Heterogeneous Effects of Urban Sprawl on Economic Development: Empirical Evidence from China
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis and Research Hypothesis
3.1. Urban Sprawl and Economic Development
3.2. Urban Sprawls and Economic Development of Cities in Different Sizes
3.3. Urban Sprawls and Economic Development of Cities with Different Leading Industries
4. Research Design
4.1. Data
4.2. Variable Description
4.3. Model Specification
5. Empirical Analyses
5.1. Threshold Effects of Urban Sprawl on Economic Development
5.2. Heterogeneous Effects of Sprawling Cities in Different Sizes
5.3. Heterogeneous Effects of Sprawling Cities with Different Leading Industries
5.4. Robustness Test
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wigginton, N.S.; Fahrenkamp-Uppenbrink, J.; Wible, B.; Malakoff, D. Cities are the future. Science 2016, 352, 904–905. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.J.C. Urban administrative restructuring, changing scale relations and local economic development in China. Polit. Geogr. 2005, 24, 477–497. [Google Scholar] [CrossRef]
- Zhang, C.; Miao, C.; Zhang, W.; Chen, X. Spatiotemporal patterns of urban sprawl and its relationship with economic development in China during 1990–2010. Habitat Int. 2018, 79, 51–60. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Liu, X.; Wang, X. Measurement of the eco-environmental effects of urban sprawl: Theoretical mechanism and spatiotemporal differentiation. Ecol. Indic. 2019, 105, 6–15. [Google Scholar] [CrossRef]
- Galster, G.; Hanson, R.; Ratcliffe, M.R.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling sprawl to the ground: Defining and measuring an elusive concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Lityński, P.; Hołuj, A. Macroeconomic perspective on urban sprawl: A multidimensional approach in Poland. Land 2021, 10, 116. [Google Scholar] [CrossRef]
- Fallah, B.N.; Partridge, M.D.; Olfert, M.R. Urban sprawl and productivity: Evidence from US metropolitan areas. Pap. Reg. Sci. 2011, 90, 451–472. [Google Scholar] [CrossRef]
- Dutton, J.A. New American Urbanism: Reforming the Suburban Metropolis; London Distributed Elsewhere by Thames & Hudson: London, UK, 2000. [Google Scholar]
- Soule, D.C. Urban Sprawl: A Comprehensive Reference Guide; Greenwood Publishing Group: Santa Barbara, CA, USA, 2006. [Google Scholar]
- Jaeger, J.A.; Schwick, C. Improving the measurement of urban sprawl: Weighted urban proliferation (WUP) and its application to Switzerland. Ecol. Indic. 2014, 38, 294–308. [Google Scholar] [CrossRef]
- Catalán, B.; Saurí, D.; Serra, P. Urban sprawl in the Mediterranean? Patterns of growth and change in the Barcelona Metropolitan Region 1993–2000. Landsc. Urban Plan. 2008, 85, 174–184. [Google Scholar] [CrossRef]
- Wei, Y.D.; Ewing, R. Urban expansion, sprawl and inequality. Landsc. Urban Plan. 2018, 177, 259–265. [Google Scholar] [CrossRef]
- Liu, L.; Meng, L. Patterns of urban sprawl from a global perspective. J. Urban Plan. Dev. 2020, 146, 04020004. [Google Scholar] [CrossRef]
- Keita, M.A.; Ruan, R.; An, R. Spatiotemporal change of urban sprawl patterns in Bamako District in Mali based on time series analysis. Urban Sci. 2021, 5, 4. [Google Scholar] [CrossRef]
- Tsai, Y.H. Quantifying urban form: Compactness versus “sprawl”. Urban Stud. 2005, 42, 141–161. [Google Scholar] [CrossRef]
- Guite, L.T.S. Assessment of urban sprawl in Bathinda city, India. J. Urban Manag. 2019, 8, 195–205. [Google Scholar] [CrossRef]
