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Abstract: The majority of water inrush accidents in coal mines are caused by mining engineering
activities. To avoid water inrush accidents, the Time-lapse Electrical Resistivity Tomography (TLERT)
is applied to monitor water migration in fractured zone. A great challenge for the application of
TLERT monitoring is the huge and numerous time series data sets generated by monitoring systems,
which are difficult to process manually. This research proposed a distributed fuzzy clustering
algorithm based on kernel function estimation to analyze TLERT images automatically. The resistivity
date can be classified with different cluster centroids. The fuzzy c-means algorithm was chosen to
display resistivity change. The algorithm was validated using a floor water inrush model. The results
indicate that the water migration in the fractured zone can be monitored automatically and the edge
of the resistivity changing area can be shown clearly.

Keywords: Time-lapse Electrical Resistivity Tomography; water inrush monitoring; image analysis;
fuzzy clustering

1. Introduction

Among the major accidents in coal mines in China, the number of occurrences of mine
water inrush accidents and associated deaths is second only to that of gas accidents, and
the economic losses caused by it have always been the first in various coal mine disasters.
Most water inrush accidents are caused by mining engineering activities. The traditional
geophysical exploration in coal mines uses advance detection, but the results can only
reflect the distribution of primary water flowing structures such as hidden water sources
and faults in the roof, floor or side of the working face. During the mining process, because
of the damage to and movement of the mining strata [1–3], the water sources hidden in the
roof, floor and sidewall of the working face will migrate. The cracks and breaks in the roof,
floor and the coal seam will form real-time changing water flowing channels, which will
bring serious difficulties to the prediction and prevention of water hazards.

Time-lapse Electrical Resistivity Tomography (TLERT) is a geophysical dynamic mon-
itoring technology that performs 2D/3D data acquisition at a certain time interval with
the installation of several electrodes, which can be used to monitor the electrical changes
of the underground medium in real time. Authors such as Liu et al. (2009), Zhang et al.
(2009) and Gao and Meng (2011) have used Electrical Resistivity Tomography (ERT) to
dynamically detect the overburden deformation and fracture [4–6]. Liu et al. (2009) applied
ERT monitoring to the mine water inrush model test [7]. Nevertheless, the large amount of
monitoring data is difficult to process manually. Most of the existing inversion algorithms
are based on the idea of iterative fitting, which is time-consuming and easily influenced by
artificial factors, limiting the application of TLERT in mine water inrush monitoring.

Aiming at the inversion algorithm of Time-lapse Electrical Resistivity Tomography,
Daily and Ramirez (1992) proposed the ratio inversion, which uses the data ratio of adja-
cent times to highlight the abnormal part of the image [8]. However, time-lapse electrical
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resistivity images are likely to cause false anomalies due to inversion errors, and these false
anomalies stand a good chance of magnifying image differences. Loke (2001) proposed to
use the initial data inversion results as a prior model to invert the data of each monitoring
period, which improved the calculation speed [9]. Subsequently, Oldenborger et al. (2007)
and Miller et al. (2008) conducted an in-depth study of this method [10,11]. LaBrecque
and Yang (2001) used a difference algorithm to invert the difference of resistivity at dif-
ferent times in the same place [12]. The idea is to calculate the background model by the
conventional inversion method, and afterwards to invert multiple sets of monitoring data,
respectively, using the differential inversion method. The model is used as a prior model
for all monitoring data and is used to calculate differential images, and has achieved good
results. In recent years, new inversion methods such as joint delay inversion, synchronous
delay resistivity inversion, and 4D “active time” constrained resistivity inversion have
emerged [13–16]. In China, Liu et al. (2013) and Liu et al. (2012) have applied inversion
methods such as the smooth constraint, the inequality constraint and the space structure
constraint to the data processing of mine floor water inrush monitoring and grouting effect
monitoring, which have achieved good results [17,18].

