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Abstract: Federated learning preserves the privacy of user data through Machine Learning (ML).
It enables the training of an ML model during this process. The Healthcare Internet of Things
(HIoT) can be used for intelligent technology, remote detection, remote medical care, and remote
monitoring. The databases of many medical institutes include a vast quantity of medical information.
Nonetheless, based on its specific nature of health information, susceptibilities to private information,
and since it cannot be pooled related to data islands, Federated Learning (FL) offers a solution as a
shared collaborative artificial intelligence technology. However, FL addresses a series of security and
privacy issues. An adaptive Differential Security Federated Learning Healthcare IoT (DPFL-HIoT)
model is proposed in this study. We propose differential privacy federated learning with an adaptive
GBTM model algorithm for local updates, which helps adapt the model’s parameters based on the
data characteristics and gradients. By training and applying a Gradient Boosted Trees model, the
GBTM model identifies medical fraud based on patient information. This model is validated to
check performance. Real-world experiments show that our proposed algorithm effectively protects
data privacy.

Keywords: data privacy; federated learning; medical fraud; Internet of Things; GBTM

1. Introduction

Federated learning helps mobile phones develop a standard prediction model collabo-
ratively while storing all training data locally, splitting machine learning from storing data
on the cloud. This extends the usage of local models that generate a prediction on mobile
devices (similar to the Smartphone Vision API or On-Device Smarter Reply) by transferring
model training to the device [1].

Many algorithmic and technological obstacles must be overcome before implementing
FL. In a traditional machine learning system, an optimizing method such as Stochastic
Gradient Descent (SGD) works on an extensive dataset split equally between cloud servers.
These highly recurrent algorithms must train data interfaces with low latency and high
speed. In contrast, data is distributed between millions of devices in the FL environment
very heterogeneously. Furthermore, these devices have a significantly higher frequency
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and lower speed connections and are only rarely accessible for training. FL has recently
been a hot topic of study in both business and academia. Using several machine learning
techniques, communication methods, privacy-preserving techniques, and data partitioning
schemes have been investigated using federated environments. Federated learning allows
several companies to develop a robust machine learning technique without sharing data,
allowing issues such as privacy, security, access rights, and connectivity to heterogeneous
data to be addressed. Security, communications, IoT, and pharmaceutical industries are
just a few areas where it is used [2]. As medical data volumes and types increase, effective
mining models to evaluate these data are now needed to aid in illness diagnoses. They
will also provide medical remedies and provide better patient care. Image identification,
natural language processing, and healthcare are areas where machine learning has been
applied. Comparing several FL algorithms provides us with a concept of how algorithmic
modifications can affect the performance of the final model.

On the other hand, machine learning models can only achieve high accuracy with
a large number of training samples, which is exceptionally crucial in health care since it
may sometimes determine whether or not a patient’s life can be saved. In this research,
the authors present a customized federation learning model for intelligent IoT systems
applications in a cloud system [3]. The author designed a federated learning (FL) model that
employs a reputation mechanism to enable home appliance manufacturers in developing
smart house systems using machine learning systems based on user data [4]. The author
used federated learning to analyze cardiac activity data acquired using smart bands to
track stress levels throughout various situations. The author of this research study offered
a novel strategy that focuses on sleep loss in many ways [5]. By protecting the privacy of
the data, the author obtained encouraging findings for employing federated learning in IoT
system functionality monitoring systems [6].

This study focuses on a broad class of machine learning approaches taught using
gradient-descent techniques while accounting for the practical limits of non-uniformly
distributed datasets between users [7]. In this study, the authors propose a system for
detecting malware threats mostly on the Industrial Internet of Things (MT-IIOT). A method
based on color picture visualization and a deep learning neural network is presented
for the in-depth detection of malware [8]. The author of this research study offered a
novel strategy that focuses on sentimental elements of the item’s qualities [9]. The author
used machine learning and deep learning algorithms to forecast the risk of securing e-
banking and e-commerce transactions by analyzing datasets from e-commerce and e-
banking platforms [10]. In this study, the author introduces IMCFN, a new classifier that
uses CNN-based deep learning architecture to recognize variations of malware families and
enhance malware detection [11]. A Gradient Boosting Decision model (GBDM) classifier-
based fall detection approach is developed that uses big data fusing of postural sensor and
human video skeleton to improve detection accuracy [12].

