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Abstract: A series of tests were carried out to assess the environmental effects of biodiesel blends
made of different vegetable oil, such as corn, sunflower, and palm, on exhaust and noise diesel engine
emissions. Biodiesel blends with 20% vegetable oil biodiesel and 80% diesel fuel by volume were
developed. The tests were conducted in a stationary diesel engine test bed consisting of a single-
cylinder, four-stroke, and direct injection engine at variable engine speed. A prediction framework
in terms of polynomial regression (PR) was first adopted to determine the correlation between the
independent variables (engine speed, fuel type) and the dependent variables (exhaust emissions,
noise level, and brake thermal efficiency). After that, a regression model was optimized by the grey
wolf optimization (GWO) algorithm to update the current positions of the population in the discrete
searching space, resulting in the optimal engine speed and fuel type for lower exhaust and noise
emissions and maximizing engine performance. The following conclusions were drawn from the
experimental and optimization results: in general, the emissions of unburned hydrocarbon (UHC),
carbon dioxide (CO2), and carbon monoxide (CO) from all the different types of biodiesel blends
were lower than those of diesel fuel. In contrast, the concentration of nitrogen oxides (NOx) emitted
by all the types of biodiesel blends increased. The noise level produced by all the forms of biodiesel,
especially palm biodiesel fuel, was lowered when compared to pure diesel. All the tested fuels had
a high noise level in the middle frequency band, at 75% engine load, and high engine speeds. On
average, the proposed PR-GWO model exhibited remarkable predictive reliability, with a high square
of correlation coefficient (R2) of 0.9823 and a low root mean square error (RMSE) of 0.0177. Finally,
the proposed model achieved superior outcomes, which may be utilized to predict and maximize
engine performance and minimize exhaust and noise emissions.

Keywords: pollutant emissions; noise emissions; grey wolf optimization; polynomial regression;
diesel engine; vegetable oil; biodiesel

1. Introduction

Recently, the interest in sustainable, eco–friendly, and renewable fuels has been grow-
ing as a result of environmental degradation from environmental pollution and the limited
supply of conventional petroleum [1–3]. As a result of the growing knowledge of the
environmental threats to human health, efforts have been made to keep engine emissions
under control. Vibration, exhaust, and noise emissions are all major issues with diesel
fuel [4–6].

Sustainability 2022, 14, 1367. https://doi.org/10.3390/su14031367 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14031367
https://doi.org/10.3390/su14031367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2994-1504
https://orcid.org/0000-0001-5828-9765
https://orcid.org/0000-0001-9254-2744
https://doi.org/10.3390/su14031367
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14031367?type=check_update&version=2


Sustainability 2022, 14, 1367 2 of 32

Many combustion technologies, such as dual-fuel [7], partially premixed combustion
(PPC) [8], advanced combustion system with optimized bowl and innovative fuel injection
system [9], improved fuel injection [10], and employed exhaust gas recirculation (EGR)
system [11], have been developed to minimize diesel engine exhaust emissions. Many
researchers believe that biodiesel has the potential to reduce such emissions as hydrocarbon
(HC), carbon monoxide (CO), and carbon dioxide (CO2), and with little increase in nitrogen
oxides (NOx) emissions [12,13]. Biodiesel is a sustainable, biodegradable fuel derived
from vegetable oils and animal fats as an alternative to fossil fuel through the transester-
ification method. Kalligeros et al. [14] evaluated the exhausted biodiesel emission that
was fueled with a sunflower oil methyl ester. The authors remarked that the reduction in
carbon monoxide, particulate matter, unburned hydrocarbon, and nitrogen oxide emissions
compared to pure diesel blends were achieved. Fattah et al. [15] concluded that palm
biodiesel fuel could dramatically reduce the HC and CO emissions by up to 50% compared
to neat diesel fuel. Sanjid et al. [16] experimentally tested a compression ignition engine
and compared the noise levels of various types of biodiesel. The results revealed that the
combined blends of palm and jatropha biodiesel have a slightly higher brake specific fuel
consumption rather than that of pure diesel. The acoustic emission was reduced in the
range of 2.5% to 5% depending on blend ratios ranging from 5 to 10 by volume, respectively.
This reduction may occur because of a decreased ignition delay period and improved lubric-
ity. Another study by Sanjid et al. [17] compared the performance and exhaust emissions
of two types of biodiesels, namely mustard and palm biodiesel fuels with 10% and 20%
by volume blends. The results showed that the UHC of mustard biodiesel is 9% and 1.5%
higher than that of palm biodiesel by 10% and 20% blends, respectively. Ndayishimiye
and Tazerout [18] examined the engine performance and exhaust emission of a diesel
engine fueled with palm oil blends. The authors found a small increase in brake specific
fuel consumption (BSFC), brake thermal efficiency (BTE), and NOx emission compared
to pure diesel fuel. However, a dramatic reduction in HC and CO emissions up to 65%
compared to pure diesel fuel could be recorded. Rakopoulos et al. [19] reported that the
peak of nitric oxide (NO) emission value for both n-butanol blends of 25% by volume and
bio-diesel blend of 30% by volume was increased by 51% and 30%, respectively, compared
to pure diesel. Uludamar et al. [20] experimentally examined the four cylinders, four-stroke,
diesel engine fueled with different blends and types of biodiesel, namely corn, canola, and
sunflower biodiesel, supplemented with hydrogen. The results showed a reduction in HC,
CO, NOx, and noise emissions compared to pure diesel and biodiesel fuels that were not
hydrogen-enriched. To overcome the higher viscosity of biodiesel fuel and thus improve
its performance, Patel et al. [21] indicated that using biodiesel fuel instead of pure diesel
would necessitate some modifications in diesel engines, particularly for the fuel filter, fuel
pumps, and injector needle. Yuvarajan et al. [22] showed that supplementing a nanoparticle
such as titanium oxide (TiO2) into diesel–biodiesel blends could reduce exhaust emissions.

Although there are many publications related to the outcome of biodiesel in terms of
performance, combustion characteristics, and exhaust emissions, there are relatively few
papers covering the acoustic emission aspects. The noise from the diesel engine comes
from the gas flow, combustion behavior, and mechanical movement [23]. The gas flow
noise is corresponding to the suction and exhaust stroke, while the mechanical noise is
associated with piston movement, crankshaft, gears, valve trains, injection movement, and
bearing. The combustion noise is associated with the maximum rate of the rising pressure
inside the cylinder. Many researchers [19,23–27] have shown that fuel properties are some
of the main factors that directly affect the diesel engine noise in terms of heating value,
cetane number, chemical structure, fuel viscosity, fuel density, and heat of vaporization,
etc. All these properties are responsible for the ignition delay period and, subsequently,
the inside cylinder pressure rise rate. The most significant characteristics in the acoustic
quality assessment of the engine are sharpness, loudness, strength, and roughness. Redel-
Macias et al. [28] stated that, the higher the amount of biodiesel blend derived from palm oil
methyl esters (PME), the greater attenuation of maximum engine noise in terms of loudness,



Sustainability 2022, 14, 1367 3 of 32

while the high amount of biodiesel derived from olive pomace oil methyl esters (OPME)
in blends resulted in the greatest attenuation of roughness. Aydin [29] found the canola
biodiesel is better than diesel fuel according to noise emission criteria because it has a lower
heating value and better lubrication characteristics. Conversely, Torregrosa et al. [30] stated
that diesel engine noise increased with the increase in biodiesel content in the tested fuels.
Bunce et al. [31] suggested using soy biodiesel instead of pure diesel to reduce the exhaust
and noise emitted from a calibrated diesel engine. How et al. [32] conveyed that biodiesel
blends were accompanied by a decreased short ignition delay, decreased peak heat release
rate, and increased combustion duration. In another study, Torregrosa et al. [33] studied
the effect of the injection on combustion noise for diesel engines. They revealed that the
rise in inside cylinder pressure has a substantial influence on combustion noise. One of the
important techniques used to reduce engine noise is controlling the ignition delay period.
For instance, a shorter ignition delay diminishes the maximum pressure in the cylinder,
thereby decreasing the combustion noise [34]. Nguyen and Mikami [35] added 10% of
volume hydrogen in the suction air manifold of a single-cylinder diesel engine to minimize
the engine noise considerably.

