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Abstract: Forest ecosystems play a key role in sustaining life on this planet, given their functions in
carbon storage, oxygen production, and the water cycle. To date, calculations of the biomass and
carbon absorption capacity of forest ecosystems—especially tropical rainforests—have been quite
limited, especially in Vietnam. By applying remote sensing materials, geographic information systems
(GIS) facilitate the synchronized estimation of both biomass and ability of forest ecosystems to absorb
carbon over large spatial ranges. In this study, we calculated the biomass of tropical rainforest
vegetation in the Kon Ha Nung Plateau, Vietnam, according to four regression models based on
Sentinel-2 satellite image data, forest reserve maps, and forest survey standard cell data (including
19 standard cells for 2016 and 44 standard cells for 2021). The results of the data comparison for the
four biomass computing models (log-log, log-lin, lin-log, and lin-lin) demonstrated that the models
with the highest accuracy were the lin-log model for 2016 (with a correlation coefficient of R? = 0.76)
and the lin-log model for 2021 (with a correlation coefficient of R? = 0.765). Based on the analytical
results and the selection of biomass estimation models, biomass maps were developed for the Kon Ha
Nung Plateau area, Vietnam, in 2016 and 2021, with a predominant biomass value of 80-180 tons/ha
(Mg/ha); furthermore, biomass fluctuations were analyzed for the period 2016-2021. Accordingly, the
ability to absorb carbon and CO, equivalents in this research area for 2016 and 2021 was calculated
based on the estimated biomass values. In summary, we present a method for estimating biomass
via four basic linear regression models for tropical rainforest areas based on satellite image data.
This method can serve as a basis for managers to calculate and synchronize the payment of carbon
services, which contributes to promoting the livelihoods of local people.

Keywords: biomass; tropical rainforest; carbon; Sentinel-2; regression models

1. Introduction

Although tropical forests cover only approximately 10% of the world’s total land area,
they play a very important role in the global carbon and water cycle and are thought to be
home to more than half of the world’s species [1-3]. Evaluating and estimating the biomass
and carbon absorption capacity of forest ecosystems is one of the basic research directions
of forest scientists. Biomass generally consists of above and belowground organisms,
such as the stems, branches, and leaves of trees, in addition to shrubs, vines, roots, fallen
objects, and dead organic matters [4]. One method for biomass identification involves
directly measuring predetermined standard cells in the field [5-12]. Due to the difficulties
in collecting subterranean biomass data, relevant studies have mainly focused on terrestrial
biomass estimates (AGB). In addition, many studies have shown that, with nests eventually
comprising highly similar plants, biomass patterns may be established for most plant
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species in some parts of the world; however, given the diversity of tropical forests, it is
difficult to build and develop models for each specific species. In such cases, researchers
often apply multispecies models with larger sample sizes, cutting down sample plants for
measurement [5]. Chave et al. used 2410 sample trees to create common biomass models
for tropical forests [13]. Later studies showed that the application of such a general biomass
equation in the tropics can lead to systematic estimation errors of up to 400%; therefore,
individual localized models may be a more suitable alternative, providing greater reliability
than the general equation [14]. To improve the reliability of biomass models, Temesgen et al.
proposed the development of a comprehensive biomass model including more relevant
variables, such as density, height, and coverage, and following different spatial scales [15,16].
In addition, to improve model quality, studies have aimed at optimizing and reducing
model errors or eliminating models with large deviations from reality (overfitting). In this
line, the cross-validation method for biomass models has also been implemented by many
authors around the world, including Zhang et al. (1997) [17]. In addition, cross-evaluation
is also the basis for selecting appropriate variables for such a model [18].

To solve the problem that exists in the stated field investigation methods (i.e., standard
celling and live metering), remote sensing techniques have been commonly applied for AGB
estimation over the past two decades [19-22]. The ability to repeatedly photograph clear
spaces, collect information, and monitor areas that have expanded has been demonstrated
to contribute to the effectiveness of this method, which is becoming increasingly used for
the estimation of cumulative growth and biomass yield across a range of forest areas [23].
In India, a method involving a high-precision land-use overlay map combined with remote
sensing materials and GIS has been established and applied to identify excess biomass in
wastelands in three states: Madhya Pradesh, Maharashtra, and Tamil Nadu [24]. In Poland’s
Upper Silesia and Kujawsko-Pomorskie provinces, remote sensing and GIS applications
and secondary data sources were used to determine that the biomass of agricultural crops
reached 0.60 tons/hectare (Mg/ha) over a 12-month period. These figures correspond
to approximately 57,000 and 178,000 tons per year in these provinces [25]. In Vietnam,
Landsat and Sentinel-2 images have also been used to calculate the biomass of mangroves
in Quang Ninh Province and Thai Binh Province [26].