Machine learning is such a powerful tool that we have seen tremendous success
in areas such as Computer Vision, Speech Recognition, and Natural Language Process-
ing [19–23]. The same is true in the field of anomaly detection. Wu et al. (2018) used
automatic identification and classification of Palomar Transient Factory astrophysical ob-
jects in GLADE [24]. Xiao et al. (2018) applied the SMK-means which is achieved by
Mini Batch K-means based on simulated annealing algorithm for anomalous detection of
massive household electricity data, which can give the number of clusters and reduce the
number of iterations and improve the accuracy of clustering [25]. Fuzzy clustering is an
un-supervised machine learning algorithm that can realize image analysis automatically
and its application effect in ERT as well. Ward et al. (2014) classified the resistivity data
of three-dimensional bedrock inter-face by using the fuzzy recognition algorithm [26].
Chambers et al. (2015) used the fuzzy clustering method to analyze images of dynamic
monitoring of groundwater level changes in quarries, and delineated the water level change
interface clearly [27]. In this research, a distributed fuzzy clustering algorithm based on
kernel function estimation is applied in TLERT image processing to monitor underground
water migration in coal mines.

2. Methodology
2.1. Time-Lapse Electrical Resistivity Tomography

Time-lapse Electrical Resistivity Tomography (TLERT) can continuously observe the
potential or apparent resistivity response caused by the change of electrical properties. The
electrical distribution of dielectrics can be continuously imaged by the inversion calculation.
As is shown in Figure 1, two electrodes (A, B) are used to supply power to the medium,
and another pair of electrodes (M, N) are used to measure the potential difference. The
high resistivity body has the ability to repel current. The higher the resistivity, the stronger
the repelling ability. In contrast, a low resistance body has the ability to attract current; the
lower the resistivity, the stronger the attraction. Each current line leads to the B electrode
according to the path with the least resistance encountered, that is, it obeys the so-called
minimum energy principle. Therefore, the distribution of an underground resistivity
anomaly can be calculated by measuring the potential difference.
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Figure 1. The time-lapse electrical method observation device. 

2.2. Fast Inversion Algorithm of Time-Lapse Electrical Resistivity Tomography 

Time-lapse resistivity inversion imaging aims to reconstruct the underground resis-

tivity distribution with inversion of the data at each monitoring time. The traditional re-

sistivity inversion method is time-consuming and cannot meet the needs of the real-time 

processing and interpretation of mine water inrush monitoring data. Based on forward 

modeling, we adopted the smooth-constrained least squares algorithm developed by 

Akca to inverse the TLERT monitoring data [28]. Using the inversion results of the previ-

ous time as a prior model for the inversion of monitoring data at the next time, the calcu-

lation speed has been significantly improved. 

The specific calculation steps can be shown as follows: 

(1) Establishing an initial model. If the time is 
0t , then the initial model is set as a uni-

form model, and the resistivity value is the arithmetic mean of the measured appar-

ent resistivity data; otherwise, the final inversion result of the apparent resistivity at 

the previous moment will be used as the initial model for inversion calculation. 

(2) Calculating the apparent resistivity theoretical value and the objective function value 

of a given model, and then calculating its Jacobian matrix. According to the inversion 

principle, the Jacobian matrix needs to be recalculated every time the model param-

eters are corrected, which is time consuming. Therefore, the Jacobian matrix is recal-

culated only when the model correction error is greater than 5%. 

(3) Singular decomposition. This method is used to solve the normal equations to obtain 

the correct value of model parameters, and then the modified model is calculated. 

(4) Performing a forward calculation on the corrected model, and comparing the appar-

ent resistivity value with the measured apparent resistivity value. When the follow-

ing two conditions are not met at the same time, step (2) is continued: (i) when the 

root mean square error is less than 3%; (ii) the maximum number of iterations reaches 

30 times. 

In the inverse calculation of the Time-lapse Electrical Resistivity Tomography, the 

matrix to be solved is often nonlinear and ill-conditioned, and the final solution is not 

unique. The program uses a smooth constrained least squares inversion algorithm, and 

the correct value of model parameters is [28,29]: 

1

1( ) ( )T T T T

i d d d d im W W L W W d Lm −

− = +  −J J J  (1) 

where im  is the correct value of model parameters, J  is the Jacobian matrix, also 

known as the sensitivity matrix; 
dW  is the weighting matrix of the original data;   is the 

regularization factor (the initial value of regularization in this program is the logarithmic 

standard deviation of the measured data, and the minimum value should not be less than 

1% of the initial value per iteration); L  is a five-point finite difference Laplace operator, 

which is calculated by the function “delsq” in MATLAB. d  has the following relation-

ship with 
dW : 

Figure 1. The time-lapse electrical method observation device.

