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Abstract: The state of Iowa is known for its high-yield agriculture, supporting rising demands for
food and fuel production. But this productivity is also a significant contributor of nitrogen loading to
the Mississippi River basin causing the hypoxic zone in the Gulf of Mexico. The delivery of nutrients,
especially nitrogen, from the upper Mississippi River basin, is a function, not only of agricultural
activity, but also of hydrology. Thus, it is important to consider extreme weather conditions, such as
drought and flooding, and understand the effects of weather variability on Iowa’s food-energy-water
(IFEW) system and nitrogen loading to the Mississippi River from Iowa. In this work, the simulation
decomposition approach is implemented using the extended IFEW model with a crop-weather
model to better understand the cause-and-effect relationships of weather parameters on the nitrogen
export from the state of Iowa. July temperature and precipitation are used as varying input weather
parameters with normal and log normal distributions, respectively, and subdivided to generate
regular and dry weather conditions. It is observed that most variation in the soil nitrogen surplus lies
in the regular condition, while the dry condition produces the highest soil nitrogen surplus for the
state of Iowa.

Keywords: Iowa food-energy-water nexus; nitrogen export; system modeling; weather modeling;
simulation decomposition

1. Introduction

Nutrients, such as nitrogen (N), are necessary in farming for raising crop and forage
productivity, but they can also bring potential harm to the socioeconomic system. A
hypoxic zone is a phenomenon where low dissolved oxygen (hypoxia) occurs in aquatic
environments, which is primarily caused by excess nutrients running off or leaching from
the contributing watershed. Over 400 hypoxic zones have been found in the world and
the problem of hypoxia is worsening [1]. In the US, the environment and socioeconomic
system of the Gulf of Mexico are impacted by hypoxia which has one of the largest hypoxic
zones in the world [2]. Nitrogen (N) is one of the major contributors to the creation of the
hypoxic zone of the Gulf of Mexico through the nitrates (NO3) lost from watersheds within
the Mississippi River Basin, which moves downstream to the Gulf of Mexico [3]. Studies
show that the state of Iowa, one of the major producers of corn, soybean, ethanol, and
animal products, contributes a considerable amount of nitrogen loads to the Mississippi
River basin [4,5]. As the largest producer of corn in the US, nearly 57% of Iowa’s corn is
used for ethanol production [6]. The manure produced by animal agriculture is also rich in
nitrogen [7]. The current research aims at creating strategies and policies to mitigate the
excess nitrogen originating from the Iowa food-energy-water (IFEW) system.

Climate variability has major effects on FEW systems. For example, extreme events,
such as floods or droughts, can reduce water availability and quality. In southern East
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Africa, infrastructure design is challenging due to multi-year drought [8]. Furthermore,
changes in the weather impact energy usage and demands of human activities. Moreover,
in the food system, the needs for livestock watering and crop fertilizer can be severely
impacted due to climates changes. Though Iowa uses primarily rain-fed agricultural
production, in other areas irrigation water for crops is also significantly impacted (both in
supply and in requirements) by weather and climate. Arizona is a predominantly irrigated
agriculture state and supplies food to at least six major cities. It is especially vulnerable to
climate changes [9]. Therefore, it is important to investigate the effects of weather variability
on the sustainable management of FEW systems.

It is important to capture the complex interactions of the different domains to deter-
mine the exported nitrogen of the system. In this work, weather, water, agriculture, animal
agriculture, and energy are considered in modeling the IFEW system. The macro-level
simulation-based IFEW model introduced in [10] to determine the surplus nitrogen in the
state of Iowa is extended to include a crop-weather model using linear regression of histori-
cal weather parameters, which is based on a prior study [11]. Simulation decomposition
(SD) [12,13] is used to visualize the effects of weather variability on the IFEW nitrogen
export. Furthermore, SD analysis is used to distinguish the influences of different weather
scenarios affecting the surplus nitrogen.

The next section gives the details of the IFEW system model and the SD analysis tech-
nique. The following section presents the numerical results of SD applied to the proposed
IFEW simulation model for several weather scenarios. The last section summarizes the
work and discusses potential future work.

2. Methods

This section gives a high-level description of the IFEW system model interdependen-
cies. The macro-level simulation-based model of the IFEW system and the SD technique
are described.

