP are obtained from China’s
National Bureau of Statistics. The study of the relationship between carbon emissions
and economic growth is important for China to achieve the goal of “double carbon” and
high-quality development.

The growth rate of the variables was considered in the empirical analysis to eliminate
heteroskedasticity, so the growth rate was defined as follows:

growthit = ln
(

valueit
valueit−1

)
× 100 (1)
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where growthit denotes the growth rate of indicator i at time t, and indicator i denotes
monthly CO2 emissions or real quarterly GDP.

Figure 1 shows the trends of CO2 emissions and quarterly GDP and their growth rates.
It is clear from the figure that monthly CO2 emissions have a similar trend to quarterly
GDP. During the study period, both CO2 emissions and GDP fluctuated significantly, but
their trends were roughly consistent. Their fluctuations probably stem from the effects
of COVID-19, where measures such as closures and shutdowns caused them to decrease
sharply and then rise again when work resumed. Their turning points basically coincide,
and the data changes were relatively consistent. Fluctuations in carbon dioxide emissions
led to corresponding fluctuations in GDP. Therefore, this similarity provides a basis for
using monthly carbon dioxide emissions to forecast quarterly GDP.
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2.2. The MIDAS Regression Model

The MIDAS model allows variables of different frequencies to be constructed in the
same model and is used to study the effect of changes in high-frequency variables on
low-frequency variables. The basic MIDAS (m, K) can be simply expressed as

Yt = β0 + β1B
(

L1/m; θ
)

X(m)
t + ε

(m)
t (2)

Equation (2) is the underlying one-equation model, where X(m)
t is the high-frequency

explanatory variable. Yt is the low-frequency explanatory variable, and m is the frequency
multiplicative difference between the explanatory variable and the explanatory variable,
which is set in this paper X(m)

t is a monthly variable and Yt is the quarterly variable, then

the value of m is 3. B
(

L1/m; θ
)

is the lagged weight polynomial, which is the combination

of weight function and lag operator, and can be written as ∑K
k=0 ω(k; θ)Lk/m, where K is the

highest lag order of the high-frequency explanatory variables. ω(k; θ) is the weight function,
and Lk/m is the lag operator, and X(m)

t is the combination of X(m)
t−k/m, k = 0, 1, · · · , K.

Since the data release has a time lag, for example, the quarterly GDP is usually released
in the middle and end of the first month of the next quarter, the introduction of the MIDAS
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model with h-step forward forecasting can make full use of the published high-frequency
data to forecast the low-frequency data. Compared with the same frequency model, the
MIDAS model can correct its forecast according to the newly released data, which improves
the forecast accuracy and solves the time lag problem of data publication. The h-step
forward forecasting model is abbreviated as MIDAS (m, K, h), which can be written as

Yt = β0 + β1B
(

L1/m; θ
)

X(m)
t−h/m + ε

(m)
t (3)

In Equation (3), B
(

L1/m; θ
)

is the same as above and is still ∑K
k=0 ω(k; θ)Lk/m. The

difference is that when the lag operator is combined with X(m)
t , it is Lk/mX(m)

t−h/m =

X(m)
t−k/m−h/m = X(m)

t−(k+h)/m. In this case, K + h is the highest lag order calculated at the
high-frequency of the high-frequency explanatory variable. When h = 1, the information of
the first two months of high-frequency data is available in the current quarter data to be
forecasted, and the data of the first two months can be used to forecast the information at
the end of the quarter; when h = 2, only the information of the first month is known in the
current quarter data to be forecasted, and the data of the first month can be used to forecast
the information at the end of the quarter; when h > 3, it means that the regression equation
can make out-of-quarter forecast based on the existing data. For example, it can forecast the
information of the next quarter using the data of the previous period and revise its forecast
using the latest high-frequency data.

One of the core elements of the MIDAS model is the setting of the weight function.
Introducing the weight function in the model not only reduces the influence of noise in
high-frequency data, but also allows the analysis of the structure of high-frequency data.
Using the characteristics of the function itself, the numerous estimated parameters of
the high-frequency explanatory variables in the model are represented by the function,
making it possible to introduce high-frequency variables directly in the model. The weight
functions commonly used in the MIDAS model in empirical studies are Beta polynomial
function, non-zero Beta polynomial function, Almon function, and Exponential Almon
function [52,53].