This research detects the most effective and secure path for exchanging health data
using the multi-objective bio-inspired heuristic cuckoo search node optimization tech-
nique [13]. The author emphasizes the roots of FL’s risks, significant attacks on it, and
responses, as well as their particular challenges, and also talks about interesting future
research routes for more reliable FL [14]. Federated learning is vulnerable to feeding at-
tacks, where attackers upload fraudulent model modifications to affect the whole model.
Researchers propose an attack prevention method that uses synthetic stochastic networks to
provide auditing data throughout the training process. It eliminates attackers by evaluating
their model accuracy to identify and prevent feeding attempts in federated learning [15].
This article aims to investigate the factors of the sustainability supply chain (SHCSC) perfor-
mance management through extensive literature research and the perspectives of industry
experts [16].



Sustainability 2022, 14, 16842 3 of 17

2. Current FL Digital Health Activities

Since FL is a broad learning paradigm that reduces the need for data pooling for
AI model construction, its applicability covers all aspects of AI for health care. FL may
enable revolutionary advances in the future by collecting more data variation and studying
patients from different demographic groups. It is already in use now.

2.1. Clinicians

Clinicians often see the same group of people because of their location and demo-
graphics, which can lead to inappropriate conclusions about how highly probably specified
diseases are or how they affect each other. When they use ML-based systems, for example,
as the second reader, they may be able to add accurate and reliable information from those
other institutions to their experience, allowing them to make diagnoses that are more
coherent than they are now. Even though this is true for ML-based systems, devices trained
in a federated way can come to even less biased findings and be more sensitive to rare cases
because they have access to a wider range of data. To ensure that the information is sent to
collaborators in a way that is easy for everyone to understand, some preliminary work is
needed, such as ensuring that the data structure, annotations, and report protocol follow
the rules.

2.2. Patients

Generally, patients received primary care. Implementing FL on an international
market could ensure higher clinical judgments despite the treatment site. Specifically,
people seeking medical care in rural places might benefit from the same high-quality ML-
assisted diagnosis provided in hospitals with a high workload. The same stands true for
rare or regionally uncommon diseases, the implications of which are likely to be less severe
if diagnoses can be established more quickly and precisely. FL may also reduce the barrier
to being a data provider since patients may rest certain that their data remains within their
hospital and that access to data can be revoked.

2.3. Hospitals and Medical Procedures

With comprehensive visibility of data access, hospitals and practices may retain the
full authority of patient data, reducing the risk of third-party cyberbullying by third parties.
To train and evaluate machine learning models without interruption, however, businesses
must invest in physical on-premises computing resources or private cloud service delivery
and adhere to standardized, open data formats. Whether a location is just engaged in
assessment and testing activities or participates in training initiatives will determine the
number of computing capabilities required. Even very modest institutions may join and
profit from the communal models developed.

3. The Advantages of Federated Learning

Federated learning is a key area in machine learning that already provides signifi-
cant advantages over standard, centralized machine learning techniques. These are the
advantages of federated learning:

Health: federated learning may improve the health system insurance industries since it
protects private information. To diagnose uncommon diseases, federated learning models
may give more data diversity by collecting data from many sites (e.g., hospitals and
electronic health records databases). According to recent research titled “The future of
digital health with federated learning,” federated learning may assist in resolving data
privacy and governance issues by enabling machine learning models to be developed from
distant data [17].

Data security: the model does not require a data pool if the training datasets are
maintained on the devices.

Data diversity: challenges besides data security, such as network instability in edge de-
vices, may prevent businesses from collecting information from various sources. Federated
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learning allows access to massive datasets even when data sources can only communicate
at certain times.

Real-time learning: using client data, models are continually improved without the
need to collect data for continuous learning. However, compared to federated learning
approaches, which do not require any centralized server for data processing, this system
requires more sophisticated technology.

4. Challenges of Federated Learning

Investment requirements: federated learning methods may need frequent node-
to-node communication. This implies that a system’s storage capacity and bandwidth
efficiency are two characteristics.

Data Protection: in federated learning, data is not gathered on a single entity/server;
instead, multiple devices are used for data collection and analysis. This may increase the
sensitivity to attack.