Because experimental investigations on biodiesel blends under various operating
situations to identify their optimal engine outputs and lowest emissions generated are
expensive, restricted, and time-consuming, any other effective approaches for assessing
these attributes are required [36]. The use of optimization techniques is a beneficial strategy
for reducing the need for extensive experimental testing. Many scholars have established
and employed a variety of meta-heuristic algorithm optimization approaches in design
analysis. Particle swarm optimization technique (PSO), genetic algorithm optimization
(GA), ant colony optimization algorithm, artificial neural network (ANN), response surface
methodology (RSM), artificial bee colony optimization algorithm, Taguchi’s optimization
approach, and other algorithms have been widely used to improve engine performance and
reduce exhaust emissions [37,38]. Kumar et al. [39] developed the RSM-based Box–Behnken
approach design (BBD) to optimize biodiesel transesterification production parameters,
such as temperature, molar ratio, reaction duration, and catalyst concentration, for a
blending of Jatropha–algae oil. Adam et al. [40] investigated the effects of engine speed
and load, as well as the fuel blend ratio, on the emissions and performance of an indirect
injection (IDI) diesel engine powered by a rubber seed and palm oil blend. The engine
performance and exhaust emission were assessed using a statistical BBD based on RSM.
With a fuel blend of 18%, engine speed of 2320 rpm, and engine load of 82%, an ideal
desirability value of 0.96 was achieved for the tested IDI engine. Xu et al. [41] investigated
the exhaust emissions and performance of a compression ignition (CI) engine running
on biodiesel blends of a 20% Jatropha curcas (J20) using various injection schemes. The
parameters of the start of injection time, fuel injection pressure, and pilot-main injection
periods were optimized using RSM and the desirability metric, resulting in increased
performance and lower emissions. Bhowmik et al. [42] proposed using a coupled ANN
with a multi-objective response surface method (MORSM) to simulate and optimize the
exhaust emissions and performance of a diesel engine powered with diesosenol blends.
According to the trade-off study: the ethanol portion of 10% and a kerosene portion of 2.42%
by volumes at 74.14% diesel engine load are optimum attribute blend combinations and
engine load, respectively. Yilmaz et al. [43] employed two alternative approaches to model
engine emissions and performance. They evaluated RSM with support-vector machines
(SVM) of least-squares (LS) version and concluded that, while SVM-LS was marginally more
effective than RSM in predicting engine emissions and performance, RSM was still capable
of accomplishing this. Dey et al. [44] established an ANN and fuzzy-based approach for
predicting and optimizing diesel engine emissions and performance in relation to engine
load and fuel blend. This experiment employed a single-cylinder diesel engine that was
powered on palm biodiesel ethanol mixtures. The engine is driven at various loads ranging
from 20 to 100% at 1500 rpm. According to a fuzzy model, at 20% load of 85% diesel, 10%
palm biodiesel, and 5% ethanol by volumes has the highest index of multi-performance
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characteristics compared to other blends. Tosun et al. [45] developed an ANN model
for forecasting diesel engine exhaust emissions in terms of CO and NOx. Diesel, peanut
biodiesel, and a variety of peanut biodiesel and alcohol blends were used to power the
diesel engine. Using a backpropagation approach combined with a multilayer feed-forward
neural network model, researchers were able to predict outcomes more efficiently, robustly,
and accurately than they could do with simple regression models. Uslu [46] compared two
optimization strategies for identifying the optimum responses with the optimal operating
variables for a diesel engine in terms of ANN and RSM implementations. The R2 values
for the generated RSM model exceed 0.90, whereas R2 values for the ANN model range
from 0.88 to 0.95. With optimal operating variables of 35 ◦CA injection advance, 17.88%
palm oil percentage, and 780-Watt engine load, the optimal results were achieved as 0.126%,
196.25 ppm, and 189.764 ppm for CO, NOx, HC, respectively. Yldrm et al. [47] examined
three different biodiesel blends, canola, sunflower, and corn, in a four-cylinder diesel engine,
focusing on engine vibration, noise, and emissions while adding hydrogen to these blends.
They used two artificial intelligence approaches to attempt to change the optimal hydrogen
enrichment rate: (ANN) and (SVM). The R2 and the best mean average error are 0.9615 and
0.39 for noise, 0.9398 and 5.07 for NOx, 0.993 and 2.21 for CO2 values, and 0.8549 and 7.27
for CO. Furthermore, ANN was indicated to be more successful than SVM. Najafi et al. [48]
utilized ANN and RSM to evaluate the energy and exergy of a CI engine running on waste
cooking oil biodiesel. The experiments were carried out with varying loads and fuel blends
at a constant engine speed. According to the data, the optimum results were achieved at
an 80% engine load with a 20% biodiesel ratio. For biodiesel synthesis, Saqib et al. [49]
employed the (RSM) to optimize the reaction parameters, such as molar ratio, catalyst
concentration, reaction duration, and reaction temperature; biodiesel of rapeseed oil was
used as feedstock. In addition, the behavior of biodiesel-generated exhaust emissions
has been observed. According to optimized biodiesel production, the following were the
best experimental conditions for producing biodiesel: reaction temperature 55 ◦C, catalyst
concentration (%) 0.30, reaction period 60 min, and molar ratio 6.75. Biodiesel yields of
97.5% were produced under these ideal circumstances. According to the findings, the CO
and particulate matter (PM) emissions for biodiesel were lower than those of pure diesel
fuel. The NOX emissions of the biodiesel were lower compared to pure diesel for low
biodiesel blends.

The grey wolf optimization (GWO) is an optimization approach that may be used to
achieve diversified objectives in a variety of optimization tasks. The GWO has attracted
the attention of scientists in various scientific and engineering sectors. In the literature, a
limited number of research works are available on GWO for the environmental effect of a
diesel engine fueled with various biodiesel blends. Samuel et al. [50] integrated the RSM
and GWO to simulate the waste sunflower biodiesel synthesis from wasted sunflower oil.
The densities of several biodiesel mixers were correlated using the least square regression
approach. The highest yield of biodiesel fuel (96.70%) was obtained with a methanol/oil
molar ratio of 5.99/1, a catalyst amount of 1.1 wt.%, and a reaction period of 77.6 min.
Gujarathi et al. [51] employed the GWO to improve the diesel engine’s performance and
emissions. A wide variety of factors, including BSFC, HC, CO, NOx, and PM, were taken
into account throughout the optimization process. The researchers concluded that the
GWO can identify the optimal parameters with minimum cost. Ileri et al. [52] optimized
the cetane content in diesel engine blend fuel. They used the GWO to execute a series
of experiments under various settings in order to determine the best blend outcomes.
They considered engine performance as well as combustion emission throughout the
optimization procedure. Finally, they computed the optimum engine performance after
determining the best fuel blend under various scenarios. Luo et al. [53] enhanced the GWO
by increasing the weight of the leader wolf location. The new approach surpasses the
predecessor in terms of optimization accuracy and convergence speed. The new method
has a minimal cost when it comes to solving technical engineering challenges. Another
improvement for GWO was made by Vijay and Nanda [54]. They used three strategies:
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control level, prey weight, and both. They evaluated the performance of the innovated
method relative to that of five other algorithms, comparing noise, data scalability, and
algorithm parameter. According to the authors, the suggested approach outperformed
PSO and GWO in the confined search space by obtaining the least value (global optima for
most functions).

The present study focuses on a diesel engine that is run at full load and at varying
engine speeds. The environmental behaviors in terms of the exhaust and noise emissions
of an unmodified diesel engine fueled by corn, sunflower, and palm biodiesel blends have
been carefully tested in this study experimentally. A prediction framework is proposed in
this study by combining polynomial regression (PR) with GWO. Polynomial regression
was used to establish the correlation between the independent factors (engine speed, fuel
type) and the dependent variables in the suggested strategy (exhaust emissions, noise level,
and brake thermal efficiency). The GWO technique was then used to optimize a regression
model to update the population’s current locations in the discrete searching space, resulting
in the optimal engine speed and fuel type for minimizing exhaust pollutants and noise
levels while maximizing engine performance. The novelty of the study is to efficiently
model and minimize noise and exhaust emissions concerning fuel types and engine speed
while also improving engine performance. The following three points clearly define the
novelty in this study:

1. Although there are many articles in the literature regarding engine performance and
exhaust emission using different biodiesel fuel blends, there is still a gap in its acoustic
emissions on the diesel engine. Commonly, the diesel engine is one of the major
sources of noise in the automobile industry. Accordingly, significant consideration
should be taken to minimize diesel engine noise levels.

2. Biodiesel fuel has been extensively researched, as mentioned in the preceding lit-
erature. However, there is limited study in the literature on the use of the latest
up-to-date optimization approaches in terms of GWO for environmental evaluation of
corn, palm, and sunflower biodiesel blends. The GWO method has superior qualities
over other swarm intelligence approaches, such as its high flexibility and speedy
programmability [55]. Furthermore, GWO requires no search space derivation in-
formation and operates with fewer parameters [56]. Through the search phase, the
algorithm benefits from a balance of exploration and exploitation, leading to high
convergence [57].

3. Moreover, there is no current literature on using polynomial regression with the GWO
algorithm to reduce diesel engine exhaust emissions and improve engine performance.
Considering the paucity of studies in the literature on the implementation of GWO
in internal combustion engines, additional research is needed. The primary purpose
of this research is to use the GWO to determine the optimal engine speed and fuel
type in order to reduce exhaust and noise emissions, as well as to improve engine
performance. The significant technical benefit of optimizing fuel type and engine
speed is that it reduces the environmental effect of diesel engine exhaust and noise
emissions while also improving engine performance. Furthermore, finding the rela-
tionship between independent factors, mathematically modeling the system, is an
important benefit in cost and time savings by minimizing the number of experiments.

2. Experimental Setup, Equipment, and Procedure

A single-cylinder, direct injection, four-stroke of Lister LV1 of PETTER PHIW diesel
engine was employed to carry out a set of experiments. For all measured characteristics
except noise, the engine operation modes were full load and varying speeds. There was a
noise measurement at 1800 rpm constant speed and different loads (25, 50, 75, and 100%).
In addition, the noise level was measured at full load and various engine speeds. Table 1
shows the characteristics of diesel engines in further detail. All of the fuels that were tested,
including biodiesel fuels, were used without any modifications to the diesel engine.
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Table 1. Specifications of the diesel engine used.