2.2. Fast Inversion Algorithm of Time-Lapse Electrical Resistivity Tomography

Time-lapse resistivity inversion imaging aims to reconstruct the underground resis-
tivity distribution with inversion of the data at each monitoring time. The traditional
resistivity inversion method is time-consuming and cannot meet the needs of the real-time
processing and interpretation of mine water inrush monitoring data. Based on forward
modeling, we adopted the smooth-constrained least squares algorithm developed by Akca
to inverse the TLERT monitoring data [28]. Using the inversion results of the previous time
as a prior model for the inversion of monitoring data at the next time, the calculation speed
has been significantly improved.

The specific calculation steps can be shown as follows:

(1) Establishing an initial model. If the time is t0, then the initial model is set as a uniform
model, and the resistivity value is the arithmetic mean of the measured apparent
resistivity data; otherwise, the final inversion result of the apparent resistivity at the
previous moment will be used as the initial model for inversion calculation.

(2) Calculating the apparent resistivity theoretical value and the objective function value
of a given model, and then calculating its Jacobian matrix. According to the inver-
sion principle, the Jacobian matrix needs to be recalculated every time the model
parameters are corrected, which is time consuming. Therefore, the Jacobian matrix is
recalculated only when the model correction error is greater than 5%.

(3) Singular decomposition. This method is used to solve the normal equations to obtain
the correct value of model parameters, and then the modified model is calculated.

(4) Performing a forward calculation on the corrected model, and comparing the apparent
resistivity value with the measured apparent resistivity value. When the following
two conditions are not met at the same time, step (2) is continued: (i) when the root
mean square error is less than 3%; (ii) the maximum number of iterations reaches
30 times.

In the inverse calculation of the Time-lapse Electrical Resistivity Tomography, the
matrix to be solved is often nonlinear and ill-conditioned, and the final solution is not
unique. The program uses a smooth constrained least squares inversion algorithm, and the
correct value of model parameters is [28,29]:

∆mi = (JTWT
d WdJ + λL)

−1
(JTWT

d Wd∆d− λLmi−1) (1)

where ∆mi is the correct value of model parameters, J is the Jacobian matrix, also known as
the sensitivity matrix; Wd is the weighting matrix of the original data; λ is the regulariza-
tion factor (the initial value of regularization in this program is the logarithmic standard
deviation of the measured data, and the minimum value should not be less than 1% of
the initial value per iteration); L is a five-point finite difference Laplace operator, which is
calculated by the function “delsq” in MATLAB. ∆d has the following relationship with Wd:

∆d = ln ρtrue
s − ln ρ

f
s (2)
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Wd = diag(
1

4
√

ρtrue
s

) (3)

where ρtrue
s is the measured apparent resistivity value and ρ

f
s is the apparent resistivity

value of the forward calculation.
According to the correct values of the model parameters, the updating formula can

be obtained.

mi+1 = mi + ∆mi = mi + (JTWT
d Wd J + λL)

−1
(JTWT

d Wd∆d− λLmi−1) (4)

The data fit is measured by:

RMS =

√
(Wd∆d)T(Wd∆d)/N (5)

2.3. Automated Image Analysis

The fast inversion of monitoring data can be realized with the smooth-constrained
least squares algorithm, whereas the abnormal boundary cannot be recognized explicitly
and automatically as before. As an unsupervised classification method, distributed fuzzy
clustering has been applied to resistivity image analysis successfully. In this paper, the
distributed fuzzy clustering algorithm is applied to analyze the inversion results and
resistivity difference data. The position and number of centroids are determined according
to the peak value of the probability density curve. The anomaly and the positive and
negative change areas of resistivity difference are delineated automatically with the fuzzy
clustering C-means.

2.3.1. Fuzzy C-Means Clustering

Fuzzy clustering analysis is a clustering method based on the similarity between data
objects. According to the characteristics of resistivity, this paper uses the fuzzy C-means
clustering algorithm for monitoring data analysis. The core idea of the algorithm is to
divide the data into several clusters. The data differs greatly between clusters, and the
data similarity between the same clusters is higher. Finally, the classification correlation is
represented by the fuzzy membership value, the non-similarity measure is defined by the
Euclidean distance, and the objective function is constructed to iteratively relocate the data.
The data is moved repeatedly from one cluster to another for classification and partition to
search for optimal membership matrix and clustering center. When the objective function
reaches the minimum, the iteration terminates.