Even if only models, not raw data, are transmitted to the central database, it is pos-
sible to reverse engineer models to identify customer data. Federated learning may use
privacy-enhancing technologies such as differential privacy, safe multiparty computing,
and homomorphic encryption to boost its data privacy capabilities.

Limitations in feature: data heterogeneity: federated learning combines models from
several devices to generate a superior model. Some device-specific features may restrict the
applicability of models created from some devices, hence diminishing the precision of the
future iteration of the model.

Indirect information leakage: researchers have studied cases in which one federation
member may intentionally attack other members by installing a remote trojan into the
joint global model. Federated learning is a very new method of machine learning. It
requires new research and studies to boost its performance. When a central model uses the
data of other devices to create a new model in federated learning, there is still a level of
centralization. Researchers suggest adopting blockchain federated learning (BlockFL) or
other methods to develop federated learning models with zero trust.

Alternatives for Federated Learning: the same issue of training data privacy was
suggested to be solved through gossip learning. This method is entirely decentralized, as
there are no servers for integrating outputs from various places. Local nodes immediately
exchange models and combine them. Additionally, less technology and centralization
are required for gossip learning than for federated learning, which is a benefit. Gossip
learning is a unique technique, and further work is necessary to enhance its effectiveness
and stability.

Section one is about the introduction, section two is about related works, section three
is the methodology, the fourth section will discuss the results, and the last section will
contain the conclusion, implications, limitations, and future studies.

5. Related Work

Traditional centralized training techniques typically include gathering large amounts
of data from robust cloud computing, which might result in serious user privacy breaches,
particularly in the medical field. Many countries have passed regulations limiting the
collection of data aspects of user privacy, including the General Data Protection of the
European Union (GDPR) [18].

The Health Internet of Things (HIoT) is transforming conventional industries, in-
cluding healthcare, medical treatment, health policy, and community care, wherein large
numbers of HIoT sensors, e.g., wearable sensors, are deployed at the network’s edge to
gather patient data. FL stands for federated learning [19]. The protection of personal
information is a primary issue. It is essential to follow current privacy standards to protect
patients’ identities, especially in sectors such as medicine. On the other hand, data is
essential for research and training machine learning techniques that might help identify
intricate connections or individualized treatments that may go undetected. These models
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typically scale with the quantities of information accessible, but the current circumstance
prevents massive databases from being built over several sites.

Hence, integrating comparable or related data from several sites worldwide would
be advantageous as long as privacy is maintained. Since it uses machine learning models
rather than raw data, federated learning is now being presented as a viable solution.
That implies that personal information is never shared outside of the website or device
where it was obtained. Federated learning is now a developing field of study, and several
fields have been recognized for its use. This literature review examines the notion of
federated learning, research into it, and its relevance to sensitive healthcare datasets [20].
The primary idea is that various CNNs produce multiple semantic representations of the
picture according to their deeper architectures [21]. Using AI apps to diagnose illnesses
has become standard practice as artificial intelligence (AI) has advanced, increasing illness
diagnoses and decreasing patient waiting times [22]. This study’s objective is to provide a
summary of federated learning methods with a focus on the biomedical industry [23].

The author’s secure federated-learning architecture contains vertical federated learn-
ing, horizontal federated learning, and federation learning models. The authors define,
construct, and use the federated-learning framework and present a complete overview of
prior publications on the subject [24]. With federated learning, a plurality of parties can
develop deep learning methods using a pool of data without revealing their data sources.
During training, though, a substantial amount of communication is sacrificed as a result of
this kind of private information collaborative learning. Numerous compression approaches
have been developed in distributed training literature to address this issue, which can
significantly reduce the number of communications needed by more than three orders of
magnitude [25].

The author introduces existing works on federated learning through five perspectives:
database partition, security method, machine learning method, communication architec-
ture, and systems heterogeneity to give a complete overview and encourage prospective
study in this area [26]. By addressing communications, computing, and consensus delays,
the authors examine an end-to-end BlockFL latency model and describe the ideal block
production rate [27]. The author of this article suggests Overlap-Fed Avg. This creative
structure loosens the chain-like restrictions of federated learning by simulating the method-
ological approach with the experimental communication phase (for example, uploading
brand new designs and downloading files through the optimization method), allowing
the last step to be entirely covered by the former. Overlap-Fed Avg was enhanced using a
hierarchical computing method, a dataset compensating method, or a Nesterov Accelerated
Gradients (NAG) method over standard Fed Avg [28].

