Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment
Abstract
:1. Introduction
1.1. Dataset Review of the Urban Forest Inventories of Italian Cities
1.2. i-Tree Eco to Assess Ecosystem Services
2. Materials and Methods
2.1. Study Area
2.2. Steps of the Method
3. Results
Ecosystem Services Assessment and Development of Species-Specific List to Support Decisions in Tree-Planting
4. Discussion
4.1. Efficiency in Citizens Involvement in Field Research to Build Tree Inventories
4.2. Tree Species Composition in the Urban Forests of Dense Built-Up Mediterranean Cities and Ecosystem Services Assessment
4.3. Tool Supporting Decisions for Enhancing Ecosystem Services Provided by Urban Greenery
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- United Nations. Department of Economic and Social Affairs. Population dynamics. Available online: https://population.un.org/wup/ (accessed on 20 September 2021).
- Millennium Ecosystem Assessment. Conceptual Framework. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; pp. 25–36. ISBN 978-1559633901. [Google Scholar]
- Nowak, D.J.; Crane, D.E. The Urban Forest Effects (UFORE) Model: Quantifying urban forest structure and functions. In Integrated Tools for Natural Resources Inventories in the 21st Century. Gen. Tech. Rep. NC-212; Hansen, M., Burk, T., Eds.; Department of Agriculture, Forest Service, North Central Forest Experiment Station: St. Paul, MN, USA, 2000; pp. 714–720. [Google Scholar]
- Wang, B.; Liu, Z.; Mei, Y.; Li, W. Assessment of ecosystem service quality and its correlation with landscape patterns in Haidian District, Beijing. Int. J. Environ. Res. Public Health 2019, 16, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camps-Calvet, M.; Langemeyer, J.; Calvet-Mir, L.; Gómez-Baggethund, E. Ecosystem services provided by urban gardens in Barcelona, Spain: Insights for policy and planning. Environ. Sci. Policy 2016, 62, 14–23. [Google Scholar] [CrossRef]
- Lin, B.B.; Egerer, M.H.; Liere, H.; Jha, S.; Bichier, P.; Philpott, S.M. Local-and landscape-scale land cover affects microclimate and water use in urban gardens. Sci. Total Environ. 2018, 610, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Ferrini, F.; Fini, A.; Mori, J.; Gori, A. Role of Vegetation as a Mitigating Factor in the Urban Context. Sustainability 2020, 12, 4247. [Google Scholar] [CrossRef]
- Acosta, M.; Vahdatikhaki, F.; Santos, J.; Hammad, A.; Dorée, A.G. How to bring UHI to the urban planning table? A data-driven modeling approach. Sustain. Cities Soc. 2021, 71, 102948. [Google Scholar] [CrossRef]
- Elliott, R.M.; Motzny, A.E.; Majd, S.; Chavez, F.J.V.; Laimer, D.; Orlove, B.S.; Culligan, P.J. Identifying linkages between urban green infrastructure and ecosystem services using an expert opinion methodology. Ambio 2020, 49, 569–583. [Google Scholar] [CrossRef] [PubMed]
- Schäffler, A.; Swilling, M. Valuing green infrastructure in an urban environment under pressure—The Johannesburg case. Ecol. Econ. 2013, 86, 246–257. [Google Scholar] [CrossRef]
- Nowak, D.J.; Greenfield, E.J. Recent changes in global urban tree and impervious cover. Urban For. Urban Green. 2020, 49, 126638. [Google Scholar] [CrossRef]
- Cimburova, Z.; Barton, D.N. The potential of geospatial analysis and Bayesian networks to enable i-Tree Eco assessment of existing tree inventories. Urban For. Urban Green. 2020, 55, 126801. [Google Scholar] [CrossRef]