In the study of biomass and forest carbon, the use of appropriate algorithms for
establishing biomass estimation models that combine information from remote sensing
data is crucial. Regression analysis is the approach most frequently used for developing
biomass estimation models. This approach often uses the results of biomass calculations in
the sample cells as dependent variables, while the independent variables include spectral
characteristics and plant indicators. These models assume that biomass variables are
linearly correlated with spectral reactions [27]. Many regression correlation analyses have
been used to predict forest biomass and have indicated that visual texture is an important
variable for estimating biomass in adult forests [19,28,29]. Regression models can also be
applied to enable AGB calculations in tropical rainforest areas. In Kalimantan, using an
AGB-defined regression model for two hoard forests and peat bogs resulted in an accuracy
rate of 71% with RMSE = 33.85% [30]; this model has also been applied in Norway [31]
and Ontario [32]. The use of plant indices to determine forest biomass has also been
extensively reported in previous studies. At the National Nature Reserve of Yaoluoping
in Anhui Province, China, the NDVI_DR index was applied to estimate biomass with
results of R? = 0.63 and RMSE = 11.18 Mg/ha for broadleaf forests and R? = 0.61 and
RMSE = 14.26 Mg/ha for coniferous forests [33].

For tropical rainforests, the identification of AGB based on remote sensing imagery still
has many limitations and faces certain difficulties. Using optical remote sensing imaging
to calculate AGB can be affected by various factors, such as the complexity of the forest
structure or environment, in addition to canopy and topographic shadow that adversely
impact the calculation results for biomass on the forest ground [7,34]. In wet tropical forests,
studies have estimated that AGB is constrained by complex stand structures, high species
composition diversity, and divergences between different periods of forest ecosystem
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development [22,35]. AGB is determined by the distribution of species, tree size and height,
and the structure of each type of forest [36]. In addition, the tropical rainforest structure is
also quite complex and heterogeneous, with dense canopies [37]. The structure and AGB
of tropical rainforests can be influenced by a variety of factors, such as climate [38] and
human activities [39,40]. Remote sensing imagery is also affected by cloud cover in tropical
areas, leading to difficulties in analyzing and processing data [41].

The application of remote sensing technology combined with survey data, field sur-
veys, and actual biomass calculations based on the establishment of standard cells allows
for the determination of AGB with high accuracy while saving time and cost, compared to
conventional field survey methods. Vietnam is a country in the tropical monsoon region,
with a diverse and rich tropical rainforest ecosystem including many different types of
forests. However, with three-quarters of the natural area being hilly, including many hard-
to-reach areas, the application of remote sensing and GIS technology combined with survey
data, field surveys, and biomass estimates allows for the determination of forest ecosystem
biomass on a large and synchronous scale. The area of the Kon Ha Nung Plateau in Gia
Lai Province, Vietnam, includes Kon Ka Kinh National Park and Kon Chu Rang Nature
Reserve, which feature high biodiversity and a forest ecosystem characteristic of the Central
Highlands provinces, with many unique and outstanding features and characteristics [42].
Currently, the policies of the Kon Ha Nung Plateau region, as well as those in Vietnam
in relation to forest environmental service payment, especially policies related to carbon
services, have not been implemented. The method of estimating biomass and calculating
the carbon coefficient still has many shortcomings and is not synchronous. This causes
many difficulties with regard to paying for forest environmental services, affecting the
rights of local people. Therefore, it is necessary for managers to build a model that estimates
biomass, as well as carbon sequestration capacity, to develop relevant policies.

In this study, we used Sentinel-2 satellite imagery from 2016 and 2021 combined with
standard forest survey cell measurement data to estimate the biomass of tropical rainforest
vegetation in the Kon Ha Nung Plateau area, Vietham. Four basic regression models were
applied to forest vegetation biomass estimates based on NDVI values for satellite imagery, forest
reserve data, and forest survey standard cell data. From there, we compared the accuracy of the
model through the R? coefficient and selected the most accurate model for the study area. The
main objectives of this study include (1) selecting an appropriate biomass estimation model for
the rainforest ecosystem in the Kon Ha Nung Plateau area and (2) developing biomass, carbon
stock, and CO; equivalent values for the period 20162021 for forest vegetation in the Kon Ha
Nung Plateau area, Vietnam. The obtained results may serve as a basis for planning policies to
protect and develop forest ecosystems through biodiversity conservation and reasonable use of
the territory.

2. Materials and Methods
2.1. Study Area

The Kon Ha Nung Plateau area is a mountainous area east of the Truong Son Range,
located in northeastern Gia Lai Province, approximately 100 km from Pleiku City along
National Highway 19 and Truong Son Dong National Highway, with a total natural area of
2429.33 km? (Figure 1). The region is bordered as follows:

+  To the north by Kon Plong district (Kon Tum province);

+  To the east by Quang Ngai and Binh Dinh provinces;

+ To the south by An Khe town and Dak Po district, Gia Lai province;
+  To the west by Chu Pah district, Gia Lai province.
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Figure 1. Location of the Kon Ha Nung Plateau area.