The Beta polynomial function is a representation of the weight function of the MIDAS
model using probability density functions from the family of Beta distributions, mainly
from the fact that a rich form of the probability density function of the family of Beta
distributions can be represented by using only two parameters [39]:

ω(k; θ1, θ2) =
f (k/K; θ1, θ2)

∑K
k=0 f (k/K; θ1, θ2)

(4)

In Equation (4), f (X; a, b) = Xa−1(1−X)b−1Γ(a+b)
Γ(a)Γ(b) and Γ(a) =

∫ ∞
0 e−xxa−1dx. f (X; a, b)

takes different forms as the parameters change. When a > 1, b > 1, f (X; a, b) is a sine
function and at x = a−1

a+b−2 obtains its maximum value at this time. When a < 1, b < 1,
f (X; a, b) is a U-shaped function and it obtains the minimum value in x = 1−a

1−a−b . When
a > 1, b ≤ 1, f (X; a, b) is a strictly decreasing function. Therefore, the weight function
ω(k; θ1, θ2) will change with the value of the parameter θ1 and θ2.

A non-zero Beta polynomial function is defined by the case where none of the parame-
ters in the Beta weight function is zero, as follows

ω(k; θ1, θ2) =
f (k/K; θ1, θ2)

∑K
k=0 f (k/K; θ1, θ2)

+ θ3 (5)

As the name implies, θ does not equal 0 in non-zero Beta polynomial functions. It
is widely used when θ1 = 1, θ2 and θ3 are not 0. In Equation (4) θ can be 0, which can
be obtained from Equation (5) θ3 = 0. This type of weighting function is often used
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in financial markets and combined with macroeconomic areas, such as the use of high-
frequency financial variables to predict low-frequency macroeconomic variables [54].

The Almon function is mainly derived from the van der Munn matrix in the distri-
bution lag model, and the main idea is to approximate a distribution by a polynomial, as
defined below:

ω(k; θ0, θ1, θ2 · · · , θP) = θ0 + θ1k + θ2k2 + · · ·+ θPkP (6)

When expanded, it can be written as

ω0
ω1
ω2
ω2
...

ωk


=


1 0 0 · · · 0
1 1 12 · · · 1P

1 2 22 · · · 2P

...
...

...
. . .

...
1 k k2 · · · kP




θ0
θ1
θ2
...

θP

 (7)

In order to reduce the parameters to be estimated, in general one would make P = 3.
The exponential Almon function is developed from the Almon hysteresis polyno-

mial proposed by the distributed hysteresis model, that is, from the general form of the
Almon function:

ω(k; θ1, θ2 · · · , θP) =
exp

(
θ1k + θ2k2 + · · ·+ θPkP)

∑K
k=1 exp(θ1k + θ2k2 + · · ·+ θPkP)

(8)

To avoid the problem of too many parameters to be estimated, parameter P = 2 is
generally set. At this point there is a general constraint of θ1 ≤ 300, θ2 < 0. It has become
a popular option because it is flexible enough to simulate different weighted shapes of
lag coefficients.

In addition to the above models with weight functions as constraints, some scholars
have also proposed the unconstrained MIDAS model [55], referred to as the U-MIDAS
model. As the name implies, this model does not need to impose constraints on the lag
polynomial and can be regressed directly by the least square method. According to the
modeling mechanism of the traditional distributed lag model, the unconstrained MIDAS
model is obtained by removing the weight function before the high-frequency variables:

Yt = β0 + β1B
(

L1/m
)

X(m)
t + ε

(m)
t (9)

There is no weight function in Equation (9), and it is necessary to estimate the parame-
ters of the lagged term of each high-frequency explanatory variable, and the other variables
have the same meaning as in Equation (2). The model can be used to make predictions for
low-frequency variables when the difference between the frequencies of high-frequency
and low-frequency variables is small and the estimated parameters are not large.

3. Results

The choice of weight function and lag order is very important. In practice, different
forms of weight function are introduced into the MIDAS regression model, and the optimal
lag order of the weight function is selected according to the characteristics of high fre-
quency data fluctuation and the specific value of the model prediction accuracy index. The
processed carbon emission data are recorded as Dlog(CO2) and the GDP data are recorded
as Dlog(GDP).
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3.1. Correlation Analysis of Carbon Emissions and Economic Growth

In order to test whether there is a correlation between carbon dioxide emissions and
economic growth, this study transformed carbon emissions into quarterly data and then
conducted Granger causality tests, and obtained the results shown in Table 1.

Table 1. Granger causality test between carbon emissions and economic growth.

Dependent Variable Excluded Chi-sq df Prob.