Federated learning, a novel distributed interactive AI paradigm, holds particular
promise for intelligent healthcare since it enables several users (such as hospitals) to
engage in AI training while ensuring data privacy. As a result, the researchers conducted
comprehensive research on using FL in intelligent healthcare [29]. The development of
artificial intelligence or the proliferation of infectious diseases have accelerated the use of
novel healthcare. Still, they have also raised questions about data privacy, unauthorized
access, and service quality. The (MIoT) has emerged as a workable remedy to these issues,
especially when paired with federated learning and blockchain technologies. To minimize
a single point of failure, the blockchain is maintained by edge nodes. MIoT devices use
federated learning to efficiently utilize scattered clinical data, according to a study on a
blockchain-based federation learning method for intelligent healthcare [30].

This study emphasizes the integration of these two attractive innovations for use in
real-time and life-critical scenarios, as well as management efficiency in innovative city-
based systems. Researchers carefully investigate the different smart city-based applications
of FL algorithms in DTs. The findings propose some key obstacles and prospective methods
for enhanced FL-DT combined in future applications [31]. This research examines several
FL approaches before proposing a real-time distributed networking system predicated on
the (MQTT) protocol. This chapter focuses on SDN security issues and anomalies, including
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packets being lost due to an attacker’s malicious behavior [32]. The author explicitly creates
various machine learning network systems based on federated learning tools that rely on a
Parameters Server (PS) and completely autonomous paradigms controlled by consensus
procedures [33].

A shared global deep learning model and a centralized aggregating server are used in
federated learning to address the above problems. At the same time, patient data remains
in the hands of the appropriate entity, preserving data security and confidentiality. First, he
provides a thorough, up-to-date description of works using federated learning in clinical
applications in this paper. Then, from a data-centric perspective, he examines at a number
of current federated learning challenges, including benchmark datasets, data distributions,
and data privacy measures. He concludes by highlighting several prospective challenges
and future research activities in healthcare applications [34]. This article introduces feder-
ated learning (FL) to provide remote IoT users with privacy-preserving collaboration model
training at the network’s edge. However, individuals in the FL system may have varying
levels of Willingness To Participate (WTP), which the model owner is unsure of [35].

Every industry is now applying novel innovations such as innovative management
and digitizing because of cutting-edge technology such as artificial intelligence. This
development drives systematic running procedures, lowers management overhead, and
increases output rate. However, it gave rise to many attacks and privacy vulnerabilities at
the data store and process levels. A lack of privacy and confidence in system predictions
constrains the current status of such AI-enabled smart systems’ real-world use. A popular
technology called blockchain can help to lessen the security concerns associated with AI
applications. Since blockchain can reduce AI vulnerability and AI can improve blockchain
performance, these two technologies complement one another. The use of blockchain
systems to protect intelligent systems in various crucial industries, such as healthcare,
finance, energy, government, and the military, is now the subject of extensive research.
However, there is not a thorough review of the field’s present research activities that can
show how blockchain technology is being used to protect AI-based systems and increase
their resilience.

This research provides a bibliometric and literary evaluation of how blockchain might
act as a security blanket for AI-based systems. For this analytical investigation and re-
view, two well-known study databases (Scopus and Web of Science) were evaluated. The
study found that certain journal articles and conference idea proposals had a significant
influence. However, a lot more study must be conducted before implementation [36]. Our
main contribution is a Gradient-Boosted Model (GBTM). We present differential privacy
federated learning for local updates with the adaptive GBTM model method, which helps
adapt model parameters depending on data properties and gradients. The GBTM model
may detect medical fraud based on patient information by training and implementing a
Gradient Boosted Trees model. To ensure performance, this model has been validated. In
real-world testing, our suggested method successfully protects data privacy.

6. Methodology

Gradient boosting progressively adds weak learners so that every learner accommo-
dates the residuals from earlier phases, thus boosting the model. The final model pulls
together the findings from each phase to create a strong learner. Decision trees are used as
weak learners in the gradients boosted decision trees algorithm. With the use of 19 distinct
types of healthcare dataset patient information, a Gradient Boosting Tree (GBT) algorithm
for the real-time monitoring of medical frauds on the patients’ data is examined in this
study. They were using a Gradient Boosted Trees model that has been trained and applied.
This model is validated to check performance. The research methodology for detecting
medical fraud based on patient information is presented in Figure 1. Figure 2 displays the
screenshot of the sample dataset.
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Figure 2. Display a sample of a medical patient information data set.