The Kon Ha Nung Plateau has a fairly diverse geological composition, in which basalt
typically forms the ancient plateau of Kon Ha Nung, stretching from the southeast of Kon
Plong district (Kon Tum) to the south of K’'Bang district and bordering the An Khe lowland,
along with a medium and a low mountain system on granite. The terrain of the divided
area is quite complex, including mountainous terrains, hills, valleys, and plateaus. In
particular, the average mountainous terrain is mainly distributed in the western area of Kon
Ka Kinh National Park. The level of separation is strong, the slope is typically high, and the
elevation ranges up to 1748 m above sea level [43]. To the east of the study area are mainly
vast basalt plateaus, the terrain of which is relatively flat. Climatically, the study area
belongs to the tropical monsoon highland climate zone. The average temperature is 23.5 °C,
the dry season lasts from January to April, the rainy season lasts from May to December
every year, and there is a high average annual rainfall ranging from 1500-2800 mm [44].
Forests and forest resources are the richest land type in the Central Highlands and the
whole country, with the area of primeval forests concentrated in two special-use forests:
Kon Ka Kinh National Park and Kon Chu Rang National Park. In addition to the oily
plants forming low-lying ecosystems at <1000 m elevation, coniferous species, such as Pinus
dalatensis and Dacrydium elatum, have been recorded in the area, along with many trees
of high economic value, such as Pterocarpus macrocarpus, Citrus sinensis, and Dysoxylum
loureirii. The fauna is also rich and diverse, with 49 animal, 221 bird, 50 reptile, and 25 frog
species, many of which are of conservation value and can be found on the IUCN Red
List [45].

2.2. Materials
2.2.1. Satellite Image Data

In the Kon Ha Nung Plateau area, January—March is the end of the dry season, with
very little rain. As such, satellite imagery of the study site during this period is virtually
unaffected by cloud factors as well as other atmospheric factors, consistent with the quality
and timing of image acquisition. Based on the temporal selection corresponding to when
satellite imagery had the lowest cloud cover during this period, we used Sentinel-2 satellite
imagery data from 2016 and 2021 to map land-use coverage in the Kon Ha Nung Plateau,
Gia Lai Province, Vietnam (Table 1). Sentinel-2 satellite imagery in the selected periods was
not affected by clouds, ensuring accuracy during image processing.
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Table 1. Technical parameters and acquisition time of Sentinel-2 remote sensing images.

Date Sensor Image Bands Resolution

Blue (0.455-0.525 um),
Green (0.530-0.590 Panchromatic: 10 m

1 pum), X 10 m
13/02/2016 Sentinel-2 Red (0.625-0.695 um), Multispectral: 20 m x
Near-Infrared 20m
(0.760-0.890 um)
Blue (0.455-0.525 um),
Green (0.530-0.590 Panchromatic: 10 m
1 pum), X 10 m
16/02/2021 Sentinel-2 Red (0.625-0.695 um), Multispectral: 20 m x
Near-Infrared 20m

(0.760—0.890 pm)

2.2.2. Standard Cells for Forest Investigation

For data of standard cells for forest investigation, the standard cell ground investi-
gation results were used, according to the design of the standard cluster of forest survey
standards of the project of surveying, evaluating, and monitoring national forest resources
in the period 2016-2020 presided over by the Ministry of Agriculture and Rural Develop-
ment of Vietnam (including 19 cells of natural forest investigation standards in the research
area). In 2021, standard forest investigation cells were investigated in Gia Lai Province (a
total of 44 boxes of forest investigation standards). All field surveys and data collection for
forest standard plots were conducted at the end of the dry season (February and March)
in 2016 and 2021, consistent with the Sentinel-2 image selection timeline. Forest standard
cell measurement techniques were implemented based on the circulars and guidelines of
the Ministry of Agriculture and Rural Development of Vietnam (Circular No. 25/2009/TT-
BNN and Decision No. 689/QD-TCLN-KL for 2016; Circular No. 33/2018/TT-BNNPTNT
for 2021). This served as the basis for calculating, identifying real biomass, and comparing
and evaluating the accuracy with biomass calculation models based on remote sensing
imagery through the various stages.

Standard groups of cells were based on grid cells with a distance of 8 km x 8 km.
In each group of cells, 5 circle-shaped cells were set up in the form of an L-shape, and
the sample cell area was 400 m?/cell 20 m x 20 m). The distance between the center of
2 adjacent sample cells was 150 m. The center of denominator cell No. 3 coincided with
the center of the cell group. The standard cell had the form of a square, and the length
of the cell side was 20 m (Figure 2). The trees in the standard cell were defined species
names, which were used for measuring the diameter and height of the trees to determine
the biomass of the standard cell.

a 1 b
150 m
2
20m
3 4 5
«—>
150 m

20m

Figure 2. Standard cell group shape of 5 cells (a) and size per standard cell (b).
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The formula for calculating biomass based on standard cell data was proposed by
Chave (2014) [14] as follows:

0.976
AGBgt = 0.0673 x (pDZH)

1)
2.3. Methods
2.3.1. Research Process

The framework for processing remote sensing imagery combined with field survey
data from the forest investigation standard cells is presented in Figure 3. In particular, for
Sentinel-2 data in 2016 and 2021, the spectral radiation correction was performed according

to the formula:
7T X Ly

PBOA, A = A NTDr % Es x d(t) x cos(0s(i, ]))

2

where
Raw satellite
imagery
Image control point, Forest survey standard
‘L map documents cell biomass value
Orthorectification

*

Spectroscopicradiation

correction

v

Create an EVI

value image

F N

. Unsuitable
Building 4
model —
biomass model
Remove
Carbon stock and CO2
Biomass estimation map > equivalents maps

Figure 3. The process of creating biomass value maps from remote sensing imagery.