The set ρ of N resistivity data is: ρ = {ρ1, ρ2, · · · , ρN} and ρj represents the number j
data in the data set. The matrix U = [uij] is obtained by solving the membership matrix of
sample data set ρ. U is a matrix of C×U. C denotes that the sample data set ρ is classified
into c categories. Uij denotes the degree of the membership of the data ρj in the data set ρ
under the i-th classification. The degree of the membership uij should satisfy the following
conditions:

(1) The sum of all membership degrees of the given arbitrary data ρj is 1, as follows.

c

∑
i=1

uij = 1, ∀j = 1, 2, · · · , N (6)

(2) Each cluster c contains at least one point with a non-zero membership, but cannot
include all points with membership degree 1.

0 < uij < 1, 1 ≤ i ≤ c; 1 ≤ j ≤ N (7)
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The fuzzy matrix U(0) is randomly generated based on the above criteria and is used
for iterative initialization. The formula for solving the membership degree u is:

uij =

 c

∑
j=1

(
dik
djk

) 2
m−1
−1

, ∀i ∈ {1, · · · , c}; ∀k ∈ {1, · · · , N} (8)

where m ∈ [1, ∞) is a fuzzy index or a weighted index; dik = ‖xk − vi‖ represents the
Euclidean distance between the data ρk and the cluster centroid vi. Cluster centroid
collection is represented by the formula V = {v1, v2, · · · , vc}(vi ∈ V, i = 1, 2, · · · , c), where
vi represents the i-th cluster centroid. The vi calculation formula is as follows:

vi =
∑N

k=1 um
ik · xk

∑N
k=1 um

ik

(9)

The process of obtaining the cluster centroid and membership matrix by fuzzy C-
means clustering algorithm is an iterative process. The specific iterative process is as follows:

(1) Given the cluster type number c, initialize each cluster center according to the iterative
convergence conditions (6) and (7).

(2) Repeat the following steps until the data membership is stable.
(a) The membership function is calculated according to Formula (8) using the current

cluster centroid.
(b) The centroid is recalculated according to Formula (9) using the current membership

function.

When the iteration converges, various types of centroids and membership values are
obtained, and the division of fuzzy clustering is completed.

Since the initial value of the Fuzzy C-Means (FCM) algorithm needs to be randomly
set, this randomness cannot guarantee that the global optimization can be achieved every
time. That is to say, only the initial cluster centroid setting has global characteristics, and
the clustering result can reach the global optimal. Due to the large amount of monitoring
data and the time-consuming iterative process, a distributed fuzzy clustering method is
proposed. The method firstly uses the kernel density estimation to obtain the global cluster
centroid value, and then uses the fuzzy clustering C-means to cluster, thus overcoming the
defect that the fuzzy cluster C-means is sensitive to the initial value and can easily fall into
the local optimal solution. The calculation result can achieve global optimization, and it
skips the iterative optimization process, which can reduce the calculation time.

2.3.2. Kernel Density Estimation

The kernel density estimation is used to create a histogram to represent the distribution
of data. According to the difference of probability density, a symmetric weighting function
summation (kernel function) is applied to each data, instead of simply assigning each point
to each interval. In the kernel density estimation, the set of N resistivity data is given as
ρ = {ρ1, ρ2, · · · , ρN}. The general form of the quasi density function can be estimated as:

f̂σ(ρ) =
1
N

N

∑
i=1

Kσ(ρ− ρi) (10)

where Kσ(ρ− ρi) is the kernel function, σ is the bandwidth, ρ is the independent variable
to be estimated, f̂ is the probability density function, N is the number of resistivity values,
and ρi is the i-th resistivity value. The selection of kernel function needs to satisfy the
conditions of attenuation, normalization and symmetry. Gauss function, trigonometric
function, dual-bandwidth function and Epanechnikov function are commonly used, but the
selection of kernel function has little influence on the estimation effect, while the influence
of bandwidth is obvious [30]. Small bandwidth will produce many small peak distributions,
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while large bandwidth will produce fewer peaks and smoother curves, as shown in Figure 1.
In theory, the optimal choice of bandwidth is to make the kernel density estimation function
closest to the kernel density function of the actual data (Figure 2). The bandwidth can be
selected by establishing an optimization mode. However, since the kernel density function
of the actual data is unknown, it is very difficult to establish the optimization model directly.
Therefore, based on the normal reference criterion, the normal distribution is used as the
reference distribution to select the optimal bandwidth, which is called the embedding
method [31].