Parameter Specification

Type Lister LV1
Nominal speed range 1000–3000 rpm

Maximum power 9 HP (6.7 kW) @ 3000 rpm
Number of cylinders Single

Injection Direct
Engine operation Four-stroke

Bore * Stroke 85.73 × 82.55 mm
Compression ratio 17:1

Injector opening pressure 180 bar
Intake valve opening/closing 15◦ CA BTDC/41◦ CA ABDC

Exhaust valve opening/closing 41◦ CA BBDC/15◦ CA ATDC
Air intake process Naturally aspirated

Type of cooling Air-cooled
Dynamometer A swinging field direct current (DC) dynamometer

2.1. Biodiesel Preparation

The following technique was used to make three distinct biodiesel blends, each of
which included 20% biodiesel of vegetable oil and 80% pure diesel fuel by volume, namely
corn, sunflower, and palm biodiesels: (i) in a low-speed electrical blender, 4 g sodium
hydroxide (NaOH) was added with 200 cm3 methyl alcohol, known as methanol (CH3OH),
for about 2 min. As a consequence of the chemical reaction, the solution grew warmer. To
make sodium methoxide (CH3NaO), it was violently swirled until all of the (NaOH) was
totally dissolved in the (CH3OH). Then, (ii) 1000 cm3 of vegetable oil was warmed to 65 ◦C
and progressively added to the prior mixture, with the electrical blender running for about
30 min; (iii) after blended, the mixture was allowed to settle for 4 h; (iv) the solution split
into two layers due to gravity, with biodiesel at the top and glycerin at the bottom; (v) the
biodiesel product was rinsed well to remove any residues of glycerin and impurities; (vi)
the biodiesel was washed by pouring hot water over it and letting it settle in a separating
funnel for 12 h; (vii) finally, the lower layer of the sample was gradually extracted until
it was transparent. The refined biodiesel was put into a bottle and reheated up to 55 ◦C
to remove the water content. Table 2 lists the measured fuel parameters as well as the
equipment requirements. Only the cetane number measurements were obtained from a
reference [58]. The percentages of fatty acids in the oil materials utilized were presented in
Table 3 [59–61].

Table 2. Measured fuel blends properties of all tested fuel.

Properties Diesel Corn
Biodiesel

Palm
Biodiesel

Sunflower
Biodiesel

Test
Method Equipment

Cetane
Number [58] 47 53 61 52 ASTM

D613 -

Heating Value
(MJ/kg) 43.5 39.5 40.1 39.8 ASTM

D240

Automatic
adiabatic

bomb
calorimeter

Specific gravity at
15 ◦C (kg/m3)

0.83 0.86 0.85 0.85 IP 190/93
Capillary
stoppered

pycnometer

Viscosity at 40 ◦C
(cSt) 3.85 4.77 5.28 4.96 ASTM

D445

EMILA
rotary

viscometer
apparatus
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Table 3. Percentage of fatty acids in oil materials used [59–61].

Sources
% (wt)

Palmitic
(C16:0)

% (wt)
Stearic
(C18:0)

% (wt) Oleic
(C18:1)

% (wt)
Linoleic
(C18:2)

% (wt)
Linolenic

(C18:3)

Palm oil 45 4 39 11 - *
Sunflower 3–10 1–10 14–35 55–75 <0.3

Corn 8–10 1–4 30–50 34.56 0.5–1.5
* Not specified.

2.2. Exhaust Emission Measurement

A Kane automotive gas analyzer was used to assess the exhaust emissions, which are
CO, CO2, UHC, and NOx. The exhaust emissions were measured as follows: the gas probe
was mounted on the gas exhaust pipe and attached to the gas analyzer. The gas analyzer
was started, and fresh air was pumped into emission sensors. The oxygen sensor was set
to 20.9%. Under such conditions, the analyzer makes a self-calibration procedure during
fresh air purging and the time countdown to zero. After self-calibration, a leak test was
executed by fitting the probe seal. After passing the leak test, the probe seal was removed
and the gas analyzer read zero for CO, CO2, and set oxygen at 20.9%. When the engine
reached operating temperature, the exhaust emission reading was taken. Each test was
repeated three times and the average of the recorded data was taken. Table 4 displays the
specification of the exhaust gas analyzer equipment and its accuracy.

Table 4. Exhaust emission apparatus and its accuracy.

Emission Test Method Accuracy Resolution Maximum
Limit

CO2 Nondispersive infrared ±5% of reading
±0.5% volume 0.01% 16%

CO Nondispersive infrared ±5% of reading
±0.5% volume 0.01% 10%

UHC Nondispersive infrared ±5% of reading 1 ppm 5000

NOx Fuel cell 0–4000 ppm ±4%;
4000–5000 ppm ±5% 1 ppm 5000

The following formula was used to compute the total percentage of uncertainty for
the exhaust emissions [47,48]:

% o f uncertainty = ±

√√√√√
{
(uncertainty o f HC)2 + (uncertainty o f CO2)

2

+(uncertainty o f CO)2 + (uncertainty o f NOx)
2
} (1)

As regards Equation (1), the total uncertainties for exhaust gases is ±0.9%, which
means that the examined results are reliable.

2.3. Engine Noise Measurement

Any sound source may be characterized primarily by its pressure, intensity, and power.
A person can sense noises between 20 µPa and 20 Pascal [62], which is designated as the
pain threshold. The root mean square (rms) sound pressure is the most essential sound
indicator, which is described in Equation (2) as

Prms =
√

P2(t) =
{

lim
T→∞

1
T

∫ T

0
P2(t)dt

} 1
2

(2)
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where: Prms is the root mean square value of the pressure in Pa; P(t) is the pressure value at
a specific time t, in Pa; T is the total interval of time in which the pressure was measured, in
sec; and P2(t) is the time-averaged pressure over T, in Pa.

Because of the wide range of related pressure (20 µPa–20 Pa), a logarithmic scale
is more suitable. Another explanation is that a logarithmic evaluate of sound pressure
corresponds significantly better with the subjective perception of how loud a noise sounds
than the sound pressure itself. With a reference value (Pref = 20 µPa), the sound pressure
level (SPL) is employed to characterize the sound loudness in dB. It is given by Equation (3):

LP = 10 log10
P2

rms

P2
ref

= 20 log10
Prms

Pref
(3)

where: LP is the level of the sound pressure, in dB; Prms is the root mean square quantity of
the pressure at a certain frequency, in Pa; and Pref is the reference value of 20 µPa.

The decibel dB(A) is a unit of measurement for intensity, commonly expressed in
(W/m2). The decibel, therefore, denotes the amount of sound-wave power that passes
throughout a 2-D slice of space at any particular time. The formula corresponding to the
rise in the sound level in dB(A) to the rise in intensity (I) starting from initial reference
intensity I0 is given by Equation (4):

SL(dB) = 10 log
(

I
I0

)
(4)

where: I0 is a reference intensity and equals 10−12 W/m2, which is the lowest audible
sound that a person with normal hearing can detect at a frequency of 1000 Hz.

Besides monitoring the sound pressure level through each discrete frequency, the
sound was typically measured in frequency ranges. Therefore, frequency filters with octave
band in terms of one-third octave band filters were used.

Octave band noise assessment is widely used when the frequency analysis of the
acoustic source is required to be studied. Therefore, 1/3 octave analysis was conducted to
investigate the diesel engine acoustic emissions of all types of tested fuels. A frequency
range of 20 Hz to 20 kHz was investigated. To address the noise emission from a diesel
engine, a signal from cylinder pressure is typically observed based on the frequency
spectrum. After that, a fast Fourier transform (FFT) was applied to transform the sound
time domain to the frequency domain, or a filter of a one-third octave frequency band was
applied to measure the sound pressure level at every distinct frequency [62]. A one-octave
frequency band supported with a sound level meter type 2235 from Bruel & Kjaer to detect
the noise of the diesel engine was used. The sensing microphone and a signal output
terminal attached to the sound level meter were positioned at the upper and lower sides of
the meter. The data collection interface receives audio information from an output signal
terminal. This electrical signal is amplified inside the sound level meter and then sent to
weighting networks that are nominated by a manual switch. The amplified weighted signal
goes to the root mean square amplifier, is purified, and converted to a decibel logarithmic
scale. After that, the digital reading of the sound pressure level in decibels dB(A) appears
on the screen. The noise measurements were performed according to the following: all the
acoustic measurements were carried out in the evening time (after 5 pm) to ensure there
was no source of the noise. The noise measurement distance was one meter apart from the
frontal surface of a diesel engine to make sure there was no absorption of sounds during
the test. The diesel engine started once the set temperature was reached. The acoustic level,
recorded in dB(A), was measured using a microphone as a sound level meter at the front
side of the engine. The octave band filter was applied according to subsequent midpoint
frequencies (20 Hz to 20 kHz), and, finally, the same procedure was repeated at different
engine speeds and different tested fuels.
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3. Mathematical Model

A regression model is a formula that describes the relationship between a response
(dependent variable) and a set of design factors (independent variables). A regression
model is widely used due to its simplicity, minimal processing effort, and ability to illustrate
explicit relationships between variables. In some engineering computations, the model
provided by the data is not sufficient for a linear line. In such instances, it is vital to apply a
proper data curve. Polynomial regression is an evaluable approach at this moment.