Ay NTD1 is the absolute calibration value of the device (provided by GIPP and taken in
the metadata file of the image);

E; is the average solar spectral radiation value (provided by GIPP and taken in the
metadata file of the image);

85 is the peak angle (included in the Sentinel image metadata file);

d(t) is the astronomical distance between the Earth and the Sun, determined according

to the formula: 1

(1—0.01673 x cos(0.0172 x (t —2)))?

d(t) = ®)
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2.3.2. Selecting the Formula and Specifying Parameters for the Model
Weighting for Forest Types

The map of forest reserves was based on the results of Sentinel-2 image analysis in
2016 and 2021 from our project, which is chaired by the Joint Vietham-Russia Tropical
Science and Technology Research Center from 2022 to 2023. Accordingly, forest types and
forest reserves were identified based on circular 34/2009/TT-BNNPTNT on forest criteria
and classification regulations of the Government of Vietnam to determine the weight for
each forest type, according to Table 2:

Table 2. Forest encoding types in the study area.

Ne 1dIr Forest Type Reserves Weighting

1 RLP Natural wood forests of mountainous land with Forest restoration 1
evergreen broadleaf forest restored

2 TXP Evergreen broadleaf forest restored Forest restoration 1

3 TNK Natural bamboo forests of soil mountains Very poor forests 2

4 TXK Poor evergreen broadleaf natural timber forests Very poor forests 2

5 TXN Natural timber forests of mountainous land with Poor forests 3
poor evergreen broadleaf lands

6 RKB Mountain coniferous forest with medium reserves Medium forest 4

7 TXB Natural timber forests on mountainous land with Medium forest 4

medium evergreen broadleaves

3 TXG Natural timber forest in mountains with rich Rich forest 5
evergreen broadleaf land

Agricultural soils, plantations, and other land types (e.g., rural land, water surfaces)
are not natural forest ecosystems and, thus, were not evaluated for biomass in this study.

Determination of the EVI Based on Remote Sensing Data

Enhanced vegetation index (EVI) was invented by Liu and Huete to simultaneously
calibrate the value of NDVI against atmospheric influence and ground reflections, espe-
cially in areas with dense canopies. The value range of EVI is —1 to 1, and for healthy
vegetation, the value ranges between 0.2 and 0.8. According to Xue et al., EVI can improve
the vegetation signal by decoupling the canopy background signal and reducing the at-
mospheric signal in high biomass regions, as well as improving vegetation monitoring.
Besides, EVI is more responsive to type, canopy variations, and architecture and can be
responsive to vegetation stress [46]. The formula for calculating the EVI is as follows [47]:

Rnir — Ry

EVI=25
Rnir + 6R, — 75Rb +1

(4)

where the spectral values of the wave channels are as follows: blue (R;) 450 nm + 16 nm;
red (R;) 650 nm + 16 nm; and near-infrared (R,;;;) 840 nm =+ 26 nm.

Defining the Biomass Regression Models

To compare the accuracy of regression models for estimating forest biomass values,
four common formulas were considered [48]:
1. Log-Log Paradigm:

log10(AGB) = a x logjg(EVIvalue) + b x IdIr + ¢ (5)
2. Log-Lin Paradigm:

log10(AGB) = a x (EVIvalue) + b x Idlr + ¢ (6)
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3. Lin-Log Paradigm:
AGB = a x logjg(EVIvalue) +b x 1dIr — ¢ 7)

4. Lin-Lin Paradigm:
AGB=a x (EVIvalue) +b x Idlr — ¢ (8)

Selection of the appropriate model involved the selection of a function with weights
that reflect the strong, objective interaction between the biomass value variable and the
remote sensing spectroscopic reflection. An effective tool for tackling the abovementioned
technology is based on regression function theory with high-level processing and image
combinations. This step involved examining and evaluating measurements estimated
with respect to the biomass value image and then verifying the result using the standard
monitoring data from the forest investigation conducted at the same time that the data
were collected.

The 4 selection models represent 4 common forms of linear regression models. Some-
times, experimentally, if we take the original value, the difference between the largest
value and the smallest value is extremely large. When the log is removed, the deviation in
the data decreases, which is more in line with the model assumption (the model usually
assumes the data have a standard distribution, and the deviation must also be within a
certain limit from the mean). Through the experimental process, depending on the time of
image acquisition and the characteristics of the study area, the best model is selected. In
this study, the right model was selected by comparing the Pearson correlation coefficients
of the models with one another and taking the model with the highest value.

Verification of the Model Accuracy

Based on a map of the current state of vegetation established from remote sensing
imagery, along with the biomass data of 19 standard cells for forest investigation in 2016
and 44 cells of forest investigation standards in 2021, we examined the accuracy of the
model (Figure 4).