Dlog(CO2) Dlog(GDP) 11.9432 3 0.0076
Dlog(GDP) Dlog(CO2) 43.7252 3 0.0000

As can be seen from Table 1, the p-values of the Granger causality tests between
Dlog(CO2) and Dlog(GDP) are less than 0.05, indicating that the two are mutually influenc-
ing and constraining, and a vector autoregressive model (VAR) can be considered.

The values of LR, FPE, AIC, SC, and HQ were considered together and the model lag
order of VAR was set as 3. The results of the parameter estimation of the final constructed
VAR model are shown in the Equation (10).[

Dlog(CO2)
Dlog(GDP)

]
=

[
−0.62 0.24
0.19 −0.26

]
×
[

Dlog(CO2)(−1)
Dlog(GDP)(−1)

]
+

[
−0.31 −0.09
−1.16 0.46

]
×
[

Dlog(CO2)(−2)
Dlog(GDP)(−2)

]
+

[
1.94 −1.59
3.98 −2.93

]
×
[

Dlog(CO2)(−3)
Dlog(GDP)(−3)

]
+

[
3.26
6.56

] (10)

From Equation (10), it can be seen that Dlog(GDP) with lag 1 has a promoting effect
on Dlog(CO2), Dlog(GDP) with lag 2 and lag 3 has a suppressing effect on Dlog(CO2);
Dlog(CO2) with lag 1 and lag 3 has a promoting effect on Dlog(GDP), Dlog(CO2) with lag 2
has a suppressing effect on Dlog(GDP). Therefore, it is reasonable to use Dlog(CO2) to
predict Dlog(GDP).

3.2. The MIDAS Model

Commonly used weighting functions are exponential Almon function, Almon func-
tion, Beta polynomial function, and non-zero Beta polynomial function. The variables
are constructed as full sample mixed frequency data models, and different models are
constructed by combining the possible weight functions and lag structures of the models,
and the results are shown in Table 2.

Table 2. Model fitting of different weight functions at different lag periods.

Lagging Period Weight Functions AIC BIC Convergence

1 neAlmon 97.5931 99.5327 0
2 neAlmon 97.5931 99.5327 0
3 neAlmon 97.5931 99.5327 0
4 neAlmon 97.5931 99.5327 0
5 neAlmon 97.5931 99.5327 0
6 neAlmon 97.5931 99.5327 0
2 Almon 85.5160 87.9406 0
3 Almon 76.0655 78.4901 0
4 Almon 80.4132 82.8378 0
5 Almon 87.5142 89.9387 0
6 Almon 100.4989 102.9234 0
2 nBeta 99.5931 102.0176 0
3 nBeta 99.5931 102.0176 0
4 nBeta 99.5931 102.0176 0
5 nBeta 99.5931 102.0176 0
6 nBeta 84.2460 86.6705 0
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Table 2. Cont.

Lagging Period Weight Functions AIC BIC Convergence

3 nBetaMT 91.7440 94.6535 0
4 nBetaMT 99.9983 102.9078 0
5 nBetaMT 100.3708 103.2802 0
6 nBetaMT 105.4704 108.3798 0

* Note: “Bond” is the minimum value of AIC or BIC under this weight function.

From Table 2 and Figure 2, it is known that the AIC and BIC values of the exponen-
tial Almon function do not vary with lags. The Almon function and the non-zero Beta
polynomial function reach the minimum of the AIC and BIC values at lag K = 3, and the
Beta polynomial function reaches the minimum of the AIC and BIC values at lag K = 6. In
addition, the convergence values of all models are 0, which means that the constructed
models converge. Since the Almon function and the non-zero Beta polynomial function
have the maximum AIC and BIC at lag K = 6, and the minimum values of AIC and BIC are
obtained at lag K = 3 of the Almon function, the lag order K = 3 is chosen.
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Figure 2. Model fitting diagram of five weight functions changing with different lag periods.

With the optimal high frequency lag value K = 3, to examine the merits of the MIDAS
model, the MIDAS models with different constraint functions were constructed to predict
GDP growth rate by choosing the first quarter of 2019 to the second quarter of 2021 as
the training set, and the third quarter of 2021 to the second quarter of 2022 as the test set.
Table 3 gives the errors of the sample forecasts of GDP growth rate.

According to Figure 3 and Table 3, it can be seen that the out-of-sample errors of
the Beta polynomial function and the exponential Almon function are the same, and the
out-of-sample errors of Almon function are the smallest for both MSE, MAPE and MASE.
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Therefore, the model constructed using the Almon function has the best predictive ability
for the future, and the Almon model with lag K = 3 can be selected by comparison.