Step 1: in Step 1, we input the dataset in the retrieved system.
Step 2: in Step 2, we obtain medical information from patients and previous informa-

tion about possible fraudulent activities. To feed the GBT algorithm, the data is turned
into integers.

Step 3: we have numerous attributes, but only a few are connected (e.g., totals and
partial counts). We automatically delete variables with a correlation more significant
than 95%.
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Step 4: to detect fraudulent conduct, the GBT method is applied. To ensure perfor-
mance and eliminate statistical bias, the model is verified. Data is balanced on the train
side of validation to support the model in detecting odd fraudulent situations.

Step 5: finally, in step 5, we received the results. This model may be used to forecast
fraud—the original data and the model’s output score. The accuracy, confusion matrix,
AUC, and other parameters are included in the performance results. This output port sends
the Gradient Boosted classification and regression problems model. This classification
and regression problems model may be used to predict the label attribute on unknown
data sets.

Metric’s Evaluations

In Figure 3, we presented the 200-sample data set with 19 attributes. The data set
distributed with equal amounts of 100 samples is true class, and 100 is false class. Two
colors differentiate the positive and negative classes. The green color describes a positive
class with a true label, while the blue color describes the negative class with a false label.
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7. Result and Discussion
7.1. Gradient Boosted Model

A gradient-boosted model is a combination of regression or classification tree algo-
rithms integrated into one. Both of these forward-learning ensemble techniques provide
predictions by iteratively improving initial hypotheses. A flexible nonlinear regression
method for boosting tree accuracy is called “boosting”. An ensemble of weak predictive
methods is created by applying weak classification approaches to modify data gradually,
including a set of decision trees. While adding more trees increases accuracy, it also com-
plicates systems and makes it harder for people to interpret them. The gradient boosting
technique expands on tree boosting to solve these issues.

The operator creates a local H2O cluster with one node and executes the algorithms.
Although it only requires one node, the operation is in parallel. The gradient boosted
decision trees technique use decision trees as weak learners. To detect residuals, a loss
function is utilized. In a regression investigation, mean squared error (MSE) may be used,
whereas logarithmic loss (log loss) might be employed in a categorization study. Another
essential aspect of the RMSE is that because the errors are squared, more incredible mistakes
are given a considerably higher weight. As a result, a tenth-of-a-percentage-point error is
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100 times worse than a one-percentage-point error. The inaccuracy scales linearly when
employing the MAE. The RMSE model is shown in Figure 4.
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The fact that the mistakes are squared means that more significant errors are given a
significantly higher weight in the RMSE. As a result, a tenth-of-a-percentage-point mistake
is 100 times as bad as a single-percentage-point error scales linearly when utilizing the MAE.
The MSE is 0.03001235 in Table 1, but the RMSE is 0.17324072. The RM-h2o-model-gradient
boosted trees are shown in Table 1.

Table 1. Represented the rm-h2o-model-gradient boosted trees.

MSE 0.03001235
RMSE 0.17324072

Rˆ2 0.7839111
AUC 0.9925

pr_auc: 0.99860364
Log loss 0.12644695

mean_per_class_error 0.01
default threshold 0.723754823

A binary classification is used to produce predictions with two alternative results:
positive and negative. Furthermore, each example’s prediction may be correct or incorrect,
resulting in a 2 × 2 confusion matrix with four entries:

• TP—the amount of “true positives” or positive instances detected accurately.
• FP—the amount of “false positives” or mistakenly detected negative examples.
• FN—the amount of “false negatives” or positive examples that were misidentified.
• TN—the amount of “true negatives” or incorrectly detected negative examples.

In this paper, the sample data is 200 with 19 attributes. We labeled with True and False.
The true samples are 125, which is represented with green color, while the false ratio is 75,
denoted with blue in Figure 5.
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Figure 5. Presented the classes true vs. false. (The green color describes a positive class with a true
label, while the blue color describes the negative class with a false label).

In Table 2, we presented the class’s error rate. There are two classes labeled false and
true. The total number of samples is 22. The false class error is 00.0000, whereas the true
class error is 980.0200.