- Ewing, R. Counterpoint: Is Los Angeles-style sprawl desirable? J. Am. Plan. Assoc. 1997, 63, 107–126. [Google Scholar] [CrossRef]
- Zhang, J.; Lou, C. New ideas on Chinese urban sprawl governance by contrasting Chinese and American urban sprawl. Resour. Sci. 2014, 36, 2131–2139. [Google Scholar]
- Wang, X.; Shi, R.; Zhou, Y. Dynamics of urban sprawl and sustainable development in China. Ecol. Res. 2006, 21, 221–237. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, L. Three-dimensional intergovernmental competition and urban sprawl: Evidence from Chinese prefectural-level cities. Land Use Policy 2019, 87, 104035. [Google Scholar] [CrossRef]
- Pasha, H.A. Suburban minimum lot zoning and spatial equilibrium. J. Urban. Econ. 1996, 23, 1–12. [Google Scholar] [CrossRef]
- Gómez-Antonio, M.; Hortas-Rico, M.; Li, L. The causes of urban sprawl in Spanish urban areas: A spatial approach. Spat. Econ. Anal. 2006, 11, 1742–1772. [Google Scholar] [CrossRef]
- Brueckner, J.K.; Helsley, R.W. Sprawl and blight. J. Urban. Econ. 2011, 38, 205–213. [Google Scholar] [CrossRef]
- Brueckner, J.K. Urban sprawl: Diagnosis and remedies. Int. Reg. Sci. Rev. 2000, 23, 160–171. [Google Scholar] [CrossRef]
- Rubiera-Morollón, F.; Garrido-Yserte, R. Recent literature about urban sprawl: A renewed relevance of the phenomenon from the perspective of environmental sustainability. Sustainability 2020, 12, 6551. [Google Scholar] [CrossRef]
- Farber, S.; Li, X. Urban sprawl and social international interaction potential: An empirical analysis of large metropolitan regions in the United States. J. Transp. Geogr. 2013, 31, 267–277. [Google Scholar] [CrossRef]
- Reardon, S.F.; Bischoff, K. Income inequality and income segregation. Am. J. Sociol. 2011, 116, 1092–1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, R.; Hamidi, S.; Grace, J.B.; Wei, Y.D. Does urban sprawl hold down upward mobility? Landsc. Urban Plan. 2016, 148, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Getu, K.; Bhat, H.G. Analysis of spatio-temporal dynamics of urban sprawl and growth pattern using geospatial technologies and landscape metrics in Bahir Dar, Northwest Ethiopia. Land Use Policy 2021, 109, 105676. [Google Scholar] [CrossRef]
- Dupras, J.; Marull, J.; Parcerisas, L.; Coll, F.; Gonzalez, A.; Girard, M.; Tello, E. The impacts of urban sprawl on ecological connectivity in the Montreal Metropolitan Region. Environ. Sci. Policy 2016, 58, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Wei, Y.D.; He, C.; Li, H. Urban land expansion under economic transition in China: A multi-level modeling analysis. Habitat Int. 2015, 47, 69–82. [Google Scholar] [CrossRef]
- Vermeiren, K.; Crols, T.; Uljee, I.; Nocker, L.D.; Beckx, C.; Pisman, A.; Broekx, S.; Poelmans, L. Modelling urban sprawl and assessing its costs in the planning process: A case study in Flanders, Belgium. Land Use Policy 2021, 113, 105902. [Google Scholar] [CrossRef]
- Nilles, J.M. Telecommuting and urban sprawl: Mitigator or inciter? Transportation 1991, 18, 411–432. [Google Scholar] [CrossRef]
- Smith, R.M.; Blizard, Z.D. A census tract level analysis of urban sprawl’s effects on economic mobility in the United States. Cities 2021, 115, 103232. [Google Scholar] [CrossRef]
- Chen, X.; Qin, M.; Liu, X. Urban sprawl, dynamic externality and firms’ export: An empirical research based on China’s manufacturing enterprise data. Financ. Trade Econ. 2018, 39, 145–160. [Google Scholar]