The performance of the process was measured by examining exhaust emissions (NOx,
CO, CO2, and UHC), engine performance (brake thermal efficiency), and engine noise, all
of which are affected by engine speed and fuel type. Equation (5) expresses the interactions
between the response Y and the input process variables. The tests were conducted at engine
speeds ranging from 1200 to 2400 rpm. Pure diesel, palm biodiesel, sunflower biodiesel,
and corn biodiesel are all assessed.

Y = β0 + β1x + β2x2 + . . . + βn−1xn−1 + βnxn (5)

where: Y is the dependent variable, x is the independent variable, β is the regression
coefficient, and n is the polynomial degree.

4. Parameter Optimization

With the use of a polynomial regression model, the optimization procedures were
explored in order to attain the minimum exhaust emission yield. The GWO method
proposed by Mirjalili et al. in 2014 [56] is similar to the PSO algorithm and is based on
the metaheuristic principle. The algorithm concept leverages social authority, which is
symbolized by the behavior of wolves while encircling a victim, to find the best solution
to the problem to be optimized. This algorithm replicates the hierarchical superiority of
grey wolves until their movements halt during the operation of hunting for the victim. It
encourages the natural behavior of grey wolves scavenging for food in their social life in a
similar way to population-based algorithms.

Figure 1 shows four different types of grey wolf groups that may be used to construct
hierarchical commands, with the following three levels [63,64]:

1. The first level reflects the command of the group. Alpha (α) is the name given to a
wolf at this rank. The alpha is in charge of determining whether or not to hunt and
giving commands to the other wolves in the pack. As a result, it might be deemed the
best option.

2. The chain’s nesting level is known as beta (β). At this stage, wolves assist alphas in
making choices and monitoring the behavior of other groups. When alphas die or get
elderly, betas can take their place.

3. The bottom level has the lowest ranks, the delta (∆) and omega (ω), who eat last after
the upper-level wolves have finished.
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Figure 1. Hierarchical levels of grey wolves and their tasks.

The wolf pack’s hunting method consists of three key steps: hunting, encircling,
and attacking the prey. The algorithm starts with a set number of grey wolves, whose
placements are arbitrarily generated. When building GWO, the fittest solution as the alpha
(α) was selected. This allows us to quantitatively describe the social structure of wolves. As
a result, the second and third best solutions are designated by the letters beta (β) and delta
(∆). All other potential solutions are presumed to be omega (ω). The hunting (optimization)
in the GWO algorithm is directed by the variables α, β, and ∆. Following these three wolves
are theωwolves.

As mentioned above, grey wolves encircle prey during the hunt. In order to mathe-
matically model the encircling behavior of each packing group, the following equations
(Equations (6) and (7)) are employed:

→
D =

∣∣∣∣→C .
→
XP(t)−

→
X(t)

∣∣∣∣ (6)

→
X(t + 1) =

∣∣∣∣→XP(t)−
→
A.
→
D
∣∣∣∣ (7)

where: the grey wolf position vector denoted by
→
X,
→
X is the prey vector position, t stands

for the current iteration, and
→
A and

→
C are the coefficient vectors given by the following

equation (Equation (8)):
→
A = 2.

→
a .
→
r 1 −

→
a

→
C = 2.

→
r 2

with : a = 2.
(

1− t
Tmax

)
(8)

where: the total number of iterations is Tmax, r1 and r2 are random vectors in [0,1], and
a is encircling coefficient. Grey wolves have the ability to recognize the location of prey
and encircle them. The hunt is usually guided by the alpha. The beta and delta might also
participate in hunting occasionally. However, in an abstract search space, we have no idea
about the location of the optimum (prey). In order to mathematically simulate the hunting
behavior of grey wolves, we suppose that the alpha (best candidate solution), beta, and
delta have better knowledge about the potential location of prey. Therefore, we save the
first three best solutions obtained so far and oblige the other search agents (including the



Sustainability 2022, 14, 1367 11 of 32

omegas) to update their positions according to the position of the best search agents. The
following formulas (Equations (9) and (10)) are proposed in this regard.

→
XP(t + 1) =

→
X1(t) +

→
X2(t) +

→
X3(t)

3
(9)

where: 

→
X1(t) =

→
Xα(t)−

→
A1.
→
Dα

→
X2(t) =

→
Xβ(t)−

→
A2.
→
Dβ

→
X3(t) =

→
X∆(t)−

→
A3.
→
D∆

and



→
Dα =

∣∣∣∣→C1
→
Xα(t)−

→
X(t)

∣∣∣∣
→
Dβ =

∣∣∣∣→C2
→
Xβ(t)−

→
X(t)

∣∣∣∣
→
D∆ =

∣∣∣∣→C3
→
X∆(t)−

→
X(t)

∣∣∣∣
(10)

Equation (6) denotes the distance from the current location, which should be mini-
mized as much as possible so that Equation (7) represents the next position, which becomes
closer and closer to the prey’s position. This means that the algorithm will arrive at the
proper answer to the XP problem.

In this algorithm, the control parameter “a” decreases linearly from 2 to 0 over iter-
ations using Equation (8). As a result, a search agent’s future position can be anywhere
between its current position and the position of the prey (exploration phase). The criterion
|A| < 1 causes the wolves to attack the prey.

The alpha group is thought to have the best information of where prey may be found.
Once the location of the prey has been discovered, the alpha group will lead the hunt,
followed by the beta and delta wolves. The last two groups take part in the hunt on
occasion. The remainder of the gang is tasked with caring for the pack’s injured wolves.
The wolves assault and finish the hunt after the prey stops moving.

Pseudocode of grey wolves:
Initialize grey wolf population Xi
Calculate the fitness value of each agent
Sort grey wolf population-based on fitness values (α, β, and ∆)
While Iterations < Max:
Update position of each wolf
Find the fitness of a population
Update alpha, beta, and delta
End while
Return alpha
The goal of using the GWO algorithm is to reduce exhaust emissions (UHC, CO,

CO2, and NOx) for engine speed and fuel type (to determine the best engine speed with
minimized exhaust emissions). The GWO technique is used to improve regression models
in order to find the best input parameter values (x). The fuel type and engine speed are
the variables that influence these responses. Firstly, the responses are estimated using
regression models. Secondly, for these regression models, the GWO method is utilized to
estimate the best factor levels. The algorithm used 30 search agents for this purpose, and
the maximum number of iterations was set at 1000.

Each wolf position in the GWO corresponds to the fuel type factor that is applied to
the engine speed. As a result, f represents the global best position of all wolves, whereas
E is the exhaust emission based on fuel type, and “d” reflects the associated wolf’s best
position. The objective function for this algorithm to find the minimum exhaust emission
considering the fuel type with respect to the engine speed is described by Equation (11):

min(Ed) = f (α, β and ∆) (11)
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Exhaust emission (E) value is varied depending on fuel type (d) and is considered as a
grey wolf according to the GWO algorithm. As a consequence, we can rewrite Equation (7)
as follows (Equation (12)):

Ed(k + 1) = |Ed(k)− A.E| (12)

The working principle of GWO’s fitness function is described by Equation (13):

k
j Ed < k−1

j Ed (13)

where: j is the current grey wolves’ number, and k is the iteration number.
Figure 2 displays the flow chart of the grey wolf optimization algorithm process.
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5. Results and Discussion
5.1. Exhaust Emission Analysis

This section presents a comprehensive, detailed evaluation of the impact of biodiesel
blends on the engine exhaust emissions, which are unburned hydrocarbon, carbon dioxide,
carbon monoxide, and nitrogen oxides, at varying engine speeds.

5.1.1. Exhaust Temperature

The change in the exhaust gas temperature versus engine speed for pure diesel and
different types of biofuel blends is demonstrated in Figure 3. The exhaust gas temperature
increased with the increase in engine speed until reaching the maximum value for all the
tested fuels. This increase is due to the need for more fuel quantity to increase the engine
speed. Moreover, all biodiesel fuel blends have lower exhaust gas temperatures than pure
diesel. A reduction in exhaust gas temperature by 0.8%, 1.4%, and 2.1% has been obtained
from palm, sunflower, and corn biodiesels, respectively, as compared to pure diesel. This
reduction can be attributed to the following reasons: (i) the latent heat of vaporization for
all biodiesel blends is more than that of pure diesel [65], which improves the cooling of the
engine cylinder walls and, hence, decreases its temperature and, consequently, decreases
its exhaust gas temperature; and (ii) the low energy content in terms of calorific heating
value for all types of biodiesel compared to pure diesel. Masharuddin et al. [66] proposed
emulsified biodiesel as an alternative fuel to minimize both peak cylinder pressure and
flame temperature. The fine scattering of biodiesel fuel droplets causes the phenomenon of
heat transfer in the combustion chamber. When this phenomenon occurs in the inner phase
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of biodiesel content, it leads to partially absorbing the calorific heat value of the blend,
followed by decreasing the burning gas temperature. In other words, the emulsion absorbs
heat from combustion by vaporizing liquid water into vapor.
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Figure 3. Variation in exhaust temperature vs. engine speed for different biodiesel blends.

However, a reverse trend was reported in a few studies [67,68]. They explained that
the high exhaust gas temperature was attributed to the improved combustion behavior due
to the increased oxygen molecules in the chemical formula of biodiesel blends and higher
fuel consumption in each engine speed as compared to that of pure diesel.