Table 2. Table 2 presents the class error rate.

Label Sample Error Rate
False 20 00.0000 0/20
True 2 980.0200 2/100
Total 22 980.0167 2/120

Boosting combines learning algorithms to create a strong learner from a group of weak
learners. In the gradients enhanced decision trees approach, decision trees serve as the
weak learners. Each tree seeks to minimize the errors made by prior ones. Boosting trees are
weak learners; however, by stacking them in a sequence and focusing on the shortcomings
of the previous one, boosting transforms into a very efficient and accurate model. Bootstrap
sampling is not required for boosting, unlike bagging. As illustrated in Table 3, a new tree
is generated and put in a modified manner of the original dataset.

Table 3. Presented the GBTM classification error.

Number
of Trees

Training
RMSE

Training
Log Loss

Training
AUC

Training
pr_Auc

Training
Lift

Classification
Error

0 0.37268 0.45056 0.5 0.83333 1 0.16667
1 0.35129 0.39956 0.95125 0.9906 1.2 0.9167

20 0.17324 0.12645 0.9925 0.9986 1.2 0.01667

Because trees are created in a certain order, learning boosting algorithms take a long
time. When a new tree is created, it is placed on a modified method of the initial dataset, as
shown in Table 3. Boosting algorithms take a long time to learn because trees are added
sequentially. Models that train gradually perform better in statistical learning.

Gradient boosting is an approach that helps a machine learning ensemble reduce
variance and bias. By mixing N number of learners, the method aids in the turning of weak
learners into strong learners. In Table 4, we presented the GBT model tree description.



Sustainability 2022, 14, 16842 11 of 17

Table 4. Display model summary of the gradient boost model.

Model Summary
Number of Trees 20

Number of Internal Trees 20
Model Size in Bytes Min. 2907

Depth Min 3
Depth Max 5

Depth Mean Depth Min 4.6
Depth Min 4
Leaves Max 10

Mean Leaves 7.05

Table 5 presents the performance vector where the recall obtained the best result with
95.00% compared to accuracy, precision, etc., where the classification error is 17.50% with
micro average +/− 9.20%. The specificity is 70%, where the AUC is 0.906.

Table 5. Display performance vector.

Performance Vector
Accuracy 82.50% +/−9.20%

micro average 82.50%
classification_error 17.50% +/−9.20%

micro average 17.50%
AUC 0.906 +/−0.074

micro average 0.906
Precision 77.11% +/−11.32%

micro average 77.11%
Recall 95.00% +/−7.07%

micro average 95.00%
Specificity 70% /−15.63%

Table 6 presented the confusion metrics of the performance vector: accuracy, precision,
recall, AUC, specificity classification error micro average.

Table 6. Table 6 presented the confusion matrices of the performed vector.

Confusion Matrix
CM FALSE TRUE

FALSE 70 3
TRUE 30 95

7.2. Based Classification

To forecast the medical fraud detection attribute of the patients’ information dataset,
the H2O GBT operator is utilized. Because the labeling is nominal, it will be classified.
The GBT settings have been modified somewhat. To avoid overfitting, the number of trees
is started with one when the end point is 1.2, and to prevent lifting; for similar reasons,
the learning rate has been raised to 0.3. The generated model is integrated into an Apply
Method operator, which runs the GBT model on the sample data for medical fraud detection.
The Accuracy measure is calculated using the labeled dataset and a Performance (Binominal
Classifier) operator. Tables 5 and 6 show the Performance Vector and the Gradient Boosted
Trees Model for the process output. Figure 6 shows the trees of the Gradient Boosted model.
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Figure 6. Presented the column views with label data of the confusion matrix. (The green color
describes a positive class with a true label, while the blue color describes the negative class with a
false label).

Gradient boosting, on the surface, appears to be a stage-wise additive approach for
generating learners, i.e., existing trees in the model are not modified while new trees
are added at each stage). The stochastic gradient descent procedure identifies factors
contributing to the weak learner in the ensemble. The computed contribution from each
tree is predicated on minimizing the strong learner’s total error. Table 7 presents the GBTM
training parameters result. The 20 leaves are also presented with different training results
with different parameters. Figure 7 is presented the graphical view of Table 7 trained
training parameters result.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

Figure 7. Presents the interpretation result of the confusion matrix. 