2.1. IFEW System Model Interdependencies

The IFEW system model has five distinct macro-level domains, namely, weather, water,
agriculture, animal agriculture, and energy (Figure 1). The weather discipline provides
environmental factors, such as vapor pressure, temperature, rainfall, and solar radiation.
Rainfall and snowfall supply surface water and groundwater components for the water
discipline. The amount of crop production in the agriculture discipline is strongly related
to precipitation and temperature [11]. The water discipline supplies water for drinking and
service usage for the animal agriculture discipline, and the production and ethanol and
fertilizer for the energy system. Dry distillers’ grain soluble (DDGS) that is produced during
the ethanol production process and commercial fertilizers provide protein to animals and
fertility to soil in the animal agriculture and agricultural domains, respectively. Demand
for food protein by society is satisfied by the animal agriculture discipline. Corn yield
in the agricultural discipline is used for ethanol production in the energy discipline and
the satisfaction of socioeconomic demand. Other socioeconomic demands are satisfied
by the corresponding domains except the weather discipline. The excess nitrogen from
animal lands and crop fields is carried by water flow in the form of nitrates draining into
the Mississippi River basin and further into the Gulf of Mexico.
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gram [14]. The input parameters are the weather model parameters (w1–5), May crop plant-
ing progress (cw1), rate of commercial nitrogen for corn (x3), rate of commercial nitrogen 
for soybean (x4), the total hog/pig population (x5), number of beef cows (x6), number of 
milk cows (x7), and number of other cattle (x8) including the population of steers, heifers, 
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(GN). The model estimates the nitrogen surplus (Ns) based on output quantities yielded 
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This simulation model is an extension from the authors’ previous work with the ad-
dition of the crop-weather model [10]. Westcott and Jewison [11] discovered that the 
amount of corn yield is linear to mid-May planting progress, July temperature, and June 
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Figure 1. A model of the interdependencies of the Iowa food-energy-water (IFEW) system.

2.2. IFEW Macro-Level Simulation Model

In this work, an extended simulation-based model of the IFEW system introduced
in [10] is proposed to calculate the surplus nitrogen (Ns) considering only the weather,
agriculture, and animal agriculture domains in Figure 1. Figure 2 shows the flow of
components and the process of calculation via an extended design structure matrix (XDSM)
diagram [14]. The input parameters are the weather model parameters (w1–5), May crop
planting progress (cw1), rate of commercial nitrogen for corn (x3), rate of commercial
nitrogen for soybean (x4), the total hog/pig population (x5), number of beef cows (x6),
number of milk cows (x7), and number of other cattle (x8) including the population of steers,
heifers, and slaughter cattle. Other intermediate response parameters are corn yield (x1),
soybean yield (x2), the application of commercial nitrogen (CN), nitrogen generated from
manure (MN), nitrogen fixed by soybean crop (FN), and the nitrogen present in harvested
grain (GN). The model estimates the nitrogen surplus (Ns) based on output quantities
yielded by each discipline.

This simulation model is an extension from the authors’ previous work with the
addition of the crop-weather model [10]. Westcott and Jewison [11] discovered that the
amount of corn yield is linear to mid-May planting progress, July temperature, and June
precipitation short fall, but is nonlinear to July precipitation. Meanwhile, the productivity
of soybean is linear to the average value of July and August temperatures, and June precip-
itation short fall, but is nonlinear to the average value of July and August precipitations.
The crop-weather model of the work is developed based on [11] given a set of temperature
and precipitation data of certain months over a 10-year period (2009–2019) from [15]: July
temperature (w1), July precipitation (w2), June precipitation (w3), July-August average tem-
perature (w4), and July-August average precipitation (w5). The corn yield (x1) is estimated
by a regression model with May planting progress (cw1), July temperature (w1), July precip-
itation (w2), and June precipitation (w3). Similar to the corn model, the model for soybean
yield (x2) is created using June precipitation (w3), July-August average temperature (w4),
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and July-August average precipitation (w5). For simplicity, July and August average values
are represented by July values in this work.
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The nitrogen present in harvested grain (GN) is calculated using two input parameters,
namely, the corn yield (x1) and soybean yield (x2) as

GN =

(
x1

(
1.18
100

)
Acorn + x2

(
6.4
100

)
Asoy

)
/A, (1)

where Acorn and Asoy represent the Iowa corn and the soybean acreage, whereas A represents
the total area under corn and soybean crop. It is assumed that 6.4% and 1.18% of nitrogen
are in the soybean seed and the corn seed while harvesting, respectively [16]. The biological
nitrogen fixation from the soybean crop (FN) is estimated as [17].