Table 3. The sample prediction error of different weight functions when the lag is 3.

Lagging Period Weight Functions MSE.out MAPE.out MASE.out

3

nBeta 87.4890 102.3061 0.4352
nBetaMT 63.4897 78.7915 0.3708

unconstrained 57.5514 79.9784 0.3608
neAlmon 87.4890 102.3061 0.4352
Almonp 27.6672 49.3636 0.2261

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 16 
 

Almonp 27.6672 49.3636 0.2261 

According to Figure 3 and Table 3, it can be seen that the out-of-sample errors of the 
Beta polynomial function and the exponential Almon function are the same, and the out-
of-sample errors of Almon function are the smallest for both MSE, MAPE and MASE. 
Therefore, the model constructed using the Almon function has the best predictive ability 
for the future, and the Almon model with lag K = 3 can be selected by comparison. 

 
Figure 3. Error comparison of different weight functions when lag is 3. 

3.3. Model Comparison and Prejections 
The constructed MIDAS model was subjected to out-of-sample prediction and the 

constructed VAR model was fitted in-sample for model comparison, and the results ob-
tained are shown in Table 4. 

Table 4. Error comparison between the MIDAS model and the VAR model. 

MIDAS VAR 
rRMSE h Time Forecasted Value RMSE MAE Time Fitted Value RMSE MAE 

1 July 2021 1.23 
0.95 0.94 Third quarter 

of 2021 6.49 2.83 2.83 0.34 2 August 2021 1.43 
3 September 2021 −0.48 
4 October 2021 −3.32 

3.24 2.24 
Fourth quarter 

of 2021 4.46 4.16 3.99 0.78 5 November 2021 −0.79 
6 December 2021 6.81 
7 January 2022 8.21 

4.77 3.69 First quarter of 
2022 

−17.62 3.39 2.66 1.41 8 February 2022 −6.60 
9 March 2022 −6.15 

10 April 2022 0.02 
5.35 4.46 

Second quarter 
of 2022 10.74 4.19 3.49 1.28 11 May 2022 −0.06 

12 June 2022 0.82 

Figure 3. Error comparison of different weight functions when lag is 3.

3.3. Model Comparison and Prejections

The constructed MIDAS model was subjected to out-of-sample prediction and the con-
structed VAR model was fitted in-sample for model comparison, and the results obtained
are shown in Table 4.

As can be seen from Table 4 and Figure 4, at forecast steps less than 6, the RMSE of the
MIDAS model is smaller than that of the in-sample fitted VAR model even for out-of-sample
forecasts, reflecting the strong short-term forecasting ability. In addition to this, the MIDAS
model performs worse and worse out-of-sample prediction results as the prediction base
period h gradually increases, and the comparative advantage of the model is small or almost
nonexistent. This is because as the step value increases, the corresponding amount of recent
information decreases and the forecasting effect becomes worse. At the same time, it shows
that the economy has the so-called sticky, and the economic situation of the next period is
greatly affected by the economic level of the previous period. Thus, when forecasting the
actual GDP growth rate further away from the forecast interval, it does not show better
estimation effect than the VAR model at the same frequency. However, in general, the
MIDAS model has a satisfactory accuracy for short-term forecasts of economic growth.
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Table 4. Error comparison between the MIDAS model and the VAR model.

MIDAS VAR
rRMSE

h Time Forecasted Value RMSE MAE Time Fitted Value RMSE MAE

1 July 2021 1.23
0.95 0.94 Third quarter

of 2021
6.49 2.83 2.83 0.342 August 2021 1.43

3 September 2021 −0.48
4 October 2021 −3.32

3.24 2.24
Fourth

quarter of
2021

4.46 4.16 3.99 0.785 November 2021 −0.79
6 December 2021 6.81
7 January 2022 8.21

4.77 3.69 First quarter
of 2022

−17.62 3.39 2.66 1.418 February 2022 −6.60
9 March 2022 −6.15
10 April 2022 0.02

5.35 4.46
Second

quarter of
2022

10.74 4.19 3.49 1.2811 May 2022 −0.06
12 June 2022 0.82
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Projections of GDP growth based on carbon emissions data yielded the results shown
in Table 5. From Table 5 and Figure 5 it can be seen that the forecast shows a general upward
trend for the Chinese economy over the next three months, but the growth rate may be
affected by the sudden outbreak of the COVID-19 epidemic and will decline. In the short
term, the sudden outbreak of the COVID-19 may lead to a decline in the domestic economy,
but in the medium and long term, the negative impact on economic development is limited.
Based on reasonable expectations of China’s economic growth in the short and medium
term, and in relation to the findings related to the total and structure of society-wide carbon
emissions, it can be tentatively judged that it is reasonable and feasible to maintain a
sustained decline in domestic carbon emissions intensity, provided that pre-conditions
remain unchanged. Due to the predictive advantage of the MIDAS model in the short term,
the model’s predictions can be revised and adjusted after the release of the latest data.