Table 7. Presented the tree training parameters result. 

Number of 

Trees 

Training 

RMSE 

Training 

Log Loss 

Training 

AUC 

Training Lift 

Training 

Training 

pr_auc 

Training Classifi-

cation Error 

0 0.37268 0.45056 0.5 1 0.83333 0.16667 

1 0.35129 0.39956 0.95125 1.2 0.9906 0.09167 

2 0.33415 0.36475 0.95125 1.2 0.9906 0.09167 

3 0.32004 0.33835 0.95125 1.2 0.9906 0.09167 

4 0.3047 0.31315 0.9645 1.2 0.99289 0.06667 

5 0.29033 0.29008 0.97225 1.2 0.99449 0.06667 

6 0.28032 0.27347 0.97375 1.2 0.99484 0.06667 

7 0.26652 0.25329 0.978 1.2 0.99564 0.05 

8 0.2556 0.23746 0.981 1.2 0.99628 0.05 

9 0.24503 0.2226 0.9815 1.2 0.99636 0.04167 

10 0.23617 0.20972 0.9865 1.2 0.9974 0.04167 

11 0.22753 0.19751 0.987 1.2 0.99752 0.04167 

12 0.2199 0.18684 0.9885 1.2 0.99783 0.04167 

13 0.2127 0.17715 0.99 1.2 0.99812 0.025 

14 0.20638 0.16843 0.99 1.2 0.99812 0.025 

15 0.19895 0.15923 0.9905 1.2 0.99823 0.025 

16 0.19418 0.15262 0.9905 1.2 0.99825 0.01667 

17 0.18912 0.14567 0.9915 1.2 0.99843 0.01667 

18 0.18518 0.14004 0.9915 1.2 0.99843 0.01667 

19 0.1769 0.13123 0.9925 1.2 0.9986 0.01667 

20 0.17324 0.12645 0.9925 1.2 0.9986 0.01667 

Gradient-boosted trees use a technique known as the ensemble method. Boosting 

continuously combines weak learners (often decision trees with a single split, known as 

decision stumps), so each small tree tries to fix the errors of the former one. Figure 8 pre-

sented the GBTM gradient boosted decision tree, while the Figure 9 presented a graphic 

of overall results, and Figure 10 presented a linear result of trained parameters. 

0 0 0 10

70

30

1 3

95

y = 0.1333x
R² = 0.5333

-20

0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

ConfusionMatrix

CM FALSE TRUE

Figure 7. Presents the interpretation result of the confusion matrix.
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Table 7. Presented the tree training parameters result.

Number
of Trees

Training
RMSE

Training
Log Loss

Training
AUC

Training Lift
Training

Training
pr_auc

Training
Classification

Error
0 0.37268 0.45056 0.5 1 0.83333 0.16667
1 0.35129 0.39956 0.95125 1.2 0.9906 0.09167
2 0.33415 0.36475 0.95125 1.2 0.9906 0.09167
3 0.32004 0.33835 0.95125 1.2 0.9906 0.09167
4 0.3047 0.31315 0.9645 1.2 0.99289 0.06667
5 0.29033 0.29008 0.97225 1.2 0.99449 0.06667
6 0.28032 0.27347 0.97375 1.2 0.99484 0.06667
7 0.26652 0.25329 0.978 1.2 0.99564 0.05
8 0.2556 0.23746 0.981 1.2 0.99628 0.05
9 0.24503 0.2226 0.9815 1.2 0.99636 0.04167

10 0.23617 0.20972 0.9865 1.2 0.9974 0.04167
11 0.22753 0.19751 0.987 1.2 0.99752 0.04167
12 0.2199 0.18684 0.9885 1.2 0.99783 0.04167
13 0.2127 0.17715 0.99 1.2 0.99812 0.025
14 0.20638 0.16843 0.99 1.2 0.99812 0.025
15 0.19895 0.15923 0.9905 1.2 0.99823 0.025
16 0.19418 0.15262 0.9905 1.2 0.99825 0.01667
17 0.18912 0.14567 0.9915 1.2 0.99843 0.01667
18 0.18518 0.14004 0.9915 1.2 0.99843 0.01667
19 0.1769 0.13123 0.9925 1.2 0.9986 0.01667
20 0.17324 0.12645 0.9925 1.2 0.9986 0.01667