FN = (81.1x2 − 98.5)Asoy/A. (2)

The commercial nitrogen (CN) is estimated using the rate of commercial nitrogen for
corn (x3) and the rate of commercial nitrogen for soybean (x4) as

CN =
(
x3 Acorn + x4 Asoy

)
/A. (3)

The values of the corn and soybean acreages are obtained from the USDA [18]. The
annual manure nitrogen contribution of each animal type is estimated [19]

MNanimal = P AMN LF, (4)

where P, AMN, and LF are the livestock group population, nitrogen in animal manure, and
life cycle of animal, respectively. P is substituted by the corresponding parameters with
respect to different animal alternatives: the total hog/pig population (x5), number of beef
cows (x6), number of milk cows (x7), and number of other cattle (x8). The total nitrogen
generated from manure (MN) can be determined by the normalized sum of MN for each
livestock group with total area A as

MN =
(

MNHog/pigs + MNBee f−cattle + MNMilk−cow + MNother−cattle

)
/A. (5)



Sustainability 2022, 14, 1060 5 of 12

Table 1 gives the nitrogen content in manure and life cycle for livestock groups used
in (5). Lastly, the rough agronomic annual nitrogen budget of Iowa [16,20] provides the
function calculated for the nitrogen surplus (Ns) given as

Ns = CN + MN + FN − GN. (6)

Table 1. Nitrogen content in manure and life cycle for livestock groups used in manure N
calculation [19].

Livestock Group Nitrogen in Manure (AMN)
(kg per Animal per Day)

Life Cycle (LF) (Days per
Year)

Hog/pigs 0.027 365
Beef cattle 0.15 365
Milk cows 0.204 365

Heifer/steers (0.5 × other cattle) 0.1455 365
Slaughter cattle (0.5 × other cattle) 0.104 170

2.3. Simulation Decomposition

The simulation decomposition (SD) [12] approach is an extension to the Monte Carlo
simulation [21] that enhances the explanatory capability of the simulation results by ex-
ploiting the inherent cause-and-effect relationship between the input and output parame-
ters [13].

SD has recently been developed and successfully used on problems involved in
different domains such as geology, business, and environmental science [22]. It has been
shown to provide a deeper understanding of the interaction between different sources of
uncertainties and its impact on output uncertainty and its distribution to stakeholders. The
current section provides a brief description of SD from an application point of view. A
detailed description of SD can be found in [12].

In this section, the fundamental steps of implementing SD are described using an
analytical model problem. Consider a simple analytical function given as

y = v1 + v2
2, (7)

where v1 and v2 are the real numbered input parameters and y the real number output
parameter. The SD process has the following steps [12]:

1. Identify the input parameters (v1, v2) and their corresponding distribution ranges
in which these parameters are expected to vary. Table 2 provide input parameters
and their corresponding distributions. For this example, a uniform distribution is
assumed for each parameter.

2. Next, for each parameter the states are identified. The states of each input parameter
represent a category of outcomes (e.g., low, or high). Based on the state for each
parameter, a value range is determined as seen in Table 2 for the example problem.

3. Generate every possible combination of the parameter states. Each combination of
states represents a unique scenario (Sci) of the to-be-decomposed simulation of the
output. The number of scenarios depends on the number of states of each parameter.
For the example problem, the number of scenarios is four, as shown in Table 3.

4. Run the Monte Carlo simulations by randomly sampling the parameters, identifying
parameter states, and evaluating output. Register output of each simulated iteration
for producing full output distribution and simultaneously group the output based on
the scenarios for producing decomposed sub-distribution for each scenario.

5. Finally, construct appropriate output graphs or tables to better understand the cause-
and-effect relationship between input and output parameters. In particular, the
stacked histogram is an informative graph that displays the full output distribution
and the decomposed output superimposed on full distribution. Figure 3 shows the
full and decomposed distribution of the simulated output.
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Table 2. Input parameter details.