σ̂ =

(
4σ5

3N

)1/5

(11)

where σ represents the standard deviation of all resistivity values.
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In this paper, Gauss function was chosen to be the kernel function:

Kσ̂(ρ− ρi) =
1

σ̂
√

2π
e−

(ρ−ρi)
2

2σ̂2 (12)

The final calculated probability density function is:

f̂σ̂(ρ) =
1
N

N

∑
i=1

1
σ̂
√

2π
e−

(ρ−ρi)
2

2σ̂2 (13)

2.3.3. Fuzzy Clustering C-Means Based on Kernel Density Estimation

For a set of random variables (the data set studied in this paper is the resistivity
value or the resistivity difference), the cluster centroids are pre-estimated by the initial
approximate probability density distribution of the data set. The kernel density estimation
method is used to find and determine the cluster centroids, and the probability density
function f̂σ̂(ρ) is used to analyze the data set. Each peak value in the probability density
function represents the probability estimation of the data in total data. In the calculation
of f̂σ̂(ρ), the resistivity corresponding to the peak value of the probability density curve
is approximately equal to the mean value of the sample data. Therefore, the number of
peaks represents the appropriate number of clusters to packet data, which is the number of
categories.

Assuming that the bandwidth in the kernel function K is suitable for the data set,
the number of peaks represents the number of clusters, and the ρi of each peak that
corresponding to the cluster is its cluster centroid.

The specific steps of program design are as follows:

(1) Importing the resistivity data that needs to be inverted, then performing preprocessing,
and then mapping the 2D resistivity matrix into a 1D vector;
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(2) Calculating the variance of resistivity, and then the standard deviation of resistivity
is obtained;

(3) Calculating the optimal bandwidth using Equation (11);
(4) Using the Formula (13) to calculate the probability density function and discretiz-

ing the probability density. Determining the peak value and the number, so as to
determine the cluster centroid and the number of categories of resistivity data;

(5) Finding the membership degree corresponding to each item of resistivity data, and
then forming an N × K membership matrix, where N represents the number of
resistivity data, and K represents the number of categories;

(6) Finding the maximum value of each column of the membership matrix, which is the
maximum membership degree corresponding to each resistivity value;

(7) Assigning the category attribute of the resistivity value according to the maximum
membership degree of each resistivity value;

(8) Outputting class matrix and inversing 1D matrix to 2D matrix;
(9) Outputting the results and drawing the clustered contour map.

It is worth noting that in the actual calculation process, there are often many small
peaks (the peak value is too small, indicating that the clustering range is small, there is no
research significance), which results in more classification categories. To solve this problem,
the centroids with small probability density are filtered out by setting the threshold value.
The disturbance caused by the fluctuation of a very small range of data is reduced, and
the threshold value is set as 10% of the mean value of the probability density of all data in
the same data sample. The centroid whose probability density is less than the threshold
is abandoned.

3. Cases Study
3.1. Identification of Bedrock Interface

The smoothness-constrained inversion technique is applied in the fast inversion al-
gorithm of the monitoring data, which results in the indistinct appearance of anomalous
boundaries. Nevertheless, the resistivity change is subtle over time usually and delineating
anomaly boundary accurately is important to monitor water migration. To address this
problem, the clustering was applied to analyze the ERT resistivity data and it was proved
effective in the case of identification of the bedrock interface.

The test site is located in the campus of the China University of Mining and Technology,
Xuzhou, China. The site is a landform unit of piedmont alluvial plain. A 28-electrode
dipole-dipole array with dipole separations of 4 m was used for detecting the bedrock
interface (Figure 3). In order to validate the availability of the method, an exhaustive
geotechnical engineering investigation (Figure 4) was made before this test, which indicates
that the depth of bedrock interface ranges between 11 m and 13 m.
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Figure 4. Engineering geologic profile of test site.