- Tregenna, F. Characterising deindustrialisation: An analysis of changes in manufacturing employment and output internationally. Camb. J. Econ. 2009, 33, 433–466. [Google Scholar] [CrossRef]
- Qin, M.; Liu, X.; Li, S. The impact of urban sprawl on regional economic growth: Empirical researches based on DMSP night-time light data. China Econ. Q. 2019, 18, 527–550. [Google Scholar]
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS night-time light images and its application in China. Int. J. Geo-Inf. Sci. 2015, 17, 1092–1102. [Google Scholar]
- Lv, Q.; Liu, H.; Wang, J.; Liu, H.; Shang, Y. Multiscale analysis on spatiotemporal dynamics of energy consumption CO2 emissions in China: Utilizing the integrated of DMSP-OLS and NPP-VIIRS nighttime light datasets. Sci. Total Environ. 2020, 703, 134394. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS J. Photogramm. Remote Sens. 2019, 153, 36–47. [Google Scholar] [CrossRef]
- Liang, L.; Bian, J.; Li, A.; Feng, W.; Lei, G.; Zhang, Z.; Zuo, J. Consistent intercalibration of nighttime light data between DMSP/OLS and NPP/VIIRS in the China⁃Pakistan Economic Corridor. J. Remote Sens. 2020, 24, 149–160. [Google Scholar]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Xu, K.; Chen, F.; Liu, X. The truth of China economic growth: Evidence from global night-time light data. Econ. Res. J. 2015, 61, 17–29. [Google Scholar]
- Fan, Z.; Peng, F.; Liu, C. Political connections and economic growth: Evidence from the DMSP/OLS satellite data. Econ. Res. J. 2016, 62, 114–126. [Google Scholar]
- Podobnik, B.; Shao, J.; Njavro, D.; Ivanov, P.C.; Stanley, H.E. Influence of corruption on economic growth rate and foreign investment. Eur. Phys. J. B 2008, 63, 547–550. [Google Scholar] [CrossRef] [Green Version]
- Yi, K.; Tani, H.; Li, Q.; Zhang, J.; Guo, M.; Bao, Y.; Wang, X.; Li, J. Mapping and evaluating the urbanization process in Northeast China using DMSP/OLS night time light data. Sensors 2014, 14, 3207–3226. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Oad, A.; Ahmad, M.; Irfan, M.; Saqib, F. Do financial development and economic openness matter for economic progress in an emerging country? Seeking a sustainable development path. Sustainability 2021, 14, 237. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, X.; Du, W.; Liu, J.; Li, Y. Spatiotemporal characteristics and driving forces of urban sprawl in China during 2003–2017. J. Clean. Prod. 2019, 241, 118061. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample splitting and threshold estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhao, Y.; Li, Y.; Cai, S. The impact of urban sprawl on private car development: An analysis based on panel data of 269 cities in China. Urban Probl. 2019, 38, 93–103. [Google Scholar]
Variables | Symbols | Variable Definition | |
---|---|---|---|
Dependent variable | Economic development | lm | Mean value of nighttime light brightness in urban areas |
Independent variable | Urban sprawl | sp | Based on Formulas (1)–(3) |
The sprawls of big cities | big | The sprawl indices of cities with population greater than 1 million in urban areas | |
The sprawls of small and medium-sized cities | sma | The sprawl indexes of cities with a population of less than 1 million in urban areas | |
The sprawls of cities dominated by the secondary industry | ind | The sprawl indexes of cities with the highest proportion of the secondary industry | |
The sprawls of cities dominated by the tertiary industry | ser | The sprawl indexes of cities with the highest proportion of the tertiary industry | |