Figure 4. Pseudo-colored (Nir-Red-Green) composite photos of Sentinel-2 photos in 2016 and 2021,
with standard forest investigation cells labeled in yellow.
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The mapping of biomass reserves begins by establishing the correlation between
variables, including vegetation status maps, forest reserve classification maps, remote
sensing EVI values, and biomass data calculated based on the standard forest survey of 19
cells in 2016 and 44 cells in 2021, through correlation analysis and linear regression. Before
conducting these analyses, the standard Kolmogorov-Smirnov test was applied to both
sources of data to assess whether they met the standardization requirements for the data in
the statistical model. Excel was used to analyze the relationship between the EVI values in
the images. The status quo categorized the classified forest reserves and the actual AGB
values according to the forest investigation standard cell, and we calculated a coefficient (r)
to indicate their correlation level. In particular, the EVI and the status quo that classified
forest reserves were taken as the independent variables, and the AGB was the dependent
variable. With these, the following initial linear equation was identified: y = a-x + b.

The Pearson correlation coefficient for two variables x and y from n samples was
calculated according to the formula:

©)

where Y; and Y; are the estimated variables and their averages, respectively;

X; and X; are the measurement variables and their average values, respectively;

n is the number of samples in the data set.

IfR2 =1, the relationship between x and y can be determined; that is, for any value
of x, we can determine the value of y. If R? = 0, the two variables x and y are completely
independent, and they have no relation to each other. The R value is classified as follows:
0.3 < R? < 0.5 indicates low correlation, 0.5 < R? < 0.7 indicates moderate correlation, and
0.7 < R? indicates high correlation [49].

We used standard errors (SEs) to assess the quality and quantity of biomass reserves
(i.e., the AGB obtained from the linear regression analysis) in comparison to the biomass
reserves measured in the field. The lower the SE value is, the higher the accuracy.

2.3.3. Method of Determining Carbon Reserves

From the survey data in the standard cell system, biomass models were used to
estimate biomass, thereby calculating the equivalent carbon and CO, for each sample cell
and, then, for the overall forest. In this study, carbon and CO; reserves equivalent to forest
trees were calculated using the following conversion formulas:

Carbon stock = 0.47 x Biomass (10)
CO; equivalents = 3.67 x Carbon stock (11)

3. Results
3.1. Determination of the EVI Based on Sentinel-2 Satellite Images

Based on Formula 3, EVI maps were built based on the Sentinel-2 satellite imagery
from 2016 and 2021 (Figure 5).

Accordingly, the EVI value in the Kon Ha Nung Plateau area ranged from —0.24 to
0.98 in 2016 and from —0.29 to 0.96 in 2021. The areas with high EVI values (>0.4) were
concentrated in the north and northeast (Kon Chu Rang Nature Reserve area), east (Kon
Ha Nung Plateau watershed protection forest area), and west (Kon Ka Kinh National Park
area). These are areas with high natural forest coverage, which are strictly protected.
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Figure 5. EVI based on remote sensing data for the Kon Ha Nung Plateau area in 2016 and 2021.
3.2. Defining the Biomass Estimation Model
3.2.1. Biomass Estimation Model for 2016

Based on Formula (4), regression models for the estimation of forest biomass values
and correlation assessments were developed for the 2016 data, as detailed in Table 3 and
Figure 6.
Table 3. Results of the regression models for 2016.

Name Paradigm R? RMSE
Log-Log Paradigm log10(AGB) = —1.5 x logjo(EVI 2016) + 0.12 x 1dlr + 2.00 0.62 0.021
Log-Lin Paradigm log10(AGB) = —1.19 x EVI2016 + 0.12 x 1dIr — 3.08 0.60 0.020
Lin-Log Paradigm AGB = —1370.8 x logo(EVI2016) +217.11 x 1dIr — 223.22 0.76 21.24
Lin-Lin Paradigm AGB = —1028.7 x EVI 2016 + 218.57 x 1dIr — 706.03 0.74 20.89

As such, for 2016, the lin-log model was chosen as the best-performing regression
model. To evaluate the abovementioned construction model, we determined the root
mean square error (RMSE) and the mean absolute error (MAE), as well as the correlation
coefficient between the field data and the extracted data from the model and the modeling
efficiency (ME) index. The results of the evaluation are shown in Table 4.

3.2.2. Biomass Estimation Model for 2021

Based on Formula (4), regression models for the estimation of forest biomass values
and correlation assessments were also developed for the 2021 data, as detailed in Table 5

and Figure 7.
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Figure 6. Assessment of four models for estimating the biomass of forest ecosystems in the Kon Ha

Nung Plateau area in 2016.

Table 4. Biomass regression model construction accuracy for 2016 (unit: Mg/ha).

Forest Survey Field Data Component dM =Mtp — Forest Survey Field Data Component dM =Mrtp —

Cell Number (Mtp) Model (Mpy) Mau Cell Number (Mtp) Model (Mpg) Mau
1 99.242 103.742 —4.500 11 118.252 111.099 7.153
2 106.111 112.233 —6.122 12 144.594 126.758 17.837
3 22.869 29.946 —7.077 13 155.022 132.560 22.462
4 12.916 34.313 —21.397 14 26.351 69.342 —42.991
5 55.255 80.952 —25.698 15 56.592 86.118 —29.526
6 61.296 35.082 26.214 16 64.668 76.934 —12.266
7 28.668 28.170 0.498 17 58.067 33.822 24.245
8 10.128 27.996 —17.867 18 60.495 41.161 19.334
9 119.860 108.558 11.302 19 61.378 26.528 34.850
10 120.180 116.632 3.547

Total 72.734 72.734

RMSE 20.892

MAE 17.625

R? 0.76

Table 5. Results of the construction of regression models for 2021.