5.1.2. Unburned Hydrocarbon Emission (UHC)

The variation in total unburned hydrocarbon emission (UHC) with engine speed for
pure diesel and 20% addition of different types of biofuels is presented in Figure 4. As
depicted in the figure, the amount of UHC emission decreases when the engine speed
increases. Therefore, higher engine speed will maintain a better mixing of air and fuel,
leading to better combustion. Another observation is the UHC emitted by all the biodiesel
blends is a little lower than that of pure diesel fuel. Numerically, on average, the UHC
reduction of about 22.7%, 10.2%, and 16.2% was produced from palm, sunflower, and
corn biodiesel blends, respectively, as compared to pure diesel. This reduction is due
to: (i) improved combustion efficiency and ignitability because of the increased cetane
number of the biofuel blends; a substance with a high cetane number displays a shorter
delay period and gives additional time for the oxidization progression to happen, which
leaves smaller amounts of HC in the exhaust; (ii) the inherent oxygen contained by the
biofuel was responsible for the decrease in HC concentrations; (iii) despite biodiesel being
just less volatile than diesel fuel, diesel fuel has been observed to have higher relative
distillation points [69,70]; the last portion of the diesel may not be entirely evaporated and
burned, resulting in higher THC emissions; (iv) the low fuel particle evaporation due to the
reduced wall temperature; (v) the higher viscosity and density of biodiesel blend affect the
atomization and volatilization phenomena of the fuel, leading to a lesser amount of lean
blend at the edges of the spray flame-out region [71]; and, finally, (vi) the low heat of the
biofuel blends vaporization leads to slow evaporation and poor fuel–air mixing.
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Figure 4. Variation in unburned hydrocarbon emission vs. engine speed for different biodiesel types.

5.1.3. Carbon Dioxide Emission (CO2)

It is well known that carbon dioxide (CO2) is considered one of the greenhouse gas
sources and is responsible for the global warming effect. Moreover, the produced CO2
emission is an indication of the completed combustion process. The variations in CO2
emissions versus engine speed for pure diesel and 20% additions of different types of
biodiesels are displayed in Figure 5. It was noticed that the amount of CO2 emission
increased proportionally with the increase in engine speed. For all the different types of
biodiesel blends, the produced CO2 emissions were lower than those of pure diesel fuel by
58.2%, 57.2%, and 53.7% for palm, sunflower, and corn biodiesel blends, respectively. The
reduction in CO2 emissions is due to the fact that biodiesel has low-carbon fuel and a lower
carbon to hydrogen ratio than that of pure diesel fuel [72]. Ashok et al. [73] indicated that
the high number of formations of free radicals during the combustion leads to a significantly
reduced amount of CO2 emissions. Muralidharan and Vasudevan [74] stated that the CO2
produced from biodiesel combustion could be absorbed by trees; therefore, the CO2 level
in the atmosphere will be maintained, thus avoiding environmental problems, such as
global warming and ozone layer depletion. The previous interpretation was discussed in a
more scientific and in-depth manner by Yee et al. [75]. The authors proposed the concept
of life cycle assessment (LCA) for palm biodiesel to explore and evaluate the prevalent
idea that palm biodiesel is a sustainable fuel. The LCA analysis was categorized into
three phases: agricultural processes, biodiesel transesterification process, and oil milling.
The greenhouse gas and energy balance were estimated for each phase. According to the
results, the burning of palm biodiesel was shown to be more environmentally friendly
than conventional diesel fuel, with a substantial 38% decline in CO2 emissions per liter
combusted. A similar trend was reported by Sharon et al. [76].
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5.1.4. Carbon Monoxide Emission (CO)

The variation in carbon monoxide emission (CO) versus engine speed for pure diesel
and 20% additions of different types of biofuels is displayed in Figure 6. According to
Figure 6, it can be noticed that the amount of CO released for all the types of fuel tested
decreased with the increase in engine speed until reaching a minimum, and then the CO
emissions increased. This is due to a lean mixture combustion at a low speed, resulting
in incomplete combustion. The further increase may occur due to the short time available
to oxidize all the CO atoms and ignition timing retarding that leads to the release of more
CO at the higher engine speed [6]. The CO released by the palm, sunflower, and corn
biodiesel blends was 4.7%, 26.9%, and 13.6%, respectively, lower than that of pure diesel
fuel. Palm biodiesel evaporates quickly and easily into the engine cylinder because it has
low specific gravity as compared to other blends. As a result, a decrease in the length
of spray atomization, which assists the complete combustion, and a decrease in the CO
produced may occur. According to the current experiments, biofuel can reduce the emitted
CO by up to 30% as compared to pure diesel depending on environmental conditions,
engine type, and engine age [77].

Several factors have been ascribed to the decrease in CO emission in biodiesel fuel
when compared to pure diesel, including: (i) the presence of more oxygen in the biodiesel
fuel, which promotes full combustion and, hence, lowers CO emissions; (ii) the greater
cetane number of biodiesel fuels, resulting in the lesser possibility of fuel-rich zones
developing, which is generally linked to CO emissions; (iii) when utilizing biodiesel, the
combustion and advanced injection may also explain the CO decrease. Other research
works [78,79] revealed that the higher ratio of biofuel blends can increase the produced CO
by up to 15% as compared to the pure diesel due to the high viscosity, low mixing of air–fuel
ratio that troubles the fuel atomization, and increased period of premixed combustion. The
same profile of CO with the engine speed for the different biodiesel tests was reported by
Ozsezn et al. [80].
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Figure 6. Variation in carbon monoxide emission vs. engine speed for different biodiesel types.

5.1.5. Nitrogen Oxides Emission (NOx)

The concentration of nitrogen oxides (NOx) emission versus engine speed using
different types of biodiesel blends is illustrated in Figure 7. It is well known that the
concentration of NOx emission mainly depends on the cylinder temperature, engine speed
and load, mixture homogeneity, contents of the combustion chamber, oxygen concentration,
air–fuel ratio, and residence time [15,81–84]. From Figure 7, the following points can be
depicted: (i) the concentration of NOx increased with the increase in engine speed for
all tested fuels. The reason for this increase could be the improved combustion behavior,
which has a more homogenous air–fuel mixture at high engine speeds. (ii) For all types
of biodiesel blends, there was an increase in NOx concentration of about 4.9%, 2.9%, and
1.4% for palm, sunflower, and corn biodiesel blends, respectively, as compared to pure
diesel. The main crucial factor that leads to high emitted NOx emissions is the increase
in in-cylinder temperature. The increased concentration of oxygen molecules in biodiesel
blends improves the combustion behavior and increases the NOx emission. Moreover, the
cetane number of biodiesel blends is higher than that of pure diesel, which leads to a shorter
ignition delay. The short ignition delay indicates that a longer residence time is consumed
for the initial combustion products and the air–fuel mixture at a higher temperature, which
leads to an increase in the emitted NOx concentration. Furthermore, the higher viscosity
of biodiesel assists to have a shorter ignition delay and larger droplet size, which finally
improves the formation of NOx emissions [85,86]. (iii) When biodiesel is pumped, the
pump produces a faster pressure rise because of its lower compressibility in terms of
higher bulk modulus, and the sound propagates more rapidly towards the injectors due
to its greater sound velocity. Furthermore, the increased viscosity lowers pump leaks,
resulting in a greater injection line pressure. As a result, in the current diesel fuel, a faster
and sooner needle opening will occur, and, finally, (iv) because the palm biodiesel has
a higher cetane number and viscosity as compared to other biodiesel blends, more NOx
emission produced during the combustion is expected. Cardone et al. [87] demonstrated a
significant increase in NOx emissions at full load, and they demonstrated that the beginning
of combustion was more advanced with biodiesel, leading to a higher average temperature
peak, using a diagnostic single-zone framework that supplied the heat release graph from
the in-cylinder pressure signal. With higher loads, the observed change in the advance of
combustion increased. This advance was ascribed to the injection advance, and the authors
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indicated that it might be adjusted from the embedded controller to restore the original
NOx emission level.
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Figure 7. Variation in nitrogen oxides emission vs. engine speed for different biodiesel types.

5.2. Engine Performance: Brake Thermal Efficiency

All of the parameter matrices relevant to diesel engine performance in terms of brake
torque (BT), brake power (BP), brake thermal efficiency (BTE), and brake specific fuel
consumption (BSFC) while using various biodiesel blends were discussed in-depth in a
previous publication [88].

The fluctuation of BTE with a range of engine speeds for pure diesel and different
types of biofuel blends is displayed in Figure 8. As depicted from this figure, the thermal
efficiency gradually increases with the engine speed until reaches a maximum value. After
that, it decreases with the increase in the engine speed. This behavior could be due to
the prolonged time available for cylinder walls to transfer the heat, particularly at low
speeds; therefore, a significant fuel quantity is consumed for a greater amount of heat loss
that takes place. As the engine speed increases, the brake power increases, which means
a higher thermal efficiency is obtained. At higher speeds, however, the friction power
increases rapidly due to the high inertia of the moving parts, which could be a consequence
of the drop in thermal efficiency. Another insight, all biodiesel blends show lower thermal
efficiency as compared to pure diesel. On average, a reduction in thermal efficiency by
6.7%, 4.4%, and 2.4% was found for palm, sunflower, and corn biodiesels, respectively,
as compared to pure diesel. This reduction is due to the increased thermal friction losses
resulting from the presence of biodiesel fuel that transfers to the cylinder walls and engine
coolant. It is known that the brake thermal efficiency is inversely proportional to BSFC and
heating value [89]. For instance, the BSFC increases and the heating value decreases for
all the biodiesel blends. On the other hand, the BSFC augmentation is more prevailing in
this case. This explains the reason for the decrease in the thermal efficiency of biodiesel
blends, although they have low heating value. Moreover, the biodiesel blends have a
lower ignition delay, which means starting the combustion earlier as compared to pure
diesel. The lower ignition delay leads to more heat losses to the surroundings, and, thus,
more power is required for the piston to achieve the compression stroke. The same results
were reported in many studies [78,85,90,91]. However, a few researchers [79,92] found an
inverse profile. They explained the higher thermal efficiency as a result of the improved
combustion behavior of the oxygenated biodiesel fuel.
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Figure 8. Thermal efficiency fluctuates with engine speed for various biodiesel blends.