Control variables | Urban scale | pop | The total urban resident population |
Industrial structure | thi | Proportion of added value of the tertiary industry in GDP | |
Income | wag | Per capita wage income | |
Government financial resources | fin | Public financial expenditure | |
Economic openness | fdi | The proportion of foreign direct investment in GDP | |
Human capita | edu | The proportion of college students in the total population |
Variables | Mean | Std. Dev. | Min | Max | Obs |
---|---|---|---|---|---|
lm | 2.636 | 0.339 | 1.609 | 3.870 | 2850 |
sp | −0.848 | 0.363 | −3.976 | 0.000 | 2850 |
pop | 5.876 | 0.701 | 2.970 | 8.133 | 2850 |
thi | 0.392 | 0.097 | 0.098 | 0.810 | 2850 |
wag | 10.711 | 0.364 | 8.509 | 11.917 | 2850 |
fin | 14.673 | 0.787 | 11.544 | 18.246 | 2850 |
fdi | 0.173 | 0.018 | 0.000 | 0.191 | 2850 |
edu | 0.180 | 0.024 | 0.000 | 0.131 | 2850 |
Model | F Statistics | p-Value | BS Times | Critical Values | ||
---|---|---|---|---|---|---|
1% | 5% | 10% | ||||
Single threshold | 44.61 *** | 0.003 | 300 | 28.989 | 21.307 | 18.309 |
Double threshold | 22.18 * | 0.053 | 300 | 25.305 | 19.990 | 16.606 |
Estimated Threshold | 95% Confidence Interval | |
---|---|---|
γ1 | −1.693 | [−1.740, −1.596] |
Variables | (1) |
---|---|
sp_1 (sp ≤ −1.693) | 0.073 *** |
(7.13) | |
sp_2 (−1.693 < sp) | −0.318 *** |
(−13.90) | |
pop | 0.176 ** |
(2.37) | |
thi | −0.567 *** |
(−6.01) | |
wag | 0.152 *** |
(5.12) | |
fin | −0.093 *** |
(4.10) | |
fdi | 0.092 |
(0.26) | |
edu | −0.697 |
(−0.83) | |
cons | −1.356 *** |
(−3.29) | |
R-squared | 0.267 |
N | 2850 |
Variables | (1) | (2) |
---|---|---|
big | −0.505 *** | |
(−4.04) | ||
sma | −0.200 *** | |
(−4.99) | ||
Controls | Y | Y |
City FE | Y | Y |
Year FE | Y | Y |
R-squared | 0.385 | 0.319 |
N | 740 | 2110 |
Variables | (1) | (2) |
---|---|---|
ind | −0.286 *** | |
(−4.99) | ||
ser | −0.206 *** | |
(−3.87) | ||
Controls | Y | Y |
City FE | Y | Y |
Year FE | Y | Y |
R-squared | 0.393 | 0.289 |
N | 1250 | 1600 |
Model | F Statistics | p-Value | BS Times | Critical Values | ||
---|---|---|---|---|---|---|
1% | 5% | 10% | ||||
Single threshold | 14.825 ** | 0.027 | 300 | 19.702 | 8.265 | 3.181 |
Double threshold | 8.148 ** | 0.023 | 300 | 10.705 | 6.204 | 4.084 |
Triple threshold | 3.932 * | 0.060 | 300 | 9.805 | 5.404 | 2.535 |
Estimated Threshold | 95% Confidence Interval | |
---|---|---|
γ1 | 0.036 | [−0.170, 0.600] |
γ2 | 0.079 | [−0.244, 0.600] |
Variables | (1) |
---|---|
sp_1 (sp ≤ 0.036) | 0.133 * (1.94) |
sp_2 (0.036 < sp ≤ 0.079) | −0.0226 ** (−2.21) |
sp_3 (sp > 0.079) | −0.156 *** (−4.95) |
Controls | Y |
R-squared | 0.215 |
N | 2070 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, Y.; Guo, R.; Yan, Y. Heterogeneous Effects of Urban Sprawl on Economic Development: Empirical Evidence from China. Sustainability 2022, 14, 1582. https://doi.org/10.3390/su14031582
Zhang M, Li Y, Guo R, Yan Y. Heterogeneous Effects of Urban Sprawl on Economic Development: Empirical Evidence from China. Sustainability. 2022; 14(3):1582. https://doi.org/10.3390/su14031582
Chicago/Turabian StyleZhang, Mingdou, Yue Li, Rui Guo, and Yurui Yan. 2022. "Heterogeneous Effects of Urban Sprawl on Economic Development: Empirical Evidence from China" Sustainability 14, no. 3: 1582. https://doi.org/10.3390/su14031582
APA StyleZhang, M., Li, Y., Guo, R., & Yan, Y. (2022). Heterogeneous Effects of Urban Sprawl on Economic Development: Empirical Evidence from China. Sustainability, 14(3), 1582. https://doi.org/10.3390/su14031582