Name Paradigm R2 RMSE
Log-Log Paradigm log10(AGB) = 0.29 x log19(EVI 2021) + 0.23 x 1dlr + 2.16 0.758 0.08
Log-Lin Paradigm log10(AGB) = 0.28 x EVI 2021 + 0.23 x Idlr + 1.93 0.761 0.07
Lin-Log Paradigm AGB =701.8 x logyo(EVI 2021) + 508.9 x 1dlr — 807.2 0.765 16.12
Lin-Lin Paradigm AGB =646.0 x EVI 2021 + 508.2 x 1dlr — 1342.01 0.762 16.10

Thus, the best-performing regression model was the lin-lin model. The corresponding
RMSE and MAE values are provided in Table 6.
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Figure 7. Evaluation of four models for estimating the biomass of forest ecosystems in the Kon Ha
Nung Plateau area in 2021.
Table 6. Biomass regression model construction accuracy for 2021 (unit: Mg/ha).

Forest . Component _ Forest . Component _
Survey Cell Flzlv‘: D?ta Model dl\i[ R/IMTD Survey Cell Flfll\i De)ata Model dl\i[ RIIMTD
Number ™ Man) AH Number ™ Man) AH

1 151.666 147.584 4.082 23 62.379 52.927 9.452
2 179.189 144.597 34.592 24 93.431 89.943 3.488
3 82.716 95.643 —12.928 25 95.811 96.944 —-1.132
4 93.431 95.241 —1.810 26 118.235 99.142 19.093
5 115.634 92.497 23.136 27 118.548 107.476 11.073
6 84.423 97.163 —12.740 28 125.530 106.208 19.322
7 65.031 94.883 —29.851 29 89.629 88.954 0.675
8 104.404 97.402 7.002 30 75.692 99.039 —23.347
9 80.023 102.603 —22.580 31 65.531 99.093 —33.562
10 66.722 100.859 —34.137 32 108.740 103.170 5.570
11 83.449 93.452 —10.003 33 132.236 103.040 29.196
12 132.919 148.186 —15.267 34 111.167 102.523 8.645
13 134.061 145.508 —11.447 35 72.245 49.341 22.904
14 163.309 153.968 9.341 36 96.484 102.033 —5.549
15 94.475 99.950 —5.475 37 99.385 104.256 —4.871
16 47.608 48.492 —0.884 38 99.862 112.605 —12.742
17 51.052 49.289 1.762 39 156.238 153.256 2.983
18 90.370 95.047 —4.676 40 62.379 52.927 9.452
19 111.737 93.294 18.443 41 93.431 89.943 3.488
20 159.021 148.423 10.597 42 95.811 96.944 —-1.132
21 55.366 50.644 4721 43 118.235 99.142 19.093
22 47.919 50.994 —3.075 44 118.548 107.476 11.073
Total 100.402 100.402

RMSE 16.118

MAE 12.612

R2 0.765
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According to the data from Table 6, the following can be noted:

The correlation coefficient between the construction model and the field sample com-
ponent data was 0.873.

According to the field data from the sample analysis, the biomass ranged from 47.608
to 179.189 Mg /ha.

In terms of real errors, the RMSE and MAE had values of £16.118 and 12.612, respectively.

3.3. Mapping the Estimated Biomass Value and Natural Forest Carbon Reserves in the Kon Ha
Nung Plateau Area

Based on the high-precision regression models (lin-log model for 2016 and log-lin
model for 2021), biomass estimates were established for the Kon Ha Nung Plateau area in
2016 and 2021 (Figure 8).
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Figure 8. Biomass values in the Kon Ha Nung Plateau area in 2016 and 2021.

Accordingly, in 2016, the areas with biomass values in the range of 800-110 Mg /ha had
an area of over 86,000 ha, accounting for 58% of the total area of natural forests. Meanwhile,
the areas with biomass values in the range of 0-20 Mg/ha had the smallest total area, with
slightly more than 1000 hectares (accounting for 0.69% of the total natural forest area).
For the biomass value range of 130-180 tons per hectare, the area ratios in 2016 and 2021
were 20.09% and 22.45%, respectively. The biomass value range of 110-130 Mg/ha showed
marked fluctuations in 2016 and 2021, decreasing from nearly 14,000 hectares in 2016 to
approximately 80 hectares in 2021 (Table 7).

Table 7. Natural forest biomass results for the Kon Ha Nung Plateau area in 2016 and 2021 (biomass
units: Mg/ha).