When the data collection has been finished, the smooth-constrained least squares
algorithm is firstly used to inverse resistivity distribution (Figure 5). The x coordinate
represents the horizontal distance, and the h coordinate represents the depth. Based on the
resistivity difference, the bedrock interface can be distinguished at the depth of 10~14 m.
We can see that this bedrock interface identification process is inaccurate. The results of
data processing vary with the processors and there are unavoidable errors compared with
the real depth of the bedrock interface.
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The fuzzy clustering algorithm was applied to analyze inversion resistivity. The resis-
tivity values are classified into two categories with kernel density estimation. The resistivity
classification diagram (Figure 6) can be drawn using a distributed fuzzy clustering algo-
rithm. The x coordinate represents the horizontal distance, and the h coordinate represents
the depth. It can be seen that the depth of bedrock interface is between 11 m and 13 m,
which is consistent with the actual situation. The fluctuation of bedrock interface can also
be seen from the map, which is almost consistent with the bedrock depth and its extension
fluctuation in the engineering geological profile drawn by borehole data. Therefore, the
application of distributed fuzzy clustering algorithm has a significant effect on bedrock
interface delimitation.
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Figure 6. Resistivity classification diagram based on distribution fuzzy clustering.

3.2. Water Inrush Dynamic Monitoring Model of the Coal Seam Floor

The confined water will migrate through the water flowing fractured zone in the
course of mining. The resistivity of the fractured zone is obviously different from that
of surrounding rocks before and after the water filling, which makes water migration
monitoring possible using Time-lapse Electrical Resistivity Tomography. The relevant
geo-electric model of the coal seam floor confined water migration can thus be established.
Before working face mining, the model can be considered as a level layered media model
contained surrounding rocks, aquiclude and aquifer when time is t0. The time series of
t1, t2, t3 and t4 represent the changing process of water flowing fractured zone which will
break through the aquiclude at time t4. Most coal seams are high-resistance, according to
the research; the underground whole-space model can be reduced to a surface half-space
model [32] (Figure 7).
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Figure 7. The geo-electric model of the coal seam floor with confined water migration.

The software “ELRIS2D” written by Akca is used for the forward and inverse calcula-
tion of the water inrush dynamic monitoring model [28]. The results show that the inverse
location and range of the aquiclude and the water flowing fractured zone are in accordance
with those in the real model, while the inverse range of the aquifer is larger. The water
migration in the fractured zone can be observed approximately (Figure 8).

In order to make the edge of the water flowing fractured zone clear, we analyze the
inverse resistivity images with distributed fuzzy clustering. For this study, the clustering
is utilized to the log resistivity ratio rather than inversion resistivity to highlight subtle
change over time. The kernel density of resistivity change logarithm is estimated first.
After the optimal bandwidth is obtained with the embedding method, we can find three
centroids in the probability density curve. Then the logarithm of resistivity change can be
divided into three classes. The blue zone represents the resistivity decrease, which matches
the water flowing fractured zone. The yellow and white zone shows less and no change of
resistivity, respectively. Compared with inverse results, the distributed fuzzy clustering
graph of log resistivity ratio plot can reveal resistivity change more clearly. The water
migration underground can be monitored automatically with the blue zone changing over
time (Figure 9).
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Figure 8. The inversion results of coal seam floor confined water migration at different moments.
The x axis represents horizontal distance and the y axis represents depth. The dotted lines reveal the
actual positions of aquiclude, aquifer and water flowing fractured zone.
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4. Conclusions

A distributed fuzzy clustering algorithm based on kernel function estimation is applied
to analysis of TLERT images. The distributed fuzzy clustering method is used to analyze the
inversion results and resistivity difference data in view of the problem that the boundary
of the resistivity image is fuzzy and the anomaly delineation is easily affected by human
factors. According to the peak value of the probability density curve, we can determine
the position of the center of mass and the number of classes, and delineate the range
of abnormal bodies. This method is an unsupervised machine learning algorithm. The
difficulty of analyzing a huge amount of monitoring data automatically can be solved.
Meanwhile, the edge of an abnormal resistivity area can be shown more clearly compared
with a conventional apparent resistivity contour map. The distributed fuzzy cluster analysis
is carried out for the resistivity difference at different times of the floor confined water
uplift. Compared with the results without cluster analysis, the location of the uplift zone
delineated by this method is more consistent with the actual situation. The prospect of
distributed fuzzy clustering analysis of Time-lapse Electrical Resistivity Tomography for
water inrush monitoring in coal mines is an important contribution.
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