5.3. Noise Emission Analysis

In general, the diesel engine has a noise range of 80 to 110 dB(A) depending on engine
size, injection time, and rotation speed of the crankshaft. According to Siavash et al. [93], the
most effective noise resources in the diesel engine were piston slap, combustion behavior,
and exhaust valve closing [94]. The impacts of biodiesel on diesel engine noise may be
divided into two categories [93]: influence on combustion and impact on fuel injection,
which includes the injection method and fuel spray pattern. The effect of different types
of biodiesels on the noise level (sound pressure) values produced by the diesel engine is
depicted in Figures 9–11. Figure 9 shows the variation in noise level with the frequency
at 1800 rpm engine speed, Figure 10 displays the fluctuation in noise level with engine
speed, and Figure 11 illustrates the variation in noise level with engine load at 1800 rpm
engine speed.

Sustainability 2022, 14, x FOR PEER REVIEW 18 of 33 
 

 
Figure 8. Thermal efficiency fluctuates with engine speed for various biodiesel blends. 

5.3. Noise Emission Analysis 
In general, the diesel engine has a noise range of 80 to 110 dB(A) depending on engine 

size, injection time, and rotation speed of the crankshaft. According to Siavash et al. [93], 
the most effective noise resources in the diesel engine were piston slap, combustion be-
havior, and exhaust valve closing [94]. The impacts of biodiesel on diesel engine noise 
may be divided into two categories [93]: influence on combustion and impact on fuel in-
jection, which includes the injection method and fuel spray pattern. The effect of different 
types of biodiesels on the noise level (sound pressure) values produced by the diesel en-
gine is depicted in Figures 9–11. Figure 9 shows the variation in noise level with the fre-
quency at 1800 rpm engine speed, Figure 10 displays the fluctuation in noise level with 
engine speed, and Figure 11 illustrates the variation in noise level with engine load at 1800 
rpm engine speed. 

 
Figure 9. Variation in noise level dB(A) vs. frequency Hz at an engine speed of 1800 rpm for differ-
ent biodiesel types. 

14

15

16

17

18

19

20

21

1200 1400 1600 1800 2000 2200 2400

Th
er

m
al

 E
ffi

ci
en

cy
 (%

)

Engine Speed (rpm)

Diesel Palm Sunflower Corn

20

30

40

50

60

70

80

0 5000 10000 15000 20000

SP
L 

dB
(A

)

Frequency (Hz)

1800 rpm

Diesel
Palm
Sunflower
Corn

Figure 9. Variation in noise level dB(A) vs. frequency Hz at an engine speed of 1800 rpm for different
biodiesel types.



Sustainability 2022, 14, 1367 19 of 32
Sustainability 2022, 14, x FOR PEER REVIEW 19 of 33 
 

 
Figure 10. Variation in noise level dB(A) vs. engine speed for different biodiesel types. 

 
Figure 11. Variation in noise level dB(A) vs. engine load at an engine speed of 1800 rpm for different 
biodiesel types. 

The following conclusions can be drawn from these figures: (i) according to Figure 
10, it was clear after using Equation (4) that the sound intensity was reduced by 50.9%, 
31.5%, and 18.5% for the palm, sunflower, and corn biodiesel blends, respectively, as com-
pared to pure diesel fuel. The physical characteristics of biodiesel blends will directly im-
pact the noise emission in addition to combustion productivity, especially cetane number, 
oxygen content, latent heat of vaporization, and kinematic viscosity. (ii) The reduction in 
noise level when biodiesel blends are used could be due to the improved combustion per-
formance associated with the high oxygen content existing in biodiesel blends as com-
pared to pure diesel fuel. Furthermore, biodiesel with a higher viscosity promotes lubric-
ity and dampening, leading to lower sound levels. (iii) The noise level increased propor-
tionally with the engine speed for all the tested fuels, as displayed in Figure 10. This in-
crease is due to an increase in the combustion process of speed and repetition time, which 
is responsible for combustion noises caused by forces operating on the crankshaft and 
combustion excitation [95]. (iv) When the engine load elevated, the noise levels increased 
for all the tested fuels, as depicted in Figure 11. This can be referred to as the increase in 
the maximum heat release rate and in-cylinder pressure. The same results were achieved 
by Sarıdemir et al. [96]. Maillard and Jagla [89] showed that, at low-frequency values, 
there is little effect of load on the SPL, especially at high speeds. On the other hand, the 

70

72

74

76

78

80

82

84

1200 1400 1600 1800 2000 2200 2400

SP
L 

dB
(A

)

Engine Speed (rpm)

Diesel Palm Sunflower Corn

74

75

76

77

78

79

80

81

0% 25% 50% 75% 100%

SP
L 

dB
(A

)

Engine Load (%)

1800 rpm
Diesel Palm Sunflower Corn

Figure 10. Variation in noise level dB(A) vs. engine speed for different biodiesel types.

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 33 
 

 
Figure 10. Variation in noise level dB(A) vs. engine speed for different biodiesel types. 

 
Figure 11. Variation in noise level dB(A) vs. engine load at an engine speed of 1800 rpm for different 
biodiesel types. 

The following conclusions can be drawn from these figures: (i) according to Figure 
10, it was clear after using Equation (4) that the sound intensity was reduced by 50.9%, 
31.5%, and 18.5% for the palm, sunflower, and corn biodiesel blends, respectively, as com-
pared to pure diesel fuel. The physical characteristics of biodiesel blends will directly im-
pact the noise emission in addition to combustion productivity, especially cetane number, 
oxygen content, latent heat of vaporization, and kinematic viscosity. (ii) The reduction in 
noise level when biodiesel blends are used could be due to the improved combustion per-
formance associated with the high oxygen content existing in biodiesel blends as com-
pared to pure diesel fuel. Furthermore, biodiesel with a higher viscosity promotes lubric-
ity and dampening, leading to lower sound levels. (iii) The noise level increased propor-
tionally with the engine speed for all the tested fuels, as displayed in Figure 10. This in-
crease is due to an increase in the combustion process of speed and repetition time, which 
is responsible for combustion noises caused by forces operating on the crankshaft and 
combustion excitation [95]. (iv) When the engine load elevated, the noise levels increased 
for all the tested fuels, as depicted in Figure 11. This can be referred to as the increase in 
the maximum heat release rate and in-cylinder pressure. The same results were achieved 
by Sarıdemir et al. [96]. Maillard and Jagla [89] showed that, at low-frequency values, 
there is little effect of load on the SPL, especially at high speeds. On the other hand, the 

70

72

74

76

78

80

82

84

1200 1400 1600 1800 2000 2200 2400

SP
L 

dB
(A

)

Engine Speed (rpm)

Diesel Palm Sunflower Corn

74

75

76

77

78

79

80

81

0% 25% 50% 75% 100%

SP
L 

dB
(A

)

Engine Load (%)

1800 rpm
Diesel Palm Sunflower Corn

Figure 11. Variation in noise level dB(A) vs. engine load at an engine speed of 1800 rpm for different
biodiesel types.

The following conclusions can be drawn from these figures: (i) according to Figure 10, it
was clear after using Equation (4) that the sound intensity was reduced by 50.9%, 31.5%, and
18.5% for the palm, sunflower, and corn biodiesel blends, respectively, as compared to pure
diesel fuel. The physical characteristics of biodiesel blends will directly impact the noise
emission in addition to combustion productivity, especially cetane number, oxygen content,
latent heat of vaporization, and kinematic viscosity. (ii) The reduction in noise level when
biodiesel blends are used could be due to the improved combustion performance associated
with the high oxygen content existing in biodiesel blends as compared to pure diesel fuel.
Furthermore, biodiesel with a higher viscosity promotes lubricity and dampening, leading
to lower sound levels. (iii) The noise level increased proportionally with the engine speed
for all the tested fuels, as displayed in Figure 10. This increase is due to an increase in the
combustion process of speed and repetition time, which is responsible for combustion noises
caused by forces operating on the crankshaft and combustion excitation [95]. (iv) When
the engine load elevated, the noise levels increased for all the tested fuels, as depicted in
Figure 11. This can be referred to as the increase in the maximum heat release rate and
in-cylinder pressure. The same results were achieved by Sarıdemir et al. [96]. Maillard
and Jagla [89] showed that, at low-frequency values, there is little effect of load on the
SPL, especially at high speeds. On the other hand, the effect of load was clear and more
tangible at a low engine speed or high frequency. (v) The difference of biodiesel chemical
structures and their characteristics, especially the calorific value, will directly affect the