Biomass Value (Mg/ha) 0-20 20-50 50-80 80-110 110-130 130-180

2016 area (ha) 1030.28 14,768.66 3038.61 86,377.44 13,941.46 30,126.35
Y% 0.69 9.85 2.03 58.05 9.30 20.09

2021 area (ha) 2375.05 13,732.54 10,190.75 89,242.08 78.85 33,663.53
Y% 1.58 9.16 6.80 59.51 0.51 22.45

The areas with high biomass values were concentrated in the core area of Kon Chu
Rang Nature Reserve, Kon Ka Kinh National Park, and the watershed protected forest
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area southeast of Kon Ha Nung Plateau. These are areas with dominant evergreen forest
ecosystems, with structures that are stable and strictly protected. Meanwhile, the areas
with low biomass values were concentrated in the southern Kon Ha Nung Plateau and the
western area of Kon Ka Kinh National Park (Figure 8).

Based on the results of biomass estimates for 2016 and 2021 and Formulas (10) and
(11), carbon stocks and CO, equivalents in the Kon Ha Nung Plateau region were mapped
for 2016 and 2021 (Figure 9 and Table 8)
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Figure 9. Carbon stocks in the Kon Ha Nung Plateau area in 2016 and 2021.

Table 8. Carbon stock value and CO; equivalents in the natural forests on the Kon Ha Nung Plateau
in 2016 and 2021.

Carbon Stock Value (Mg/ha) 0-15 15-30 30-45 45-60 60-75 75-90
2016 area (ha) 12,3335 3939.65 9737.48 90,082.55 33,189.62 0
% 8.22 2.63 6.49 60.52 22.13 0.00
2021 area (ha) 15,002.6 10,324.22 20,991.8 69,288.01 994358 23,732.57
% 10.00 6.88 14.00 46.20 7.09 15.83
CO; equivalents value 0-60 60-120 120-180 180-240 240-300 300-320
(Mg/ha)
2016 area (ha) 15,729.6 593.73 16,277.84 116,681.66 0 0
% 10.49 0.40 10.85 78.26 0.00 0.00
2021 area (ha) 15,099.1 10,492.11 89,589.17 510.25 33,574.43 17.77
% 10.07 7.00 59.74 0.34 22.84 0.01

According to the data in Table 8, the areas with carbon stock values between 45 and 60
tons per hectare had an area of over 90,000 hectares, accounting for over 60% in 2016 and
over 46% in 2021 (Table 8). Natural forest areas with carbon stock values in the range of
75-90 Mg /ha in 2021 increased sharply, from 0% to 15.83% of the total natural forest area
in the Kon Ha Nung Plateau area, and were distributed mainly in the core area of Kon Chu
Rang Nature Reserve (Figure 9). Meanwhile, the areas of natural forest with low carbon
stock values were concentrated mainly west of Kon Ka Kinh National Park and south of
Kon Ha Nung Plateau.
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In 2016, the areas with CO, equivalent values between 180 and 240 tons per hectare
had an area of 116,000 hectares, accounting for 78.26% of the total natural forest area, while
in 2021, the areas with CO; equivalent values between 120 and 180 Mg/ha accounted for
the largest area, accounting for nearly 60% of the total natural forest area. The areas with
CO; equivalents reaching a value of 240-320 Mg/ha presented a strong increase in area in
the period 2016-2021, with a total area of over 33,500 hectares, and were concentrated in
the core area of Kon Chu Rang Nature Reserve, southwest of Kon Ka Kinh National Park,
and the watershed protected forest area southeast of the Kon Ha Nung plateau (Figure 10).
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Figure 10. CO; equivalents in the Kon Ha Nung Plateau area in 2016 and 2021.

4. Discussion
4.1. Estimation of Tropical Rainforest Biomass Based on Remote Sensing Data

Quantitative research on forest biomass in large-scale areas plays an important role
in affirming the role of forest vegetation in the global carbon cycle and the role of forest
ecosystems in the context of climate change. Traditional approaches based on field measure-
ments are highly accurate but are only suitable for small research scopes and are difficult to
carry out over large areas. With groundbreaking progress in the quantitative collection of
forest parameters, such as forest height and canopy density, remote sensing has become the
main source of data for biomass estimation [50,51]. Combining active and passive remote
sensing in forest biomass estimates provides a useful solution for the estimation of carbon
reserves and evaluation of forest ecosystems [52].

In this study, we compared methods for estimating the biomass of forest ecosystems
in the Kon Ha Nung Plateau area based on four basic regression models. We identified the
optimal models for 2016 (lin-log model with R? =0.72) and 2021 (log-lin model, R?2 =0.73),
with results equivalent to those of a Landsat-8 image application in a Zagros oak forest
study (R? = 0.73) [53] or that in Fonseca’s study using Advanced Land-Observing Satellite
(ALOS; R? = 0.71) [54]. Using basic regression models allows us to determine the correlation
between remote sensing imagery and real biomass from forest investigation standard
cells, enhancing the accuracy of the biomass estimation results that many studies have
used [55,56]. In Norway, the abovementioned authors have also used a log model to
estimate forest reserves, with an R? factor ranging between 0.83 and 0.97 [31], much higher
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than our study. Similarly, the logarithmic model has also been applied in Ontario, with an
R? factor of 0.82 to 0.90 (RMSE: 48.07-66.65) [32].