Sustainability 2022, 14, 16762 11 of 16

Table 5. A three-step forecast of future economic growth.

h Time Forecasted Value

1 July 2022 1.7315
2 August 2022 1.4050
3 September 2022 −0.8291
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4. Discussion

Recent studies attest to the rapid spread of COVID-19 around the world, with countries
locking down cities, restricting travel and implementing stringent security measures. These
have an impact on the environment and carbon emissions [56–58], while holding back
economic development [59–61]. Therefore, we want to study the impact of carbon emissions
on the economy so that policymakers can make appropriate policies to strike a balance
between economic development and environmental protection.

This study is the first to use the MIADS regression model to analyze the impact of
carbon emissions on economic growth in the context of COVID-19. The Granger causality
test proves the rationality of using carbon emission to forecast economic growth. The
forecasting accuracy of the MIDAS model is demonstrated by comparing it with the VAR
model. Finally, the forward three step forecast reveals the trend of future economic changes.
The results of this study suggest that China’s future economic development has been
affected by the sudden epidemic, resulting in a recent decline in economic growth rate,
but overall, the Chinese economy is still on an upward trend. In general, Jardet used the
frequency mixing model to predict the world economy [62], and this study added the
screening of different constraint functions and lag orders on the basis of his model, and
reached a similar conclusion, that is, high-frequency data can help track economic turning
points in real time. Xu found that the prediction accuracy of MIDAS model was higher
than that of autoregressive Distributed lag (ARDL) model through the study of carbon
emission prediction [63], which was similar to this study. Different from Xu, this study
predicts economic growth based on the data of carbon emissions under the COVID-19
pandemic and finds that the MIDAS model predicts with higher accuracy than the VAR
model. Empirical research shows that the development trend of economic growth rate
and carbon emission growth rate shows consistency and phase characteristics, which is
consistent with Zhao’s findings [26]. However, Zhao analyzed the relationship between
carbon emissions and economic development from 2009 to 2019. This study can be said to
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be an extended analysis of the relationship between 2019 and 2022, while using the MIDAS
model to make the short-term prediction more accurate. In terms of economic forecast
results under the background of COVID-19, Zhao used the conditional Markov chain model
to forecast China’s GDP growth rate from the fourth quarter of 2021 to the third quarter
of 2025 [64]. The main findings are that COVID-19 has an impact on China’s economic
growth, China’s economic fluctuations are large, and economic growth differences are large.
However, China’s economic growth is likely to stabilize gradually and is likely to grow at a
medium-high speed with high quality during the forecast period, similar to the forecast
results of this study. In this study, the sudden epidemic was further considered, that is, the
monthly data was used to predict the quarterly data. With the emergence of the sudden
epidemic, the economic growth rate would suffer a certain decline, but it would rise after
the lockdown exposure, showing obvious volatility.

5. Conclusions
5.1. Theoretical Contributions

Environmental problems caused by carbon emissions have become a topic of in-
creasing concern, and a large amount of carbon emissions is behind the rapid economic
development, so it is necessary to study the relationship between carbon emissions and eco-
nomic development. In the latest studies, the relationship between economic development
and carbon emissions is generally explored by decompressing the influencing factors of
carbon emissions, or directly constructing an econometric model of carbon emissions and
economic development to explore the direct relationship between them. However, they
all use the same frequency data. In this study, for the first time, the mixed-frequency data
sampling regression method was used to analyze the impact of carbon dioxide emissions
on economic growth under the background of COVID-19 pandemic. The MIDAS model
balances the relationship between retaining valid information of high-frequency data and
reducing the number of parameters to be estimated by constructing distribution lag poly-
nomials, thus effectively using high-frequency data to improve the prediction accuracy
of low-frequency variables and avoiding a large loss of sample information. At the same
time, the accuracy of the MIDAS model is verified by comparing the VAR model, which
can better reflect the impact of short-term and sudden epidemics on economic growth.