Sustainability 2022, 14, 1367 20 of 32

noise level. For instance, to compensate for the reduced heating value of biodiesel blends
compared to pure diesel fuel, the quantity of supplied fuel should be increased. (vi) Palm
biodiesel fuel has the highest cetane number among all the tested fuels. Consequently, the
ignition delay duration is the shortest. For this short period, the fuel abruptly starts to
ignite when it arrives at the ignition temperature. This abrupt ignition accompanies both
the highest heat release rate and pressure rise in the cylinder, which are the lowest among
other tested fuels. Therefore, palm biodiesel produces the lowest noise level. (vii) Moreover,
palm biodiesel has the highest viscosity among all tested fuels. The higher viscosity is
responsible for enhanced lubricity and damping capacity, subsequently reducing the noise
level. Moreover, the higher viscosity leads to a decrease in both the ignition delay period
and the rate of increasing pressure in the cylinder, which directly reduces the value of
SPL [97,98]. However, Patel et al. [99] showed a high kinematic viscosity, which affects the
formation of fuel droplets and produces a relatively larger diameter droplet, which makes
it more difficult to evaporate and burn. Fattah et al. [100] indicated that the high viscosity
leads to poor pulverization, which results in increasing the fuel droplet diameter inside
the engine cylinder and decreasing the quantity of fuel. In such cases, the fuel is burnt
through the premixed regime and makes a gradual reduction in the maximum pressure
inside the cylinder. (vii) The low frequency values, the variance between all the profiles of
SPL, is negligible. On the other side, this difference is clear at high frequencies for the tested
fuels. The explanation of this observation is the very long wavelength at a low frequency;
therefore, the sampling rate is a few points from this region in all the tested fuels. As a
result, the sound pressure in terms of root mean square (RMS) values will be covered by
a few points and this will conduct identical SPLs in all the tested fuels. In contrast, the
wavelength is very short at high frequencies. Therefore, the sampling rate covers several
points as compared to the previous scenario. Consequently, the sound pressure in terms
of root mean square (RMS) values will be more precise, leading to more accurate SPL
values in all the tested fuels [101]. (viii) The sound pressure level profiles are similar to the
brake power profile generated from the diesel engine. For instance, the brake power is low
at a low frequency and low speed. The sound pressure level increased gradually as the
engine speed increased and, consequently, the brake power increased. Therefore, the noise
level is directly related to engine speed, load, and power. (ix) All the tested fuels showed
high noise levels at medium frequency range (75% engine load) and high engine speed
range. This result is in agreement with Dal et al. [102]; and, finally, (x) regardless of all the
tested fuels and loads, a larger quantity of the diesel engine noise in terms of the overall
dB(A) level was observed in the frequency range of 500 Hz to 500 kHz, which is considered
as a critical range for the combustion excitation forces. Moreover, the overall dB(A) is
very low at a low frequency range of less than 500 Hz. The same trend was observed by
Giakoumis et al. [103].

5.4. Polynomial Regression Model

The regression models in this study are generated using experimental data. This
approach is anticipated to yield mathematical correlations between variables (engine speed)
and responses emissions (UHC, CO2, CO, and NOx), brake thermal efficiency, and noise.
As a consequence, regression is utilized to define the relationship between the factors and
the response. After that, the GWO approach is used to optimize the response using the
generated regression equations, as described in Equation (5).

To verify the accuracy of a polynomial regression model with different types of fuel,
three metrics are used: the sum of square error (SSE), root mean square error (RMSE), and
coefficient of determination (R2). In other words, R2 is a convenient 0–1 scale that reflects
the strength of the relationship between the regression model and the dependent variables,
as illustrated in Table 5.
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Table 5. Statistical evaluation of the regression models.

Experiment Fuel Type SSE RMSE R2

UHC

Diesel 8.45 × 10−4 8.40 × 10−3 9.92 × 10−1

Palm Biodiesel 2.38 × 10−3 1.22 × 10−2 9.88 × 10−1

Sunflower Biodiesel 2.57 × 10−3 1.29 × 10−2 9.87 × 10−1

Corn Biodiesel 4.21 × 10−4 6.10 × 10−3 9.93 × 10−1

CO2

Diesel 4.55 × 10−3 4.77 × 10−2 9.87 × 10−1

Palm Biodiesel 6.82 × 10−3 1.85 × 10−2 9.86 × 10−1

Sunflower Biodiesel 1.25 × 10−3 2.50 × 10−2 9.74 × 10−1

Corn Biodiesel 5.47 × 10−3 1.35 × 10−2 9.63 × 10−1

CO

Diesel 5.28 × 10−4 2.24 × 10−2 9.82 × 10−1

Palm Biodiesel 4.97 × 10−4 1.58 × 10−2 9.82 × 10−1

Sunflower Biodiesel 1.89 × 10−3 3.08 × 10−2 9.68 × 10−1

Corn Biodiesel 2.24 × 10−3 2.73 × 10−2 9.63 × 10−1

NOx

Diesel 4.55 × 10−3 1.18 × 10−2 9.88 × 10−1

Palm Biodiesel 6.82 × 10−3 1.39 × 10−2 9.86 × 10−1

Sunflower Biodiesel 1.25 × 10−3 1.25 × 10−2 9.88 × 10−1

Corn Biodiesel 5.47 × 10−3 1.21 × 10−2 9.88 × 10−1

BTE

Diesel 1.31 × 10−3 2.67 × 10−2 9.74 × 10−1

Palm Biodiesel 2.36 × 10−3 3.31 × 10−2 9.68 × 10−1

Sunflower Biodiesel 1.37 × 10−3 2.34 × 10−2 9.77 × 10−1

Corn Biodiesel 3.64 × 10−3 2.54 × 10−2 9.75 × 10−1

Noise

Diesel 6.29 × 10−4 6.50 × 10−3 9.90 × 10−1

Palm Biodiesel 4.39 × 10−4 5.80 × 10−3 9.93 × 10−1

Sunflower Biodiesel 3.80 × 10−5 3.70 × 10−3 9.95 × 10−1

Corn Biodiesel 7.17 × 10−4 9.60 × 10−3 9.88 × 10−1

According to the preceding Table 5, the average RMSE values for modeling exhaust
emissions, brake thermal efficiency, and noise were 0.01883, 0.02715, and 0.0064, respec-
tively, while the coefficients of determination (R2) were 0.9815, 0.9736, and 0.9917 for
modeling exhaust emission, brake thermal efficiency, and noise, respectively.

The graphical representation is necessary for assessing the regression model. As a
result, the models’ forecast accuracies were highlighted by graphing the models’ predictions
against their associated targets, as illustrated in Figures 12 and 13. Figure 12a–d shows the
regression model prediction precision for exhaust emissions. While Figure 13a,b display the
regression model prediction precision for noise and brake thermal efficiency respectively.
This shows that the regression models accurately match the provided observations.

5.5. Grey Wolf Optimization (GWO)

The tests were carried out on an Intel Core I7-8th generation processor with 16 GB of
RAM running Windows 10 64-bit. GWO was utilized to optimize the regression model
generated by Python. The third-order model for CO and CO2 emissions was derived using
the following equations in order of polynomial regression:

For CO emission (Equation (14)):

22.4412− 0.05158 A + 6.923321 B − 0.006261 AB − 7.713e−06 A2 − 0.9123 B2 − 6.657e−06 A2B + 0.00541 AB2

−3.819e−10 A3 + 0.0006923 B3.
(14)
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For CO2 emission (Equation (15)):

17.4583− 0.03489 A− 0.1479 B− 0.05978 AB + 4.753e−08 A2 − 2.894e−05 B2 + 1.057e−09 A2B− 2.894e−05 AB2

−1.057e−11 A3 − 1.643e−06 B3.
(15)

The second-degree of polynomial regression was utilized to compute all the remaining
experiments. The NOx emission was estimated as the following equation (Equation (16)):

213.6 + 44.58 A + 0.2280 B− 9.260 A2 − 0.000032 B2 + 0.00157 AB (16)
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For UHC (Equation (17)):

26.42− 4.132 A + 0.00097 B + 0.682 A2 − 0.000003 B2 + 0.000106 AB (17)

For brake thermal efficiency (Equation (18)):

− 1.57− 2.134 A + 0.02456 B + 0.4394 A2 − 0.000006 B2 − 0.000105 AB (18)

For Noise (Equation (19)):

73.93− 5.089 A + 0.00492 B + 0.9575 A2 + 0.000000 B2 + 0.000097 AB (19)

Analysis of variance (ANOVA) was also used to evaluate the model’s relevance. Table 6
displays the ANOVA findings at the 95% confidence level. The significance of the calculated
regression models in Equations (14)–(19) is determined by the ANOVA results. According
to these results, the null hypothesis is rejected if the p-value is less than 0.05, indicating that
the regression model is significant and acceptable for optimization.

Table 6. The regression models’ ANOVA results.