- Dobbs, C.; Kendal, D.; Nitschke, C.R. Multiple ecosystem services and disservices of the urban forest establishing their connections with landscape structure and sociodemographics. Ecol. Indic. 2014, 43, 44–55. [Google Scholar] [CrossRef]
- Menconi, M.E.; Palazzoni, L.; Grohmann, D. Core themes for an urban green systems thinker: A review of complexity management in provisioning cultural ecosystem services. Urban For. Urban Green. 2021, 65, 127355. [Google Scholar] [CrossRef]
- Menconi, M.E.; Heland, L.; Grohmann, D. Learning from the gardeners of the oldest community garden in Seattle: Resilience explained through ecosystem services analysis. Urban For. Urban Green. 2020, 56, 126878. [Google Scholar] [CrossRef]
- Campbell, L.K. Getting farming on the agenda: Planning, policymaking, and governance practices of urban agriculture in New York City. Urban For. Urban Green. 2016, 19, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Matasov, V.; Marchesini, L.B.; Yaroslavtsev, A.; Sala, G.; Fareeva, O.; Seregin, I.; Castaldi, S.; Vasenev, V.; Valentini, R. IoT monitoring of urban tree ecosystem services: Possibilities and challenges. Forests 2020, 11, 775. [Google Scholar] [CrossRef]
- Werbin, Z.R.; Heidari, L.; Buckley, S.; Brochu, P.; Butler, L.J.; Connolly, C.; Houttuijn Bloemendaal, L.; McCabe, T.D.; Miller, T.K.; Hutyra, L.R. A tree-planting decision support tool for urban heat mitigation. PLoS ONE 2020, 15, e0224959. [Google Scholar] [CrossRef]
- Tahvonen, O. Scalable green Infrastructure—The case of domestic private gardens in Vuores, Finland. Sustainability 2018, 10, 4571. [Google Scholar] [CrossRef] [Green Version]
- Fox, W.; Dwivedi, P.; Lowe, R.C.; Welch, S.; Fuller, M. Estimating Carbon Stock of Live Trees Located on the Main Campus of the University of Georgia. J. For. 2020, 118, 457–465. [Google Scholar] [CrossRef]
- Italian Ministry of Ecological Transition. L. 10/2013. Available online: https://www.mite.gov.it/sites/default/files/archivio/normativa/legge_14_01_2013_10.pdf (accessed on 5 September 2021).
- Italian Official Gazette. D.M. 63/2020. Available online: https://www.mite.gov.it/sites/default/files/archivio/allegati/GPP/2020/guri_dm_63_del_2020_verde_002.pdf (accessed on 5 September 2021).
- ISTAT. Urban Environment. Urban Greenery: Table 11.1 (Availability of Urban Green Area Per Person). Available online: https://www.istat.it/it/archivio/264816 (accessed on 5 September 2021).
- Biernacka, M.; Kronenberg, J. Classification of institutional barriers affecting the availability, accessibility and attractiveness of urban green spaces. Urban For. Urban Green. 2018, 36, 22–33. [Google Scholar] [CrossRef]
- Cilliers, S.; Cilliers, J.; Lubbe, R.; Siebert, S. Ecosystem services of urban green spaces in African countries-perspectives and challenges. Urban Ecosyst. 2013, 16, 681–702. [Google Scholar] [CrossRef]
- Villa, F.; Bagstad, K.J.; Voigt, B.; Johnson, G.W.; Portela, R.; Honzák, M.; Batker, D. A Methodology for Adaptable and Robust Ecosystem Services Assessment. PLoS ONE 2014, 9, e91001. [Google Scholar] [CrossRef]
- Prybutok, S.; Newman, G.; Atoba, K.; Sansom, G.; Tao, Z. Combining Co$ting Nature and Suitability Modeling to Identify High Flood Risk Areas in Need of Nature-Based Services. Land 2021, 10, 853. [Google Scholar] [CrossRef] [PubMed]
- Jackson, B.; Pagella, T.; Sinclair, F.; Orellana, B.; Henshaw, A.; Reynolds, B.; Mcintyre, N.; Wheater, H.; Eycott, A. Polyscape: A GIS mapping framework providing efficient and spatially explicit landscape-scale valuation of multiple ecosystem services. Landsc. Urban Plan. 2013, 112, 74–88. [Google Scholar] [CrossRef]