The purpose of this study is to investigate the impact of CO2 emissions on macroe-
conomic fluctuations under the COVID-19 in China by using the MIDAS model. The
MIDAS (m, K) model for estimating the real GDP growth rate is constructed from CO2
emissions, the variables are constructed as a full-sample MIADS model, the possible weight
functions and lag structures of the model are combined to construct different models to
determine the lag order K of the model, and the optimal weight function is further selected
through the sample forecast error. On this basis, the sample estimation results are used
to obtain the forecasted GDP growth rate and the root mean square residual ratio for
comparison with the benchmark model VAR. Finally, the future GDP is projected based on
the latest carbon emission data, and corresponding recommendations are made to achieve
sustainable development.

5.2. Policy Implications

Through the above empirical study, this study finally draws the following conclusions:
Firstly, compared with the benchmark model VAR, the MIDAS model has a smaller

mean-squared forecast error in general, and has a comparative advantage in real-time
forecasting and short-term forecasting, avoiding the time lag in the release of economic
data that prevents timely and accurate judgments on the current macroeconomic state and
macroeconomic trends, and improving the timeliness of macroeconomic forecasts and the
accuracy of short-term forecasts.

Secondly, when the MIDAS model forecasts the real GDP growth rate, the best esti-
mates as well as the forecast results are based on the short-term impact. In the short term,
our economy is affected by the impact of the sudden epidemic. Therefore, we need to pay
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attention to the economic trends, through the use of the MIDAS models in time for forecast
monitoring, and thus modify the previous data.

Third, China’s current and future ecological and environmental conditions remain
optimistic under the influence of carbon emissions. The authorities concerned can promote
the optimization and upgrading of industrial structure and the construction of environ-
mentally friendly cities by improving urban planning and other methods, so as to achieve
the dual carbon goals of carbon capping and carbon neutrality at an early date.

Based on the above findings and the trends in China’s economic growth and carbon
emissions, it is clear that the issue of how to control carbon emissions and maintain eco-
nomic growth is a persistent and hidden problem. Reducing carbon emissions to control
environmental pollution is bound to curb the rapid growth of the economy, which can be
verified from the development path of the high carbon economic model that China has been
pursuing. The previous development model achieved rapid economic development with
high energy consumption and high pollution, which would not only increase the pressure
of carbon emissions and aggravate the degree of environmental pollution, but also go
against the sustainable development of economy. In addition, the environmental problems
associated with carbon emissions, such as land drought, increased desertification and ocean
acidification, can limit sustainable economic development in various ways. Therefore, a
win–win situation of reducing carbon emissions and maintaining economic development
can only be achieved by formulating appropriate carbon reduction policies, such as imple-
menting carbon neutral concepts in urban planning, and building environmentally friendly
cities, livable urban communities, and zero carbon buildings. From the empirical evidence
it is clear that China’s economy will continue to grow in the long term, so it is possible
to invest more in carbon emission reduction, improve the institutions and mechanisms
related to carbon emission reduction, and accelerate the innovation of energy technology.
China’s current economic development is affected by the epidemic, and it is important to
strike a balance between ensuring stable economic growth and balancing ecological and
environmental protection to bring maximum benefits to social development and enhance
human well-being. Therefore, it is important to study the coupled and coordinated rela-
tionship between carbon emissions and economic growth to promote sustainable economic
and ecological development.

5.3. Limitations

The research in this study has certain limitations. Since carbon dioxide mainly comes
from the combustion of fossil fuels such as coal, oil, and natural gas, and energy is the
main driving force for economic growth, carbon emissions and economic development
are closely related to energy consumption, which leads to carbon emissions and economic
growth. Therefore, the research results of this paper are worthy of further promotion of
adding energy consumption as an independent variable into the prediction model. In
addition, the MIDAS model is suitable for short-term forecasting, so timely data updates
are needed to obtain more accurate results.

5.4. Future Research Perspectives

In view of the shortcomings of the research, the article can be improved from the
following aspects if the conditions allow. First, a carbon emission index system can be
constructed to incorporate energy consumption and other factors into the model to make
the model more comprehensive. Second, the model can be used to further predict the
short to medium term economic development, and update the forecast data in real time to
improve the forecast accuracy. Third, a dummy variable can be set for the sudden epidemic
to more comprehensively consider its impact on economic development, so as to timely
adjust relevant policies. Subsequent research can be carried out according to the above
aspects, so as to explore more profound laws of economic change and predict possible
development trends.
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