Sentinel-2 remote sensing imagery (10 m x 10 m) is a suitable tool for biomass research
over large-scale areas, providing high accuracy [57]. In this study, Sentinel-2 imagery
provided correlation coefficients for 2016 and 2021 of 0.72 and 0.73, respectively. These
values were higher than those for the Landsat-8 satellite image data (30 m x 30 m), which
only reached 0.5910 before correction and 0.6704 after correction [58]; the 2011 Landsat data
applied to the National Nature Reserve of Yaoluoping in Anhui Province, where the R?
was only 0.61 for coniferous forests and 0.63 for broadleaf forests [33]; or the use of Landsat
photos for multitemporal evaluation from 1984 to 2016 in Canada, with R? reaching 0.70 [59].
In addition, to enhance the R? correlation coefficient value, it is possible to combine satellite
imagery and SAR-based Advanced Land-Observing Satellite (ALOS) Phased Array type
L-band Synthetic Aperture Radar (PALSAR) in forest biomass research [60] or data captured
by UAVs [61].

In this study, the EVI for plants based on remote sensing imagery was applied to
estimate forest vegetation biomass, similar to the methods of Brazil [62]. The NDVIand EVI
are the most frequently used indicators for primary productivity and have been commonly
used in vegetation studies [46,63,64].

4.2. Status Quo and Fluctuations of Biomass in the Kon Ha Nung Plateau Area for the Period
20162021

The results of the biomass estimates in the Kon Ha Nung Plateau area indicated that
the biomass values of natural forest vegetation were quite high, reaching average values of
90 Mg/ha in 2016 and 105 Mg/ha in 2021. These are high values compared to the natural
forest biomass value in Australia as determined using Landsat images (averages of 72.9 and
85.7 Mg/ha); in Gabon, the forest biomass value was only 63.3 Mg/ha, or in Madagascar,
the average biomass value was 81 Mg/ha [65]. However, the biomass value in the Kon Ha
Nung Plateau area is still quite low compared to other tropical rainforest areas in the world,
such as in French Guiana which reached a value of 250-500 Mg /ha [66].

The results of our study demonstrated that, in the Kon Ha Nung Plateau area, biomass
values as well as the ability to store carbon and absorb CO; of tropical rainforest veg-
etation showed positive changes, with the results indicating increases over the period
2016-2021. Forestry policies for forest ecosystems have a positive impact on increasing
AGB, especially for nature reserves or national parks [56]. Forestry policies are paramount
in forest management, as they guide the actions of foresters or natural resource managers
at a given location [67]. In recent years, forestry policies on forest protection, protection of
natural forest ecosystems, and biodiversity conservation in the Kon Ha Nung Plateau area
have been significantly promoted, especially policies on forest protection and payment of
forest environmental services. In Vietnam, payments for forest environmental services are
gradually becoming popular with forest management communities; however, they have
not become a stable source of income for local people, limiting the effectiveness of forest
environmental services [68]. In the long run, the management and protection of forests
and biodiversity must still be associated with the lives of indigenous peoples in forested
areas. Appropriate policies of the state, the culture of indigenous peoples, an understand-
ing of the nature, and skills to adapt to the environment related to forests contribute to
socioeconomic development associated with the protection and development of forests,
as well as biodiversity conservation (for the Kon Ha Nung Plateau area in particular and
mountainous areas in general) [69].

Survey data and surveys of forest standard plots serve as the basis for estimating the
biomass, as well as carbon sequestration capacity, of tropical rainforests. As forest survey
standard cell data were inherited from the results of different projects, the locations of the
2016 and 2021 standard cells differed. In addition, the number of forest standard plots
underlying the 2016 biomass estimate was not large—with only 19 cells—while we used
44 cells in 2021. To determine biomass fluctuations and carbon sequestration capacity of
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tropical rainforests through several stages, there is a need for uniformity between surveys
and field surveys in each stage. In this study, we only applied Sentinel-2 images at a single
time of year as the best quality image acquisition time due to a lack of clouds. However,
for enhanced accuracy, remote sensing images can be used at different times of the year to
estimate the biomass of tropical rainforests. The drawback of optical remote sensing is that
only the terrestrial biomass of plants can be identified. To determine subterranean biomass,
separate measurements and calculation methods are needed.

5. Conclusions

Identifying the biomass of forest vegetation plays an important role in the global
carbon cycle, as biomass serves as a source of carbon storage, absorbs CO,, and contributes
to adaptation to climate change. Remote sensing has become a powerful supporting tool
for the estimation of forest ecosystem biomass at a large scale. Based on Sentinel-2 satellite
imagery from 2016 and 2021 combined with data from standard forest survey cells, a
model of natural forest vegetation biomass was established for the Kon Ha Nung Plateau
area, Vietnam.

In this study, we developed a process for estimating biomass and carbon sequestration
for tropical rainforest areas based on free medium-resolution satellite imagery. This can
serve as a basis for managers to apply carbon tax programs in tropical rainforest areas,
which are still lacking in developing countries, including Vietnam.

In the near future, with the development of satellite imagery, we may be able to
estimate the biomass and carbon sequestration capacity of tropical rainforest ecosystems
with greater accuracy. In addition, there is a need for field surveys that provide additional
data on real biomass measurements, according to forest standard plots, to enhance the
accuracy of biomass estimation models.
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