Gradient-boosted trees use a technique known as the ensemble method. Boosting
continuously combines weak learners (often decision trees with a single split, known as
decision stumps), so each small tree tries to fix the errors of the former one. Figure 8
presented the GBTM gradient boosted decision tree, while the Figure 9 presented a graphic
of overall results, and Figure 10 presented a linear result of trained parameters.
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Figure 8. Presents the gradient boosted decision tree. Tree description. GBTM has 20 leaves,
but here we display the final tree, which contains 20 leaves. amount_paid_to_date < 100.977;
| amount_paid_per_hospital < 51.781: −0.096 {}; | amount_paid_per_hospital >= 51.781:
0.015 {}; amount_paid_to_date >= 100.977; | amount_paid_to_prescription < 24.629: 0.124 {};
| amount_paid_to_prescription >= 24.629; | | max_presc_per_year < 13.500: −0.038 {}; |
| max_presc_per_year >= 13.500; | | | amount_paid_to_date < 106.439: 0.106 {}; | | |
amount_paid_to_date >= 106.439; | | | | amount_paid_per_doctor < 56.734: 0.103 {}; | | | |
amount_paid_per_doctor >= 56.734: 0.104 {}.
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Figure 9. Presented a graphic of overall results.
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Figure 10. Presented a linear result of trained parameters.

8. Conclusions

Many innovations in the field of data healthcare have emerged from ML and DL, in
particular. Since all machine learning (ML) methods significantly benefit from the ability
to collect data that approximate the real global distributions, FL is a possible method for
producing strong, accurate, safe, robust, and unbiased models. By enabling several parties
to train collaboratively without the need to share or centralize data sets, FL effectively
addresses issues related to the leakage of private medical information.

The most fascinating and trending technologies in the intelligence healthcare industry
are Federated Learning (FL), Machine Learning, and Artificial Intelligence. The healthcare
system has always depended on centralized employees exchanging raw data. However,
with AI integration, the system would consist of several agent contributors capable of
efficiently connecting with their desired host. Furthermore, FL is an important feature that
operates independently; it maintains communication in the preferred system based on a
mathematical model without exchanging raw data. Combining FL and AI approaches can
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reduce several limitations and issues in the healthcare system. Federated learning could
be an effective approach for facilitating IoT information security (i.e., intrusion detection
systems in the IoT context) because when preserving data privacy and preventing the high
communication of centralized cloud-based methods (for example, high-frequency docu-
ments from time-series sensors). An adaptive Differential Protection Federated Learning
Health IoT (DPFL-HIoT) architecture is proposed in this study.

Under federated learning, several individuals exchange their data remotely to train a
single deep learning approach collaboratively and iteratively, similar to a team presentation
or study. Each party downloads the model, often a pre-trained foundation model, from
a cloud-based server. They train the model using their confidential data and summarize
and encode its new configuration. Model modifications are sent to the cloud, encoded,
aggregated, and included in the centralized system. The collaborative training repeats
iteration after iteration until the model is thoroughly trained.

We present a differential privacy federated learning method based on the adaptive
GBTM model technique, which may introduce noise to model parameters based on the
training data’s features and gradient. The GBTM model may detect medical fraud based
on patient information by training and using a Gradient Boosted Trees model. This model
is validated to check performance. The results of our suggested algorithm on real-world
data indicate that it can effectively secure data privacy.

9. Implication, Limitations, and Future Study

The present world is fascinated with data analytics, especially in the medical field.
Healthcare data has grown more significant for data analysis, including pharmacy data
and supplies, patient data, medical professional information, and associated businesses’
responsibility for insurance or similar financial-related operations. The data on the health-
care industry, on the other hand, is fragmented. It is not in the original format, so the data
is vulnerable since it contains medical industry information. The most sensitive is data
from the insurance industry, which cannot be transferred from one industry to another.

Gradient boosting is a technique used in machine learning to tackle classification
and regression issues. It is a sequential ensemble learning approach in which the model’s
performance improves over time. The model is created in a stage-by-stage manner using
this procedure. It infers the model by allowing a differentiable loss function to be optimized.
However, this study is limited to minimum sample data. In the future, we can build a
model with more sample data. The predictor variables are assessed more accurately with
each weak learner added to the model.
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