Parameter Distribution/Range State Boundary

v1 U [0, 10]
Low [0–5)
High (5–10]

v2 U [0, 10]
Low [0–5)
High (5–10]

Table 3. Generating scenarios from parameter states.

Scenario Combination of States

Sc1 v1: Low, v2: Low
Sc2 v1: Low, v2: High
Sc3 v1: High, v2: Low
Sc4 v1: High, v2: Low

3. Results

This section presents the results of applying SD to the proposed extended nitrogen
export model which includes a weather model. In particular, the current work focuses
on understanding the effects of weather parameters on the nitrogen surplus in different
scenarios.

For this study, the weather parameters temperature (T) and precipitation (PPT) for
July are taken as input parameters, whereas soil nitrogen surplus is considered as an output
parameter computed from the IFEW simulation model. Furthermore, the July temperature
is assumed to be normally distributed with a mean of 74 ◦F and a standard deviation of
2 ◦F, whereas the July precipitation is assumed to have a lognormal distribution with a
standard deviation of 0.4 in., a shape parameter of 0, and median at 4 as shown in Table 4.
All other parameters considered in the IFEW simulation model are kept constant.
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Table 4. Input parameter details for performing simulation decomposition with IFEW simulation
model.

Parameter Distribution/Range State Boundary

July temperature (w1) N [2, 74]
Regular ≤76 ◦F

High >76 ◦F

July precipitation (w2) LogN [0.4, 0, 4] Regular ≥2.5 in
Low <2.5 in

In the crop-weather model, May plantation progress and June precipitation is assumed
to be 80% and 5.5 in., respectively. The parameters used in the animal agriculture model
(x5–8) are based on the 2012 Iowa animal population data [19]. The commercial nitrogen
application rate for corn (x3) and soybean (x4) agriculture are considered to be constant and
set as 185 kg/ha and 17 kg/ha based on the Iowa State University extension guidelines for
the nitrogen application rate for corn [23] and on the fertilizer use and price data [24].

After setting up the IFEW model, Monte Carlo simulations are performed using
Latin hypercube sampling (LHS) [25]. The LHS sampling method ensures that the input
parameter ranges are represented appropriately. The input parameter states and boundary
details are presented in Table 4. For July temperature, any temperature above 76 ◦F is
considered to be under state high where all other temperature values are considered to be
under state regular. Similarly, for July precipitation, any precipitation value below 2.5 in. is
labeled under state low precipitation and all other values are under state regular. Table 5
presents the scenarios based on a combination of states. The parameter states are selected
to produce some of the extreme condition scenarios (e.g., Table 5 dry condition).

Table 5. Scenarios for simulation decomposition approach with IFEW model.

Scenario Combination of States Description

Sc1 w1: Regular, w2: Low Regular-T Low-PPT
Sc2 w1: Regular, w2: Regular Regular condition
Sc3 w1: High, w2: Low Dry condition
Sc4 w1: High, w2: Regular High-T Regular-PPT

A total 105 samples of input weather parameters (w1 and w2) are generated using LHS
and SD approach is implemented using the IFEW simulation model. Figure 4 shows the
distribution of sampled weather parameters in two states and four scenarios as mentioned
in Tables 4 and 5. Most of the generated samples are observed under regular condition (Sc2)
whereas the least number of samples are observed in dry condition (Sc3).

The input weather parameters are supplied to a crop-weather module which computes
corn yield (x1) and soybean yield (x2). The computed crop yield values are then passed
to an agriculture module where CN, FN, and GN values are computed as mentioned in
Section 2.2. Here, the contribution of CN will be constant for every IFEW model evaluation
due to the assumption of a constant commercial nitrogen application rate for corn (x3) and
soybean (x4).