Response Df f-Value p-Value

UHC 2 21.79 <0.0001
CO2 3 21.50 <0.008
CO 3 34.56 <0.001

NOx 2 597.56 <0.0001
BTE 2 34.86 <0.0006

Noise 2 80.79 <0.0001

The contour plots are utilized to visualize the search spaces of the optimization process
for the combinations of the factors and responses, as depicted in Figure 14.
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Table 7 indicates the optimal value (minimization of emissions and noise with a maxi-
mum of brake thermal efficiency) for each fuel type for a given engine speed. According
to the results, the lowest CO emission was 0.1135% when using sunflower biodiesel at
engine speed 1787 rpm. In terms of CO2 emissions, the lowest was 1.6353% at engine speed
1576 rpm when palm biodiesel was utilized. When using corn biodiesel at 1200 rpm engine
rpm, the lowest NOx emission was 492 ppm. At engine speeds of 1200 rpm, palm and corn
oil biodiesels produced the lowest UHC emission, which was 7 ppm. The palm biodiesel
produced the least noise and the highest brake thermal efficiency, which are 73 dB(A) at
engine speed 1200 rpm and 20.3107% at engine speed 2183 rpm, respectively.

Table 7. Optimization results for each response separately with respect to the fuel type.

Experiment Fuel Type Engine Speed Optimum Value

UHC (PPM)

Diesel 2400 9
Palm Biodiesel 2400 7

Sunflower Biodiesel 2400 8
Corn Biodiesel 2400 7

CO2 (%)

Diesel 1367 3.92
Palm Biodiesel 1576 1.64

Sunflower Biodiesel 1373 1.82
Corn Biodiesel 1342 1.95

CO (%)

Diesel 1407 0.22
Palm Biodiesel 1765 0.12

Sunflower Biodiesel 1787 0.11
Corn Biodiesel 1762 0.14

NOx (PPM)

Diesel 1200 489
Palm Biodiesel 1200 508

Sunflower Biodiesel 1200 495
Corn Biodiesel 1200 492

BTE(%)

Diesel 2183 20.31
Palm Biodiesel 1937 19.10

Sunflower Biodiesel 1631 19.89
Corn Biodiesel 1988 20.02

Noise leveldB(A)

Diesel 1200 75.9
Palm Biodiesel 1200 73

Sunflower Biodiesel 1200 74.4
Corn Biodiesel 1200 74.8

Table 8 presents weights for the responses that are used in the optimization process to
find the optimum value (performance, emission, and noise) for each type of fuel. Because
the engine efficiency is a critical and important metric, it was given the greatest weight of
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0.3. Next, the most dangerous exhaust gases from diesel engines (NOx and CO) were given
the weight of 0.2, and, finally, other emissions (HC and noise) received the lowest weight
of 0.1.

Table 8. Weights for the responses used in optimization.

Response Weight Target

UHC 0.1 Minimize
CO2 0.1 Minimize
CO 0.2 Minimize

NOx 0.2 Minimize
BTE 0.3 Maximize

Noise 0.1 Minimize

Table 9 shows the optimum engine speed for various fuel types in order to reduce
emissions and noise while maximizing thermal efficiency. The diesel has the second greatest
thermal efficiency of 19.7993% at an engine speed of 1862 rpm. In comparison to the other
fuel types, diesel has the greatest engine noise and the highest exhaust emission levels. At
an engine speed of 1612 rpm, sunflower oil has the maximum thermal efficiency and the
lowest NOx emissions. Palm biodiesel produced the lowest UHC, CO, and CO2 emissions
and noise at engine speed 1743 rpm.

Table 9. Summary of optimization results for all exhaust emissions, engine performance, and noise
for each fuel type.

Experimental Fuel Type Engine Speed
(rpm) CO (%) CO2

(%)
NOx

(ppm)
UHC
(ppm)

BTE
(%)

Noise
dB(A)

Optimum Values

Diesel 1862 0.26 5.69 555.14 15.02 1.98 79.14
Palm 1743 0.13 2.01 577.00 11.48 1.87 76.24

Sunflower 1612 0.15 2.32 546.00 17.84 1.99 76.51
Corn 1867 0.16 2.50 563.00 13.09 1.94 78.86

Table 10 summarizes the percentage reduction in exhaust and noise emission and
improvement in BTE for biodiesel fuel after the applied optimization process compared
to pure diesel fuel at the optimum engine speed. According to the data obtained after
applying the optimization process, the optimum engine speed for each type of biodiesel
fuel is reduced by 6.39% and 13.43% for palm and sunflower biodiesel, respectively, and
an increased by 0.27% for corn biodiesel when compared to pure diesel, as shown in
Tables 9 and 10. When compared to pure diesel, palm biodiesel shows the highest reduction
in CO, CO2, UHC, and noise by 49.46%, 64.7%, 23.61%, and 3.66%, respectively. Sunflower
has the highest NOx reduction of 1.65% and the highest BTE improvement of 0.35%. Corn
biodiesel shows the lowest reduction of CO and CO2 compared to other biodiesel fuels
used by 37.79% and 56.09%, respectively. Palm and corn biodiesel fuel show an increase in
NOx by 3.94% and 1.42%, respectively.

Table 10. Exhaust emission, engine noise, and performance improvement after applied optimization
process compared to pure diesel fuel at optimum engine speed.

Fuel Type Engine Speed CO CO2 NOx UHC BTE Noise

Palm Biodiesel H
−6.39%

H
−49.46%

H
−64.70%

N
3.94%

H
−23.61%

H
−5.56%

H
−48.63%

Sunflower
Biodiesel

H
−13.43%

H
−41.29%

H
−59.25%

H
−1.65%

N
18.76%

N
0.35%

H
−45.34%

Corn Biodiesel N
0.27%

H
−37.79%

H
−56.09%

N
1.42%

H
−12.90%

H
−2.08%

H
−6.16%
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6. Conclusions

The effects of several biodiesel blends, such as corn, sunflower, and palm biodiesel, on
the engine exhaust and noise emissions of a compression ignition engine were investigated
experimentally. The emissions of CO, CO2, NOx, UHC, and noise were minimized and
the BTE was maximized using a combination of polynomial regression (PR) model with
GWO through the computing of the optimum input variables in terms of engine speed
and biodiesel fuel types. The following are the most important outcomes based on the
experimental observations and modeling optimization findings: (i) palm biodiesel had
the highest reduction of CO, CO2, UHC, and noise by 49.46%, 64.7%, 23.61%, and 48.63%,
respectively, when compared to the optimum values of pure diesel; (ii) according to the
optimization results, the sunflower oil had the highest BTE and the lowest NOx emissions
at the engine speed of 1612 rpm. Palm biodiesel generated the lowest UHC, CO, and CO2
emissions, as well as the least noise, at an engine speed of 1743 rpm; (iii) for all the tested
fuels, the variations among the SPL values were very low at low-frequency range, and they
became noticeable at high-frequency ranges; (iv) the regression model and GWO algorithm
showed good agreement with realistic experiment results. Furthermore, GWO provided an
optimized value with improved exploration capabilities and a reasonable computation time;
(iv) regression modeling enabled us to formulate an empirical relationship, allowing the
construction of mathematical models that allowed us to use the GWO method to address
the optimization/minimization problem target. The objective of optimization was to reduce
exhaust emissions and noise while increasing brake thermal efficiency; (v) finally, when the
results of the integrated polynomial regression model with the minimization/maximization
of the target using the GWO strategy were compared to the experimental data, it is obvious
that the prediction errors are frequently less than 1%.

Particulate matter (PM) is one of the principal pollutants produced by diesel engines,
and it has a negative influence on human health. As a result, future research will focus on
the optimization of different types of biodiesel blends for simultaneous control of PM and
NOx emissions in diesel engines, which will be thoroughly examined in various conditions
and strategies utilized to restrict PM emissions.
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Nomenclature

a encircling coefficient LS least-squares
→
A,
→
C coefficient vectors N rotation engine speed

ABDC after bottom dead center n polynomial degree
ANN artificial neural network NaOH sodium hydroxide
ANOVA analysis of variance NOx nitrogen oxides
ATDC after top dead center OPME olive pomace oil methyl esters
BBD Box–Behnken approach design Prms root mean square value

of the pressure
BBDC before bottom dead center PM particulate matter
BP brake power PME palm oil methyl esters
BSFC brake specific fuel consumption PPC partially premixed combustion
BT brake torque PR polynomial regression
BTDC before top dead center PSO particle swarm optimization
BTE brake thermal efficiency Pref reference pressure value

of 20 µPa
CA crank angle P(t) pressure value at a

specific time t
CH3NaO sodium methoxide P2(t) time averaged pressure over T
CH3OH methanol r1, r2 random vectors
CI compression ignition R correlation coefficient
CO carbon monoxide R2 coefficient of determination
CO2 carbon dioxide RMS root mean square
d fuel type RMSE root mean square error
DC direct current rpm revolution per minute
Df degree of freedom RSM response surface methodology
D wolf’s position SL sound level
E exhaust emission SPL sound pressure level
EGR exhaust gas recirculation SSE sum of square error
FFT fast Fourier transform SVM support-vector machines
f global best position T total interval of time
GA genetic algorithm t current iteration
GWO grey wolf optimization TiO2 titanium oxide
HC hydrocarbon Tmax total number of iterations
I intensity UHC unburned hydrocarbon
I0 reference intensity equal

10−12 W/m2 @ frequency of 1000 Hz x independent variable

IDI indirect injection
→
X vector position of the grey wolf

j current grey wolves’ number
→
XP vector prey position

k iteration number Y dependent variable
LCA life cycle assessment α, β and ∆ three temporarily

optimal solutions
LP levels of the sound pressure in dB β regression coefficients
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