Figure 5 shows the decomposed distribution of corn and soybean yield along with
the variation in FN and GN values. The effect of different scenarios due to combinations of
weather parameters can be clearly seen in crop yield distribution. It is interesting to note that
in dry condition (Sc3) corn yield drops compared to the yield in regular condition, whereas
higher soybean yield is observed in dry condition compared to the regular condition. The
computation of GN is influenced by both corn and soybean yield values (Figure 5c). The
computation of FN is only influenced by soybean yield values (Section 2.2); thus, the FN
distribution is observed to be similar to soybean yield distribution.
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Figure 6 shows the decomposed distribution of nitrogen surplus (Ns), the final output
of the IFEW simulation model. The soil nitrogen surplus is usually affected by CN, MN,
GN, and FN magnitudes. However, in this study, only GN and FN influence the variation
in nitrogen surplus. This is mainly because the parameters affecting CN and MN are kept
constant. The variation in nitrogen surplus shown in this work is purely due to uncertainty
in weather parameters. From Figure 6, it is observed that most of the variation in nitrogen
surplus lies in regular condition (Sc2), varying approximately between 0 and 20 kg/ha. The
scenarios with high July temperatures (Sc3 and Sc4) are observed to produce mid to high
nitrogen surplus values. Similarly, scenario Sc1, with very low July precipitation and regular
July temperature, tends to produce higher nitrogen surplus than in regular conditions. The
dry condition with high July temperature and low July precipitation produces the highest
soil nitrogen surplus, varying between 20 and 30 kg/ha. The accumulated nitrogen in the
soil is highly water-soluble and could get exported at a high rate to the Mississippi River
through melting snow or rainfall before the next growing season. Figure 6 provides the
expected magnitude of nitrogen load from state of Iowa to the Mississippi River in different
weather scenarios.

The SD in this work uses the Monte Carlo sampling approach which could be used
to provide approximate probability of a scenario occurring in any given year considering
the assumptions made earlier are true. Based on the data available in the current study,
probabilities of scenarios Sc1, Sc2, Sc3, and Sc4 occurring are 0.1, 0.74, 0.02, and 0.12,
respectively. The probability of dry condition (Sc3) occurring is lowest whereas regular
condition (Sc2) has the highest probability of occurring (Figure 6).

The SD approach implemented in the current study provides valuable results to gauge
the impact of weather parameters on soil nitrogen surplus along with crop yields and
nitrogen transfer in agriculture systems. However, the particular distributions used for the
weather parameters are not data based, and the two input weather parameters are assumed
to be independent of each during the Monte Carlo sampling process. Temperature and
precipitation are correlated. Thus, there is a possibility that some combination of scenarios
may not entirely occur. For example, high precipitation and high temperature may not
occur at the same time because with high precipitation, the average temperature drops.
Further, the probability distributions of the weather parameters are challenging to estimate
as they typically do not have continuous distributions. Thus, it is advisable to use weather
generators which have been trained on historical datasets to predict weather parameters
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rather than using continuous probability distributions. In future studies, weather gen-
erators will be included in the IFEW simulation model to predict weather data for more
realistic predictions of soil nitrogen surplus.
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4. Conclusions

In this work, the simulation decomposition (SD) approach is implemented with the
Iowa food-energy-water (IFEW) system simulation model to better understand the impact
of weather behavior on nitrogen export from Iowa. In particular, the previously developed
nitrogen export model, which computes the soil nitrogen surplus, is extended with a crop
weather model to include the dependence of weather in the IFEW system. The updated
IFEW simulation model with SD is used to provide decomposed soil nitrogen surplus
distribution in different weather scenarios.

It is observed that July temperature and precipitation directly impact corn and soybean
yields. Interestingly, it is observed that in the dry condition, corn yield reduces, whereas
soybean yield increases compared to the yield values in regular conditions. The variation
in crop yields affects nitrogen transfer in the agriculture system through fixation nitro-
gen (FN) and grain nitrogen (GN), affecting the soil nitrogen surplus. The SD approach
provides the distribution of nitrogen surplus in various scenarios. It is observed that the
regular condition covers most variation in the full distribution. Scenarios with high July
temperature and low precipitation tend to produce mid to high range of nitrogen surplus
values. The dry condition scenario produces the highest nitrogen surplus. Overall, the SD
approach provides a deeper understanding of the cause-and-effect relationship between
weather parameters and soil nitrogen surplus.

Furthermore, the current study identified that continuous distribution on weather
parameters could generate unrealistic scenarios. Thus, in future studies, highly validated
weather generators will be used for estimating weather parameters, providing a more
realistic distribution of soil nitrogen surplus based on weather. Additionally, the IFEW
simulation model will be extended to report nitrogen loads for Iowa’s nine crop reporting
districts, providing spatially resolved information from the state of Iowa.
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