- Hamel, P.; Guerry, A.D.; Polasky, S.; Han, B.; Douglass, J.A.; Hamann, M.; Janke, B.; Kuiper, J.J.; Levrel, H.; Liu, H.; et al. Mapping the benefits of nature in cities with the InVEST software. Npj Urban Sustain. 2021, 1, 25. [Google Scholar] [CrossRef]
- Mulligan, M. Climate change and food-water supply from Africa’s drylands: Local impacts and teleconnections through global commodity flows. Int. J. Water Resour. Dev. 2015, 31, 450–460. [Google Scholar] [CrossRef]
- Nowak, D.J. Understanding i-Tree: Summary of programs and methods. In General Technical Reports NRS-200; Department of Agriculture, Forest Service, Northern Research Station: Madison, WI, USA, 2020; 100p. [Google Scholar]
- Yarnvudhi, A.; Leksungnoen, N.; Tor-Ngern, P.; Premashthira, A.; Thinkampheang, S.; Hermhuk, S. Evaluation of Regulating and Provisioning Services Provided by a Park Designed to Be Resilient to Climate Change in Bangkok, Thailand. Sustainability 2021, 13, 13624. [Google Scholar] [CrossRef]
- Zanzi, A.; Andreotti, F.; Vaglia, V.; Alali, S.; Orlando, F.; Bocchi, S. Forecasting Agroforestry Ecosystem Services Provision in Urban Regeneration Projects: Experiences and Perspectives from Milan. Sustainability 2021, 13, 2434. [Google Scholar] [CrossRef]
- Baraldi, R.; Chieco, C.; Neri, L.; Facini, O.; Rapparini, F.; Morrone, L.; Rotondi, A.; Carriero, G. An integrated study on air mitigation potential of urban vegetation: From a multi-trait approach to modeling. Urban For. Urban Green. 2019, 41, 127–138. [Google Scholar] [CrossRef]
- Riondato, E.; Pilla, F.; Sarkar Basu, A.; Basu, B. Investigating the effect of trees on urban quality in Dublin by combining air monitoring with i-Tree Eco model. Sustain. Cities Soc. 2020, 61, 102356. [Google Scholar] [CrossRef]
- Szkop, Z. Evaluating the sensitivity of the i-Tree Eco pollution model to different pollution data inputs: A case study from Warsaw, Poland. Urban For. Urban Green. 2020, 55, 126859. [Google Scholar] [CrossRef]
- Su, T.H.; Lin, C.S.; Lin, J.C.; Liu, C.P. Dry deposition of particulate matter and its associated soluble ions on five broadleaved species in Taichung, central Taiwan. Sci. Total Environ. 2021, 753, 141788. [Google Scholar] [CrossRef]
- Pace, R.; Guidolotti, G.; Baldacchini, C.; Pallozzi, E.; Grote, R.; Nowak, D.J.; Calfapietra, C. Comparing i-Tree Eco Estimates of Particulate Matter Deposition with Leaf and Canopy Measurements in an Urban Mediterranean Holm Oak Forest. Environ. Sci. Technol. 2021, 55, 6613–6622. [Google Scholar] [CrossRef] [PubMed]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C.; Hoehn, R.E.; Walton, J.T.; Bond, J. A ground-based method of assessing urban forest structure and ecosystem services. Aboriculture Urban For. 2008, 34, 347–358. [Google Scholar] [CrossRef]
- Berland, A. Urban tree growth models fo two nearby cities show notable differences. Urban Ecosyst. 2020, 23, 1253–1261. [Google Scholar] [CrossRef]
- Lin, J.; Kroll, C.N.; Nowak, D.J. An uncertainty framework for i-Tree eco: A comparative study of 15 cities across the United States. Urban For. Urban Green. 2021, 60, 127062. [Google Scholar] [CrossRef]
- Millward, A.A.; Sabir, S. Benefits of a forested urban park: What is the value of Allan Gardens to the city of Toronto, Canada? Landsc. Urban Plan. 2011, 100, 177–188. [Google Scholar] [CrossRef]
- Endreny, T.; Santagata, R.; Perna, A.; Stefano, C.D.; Rallo, R.F.; Ulgiati, S. Implementing and managing urban forests: A much needed conservation strategy to increase ecosystem services and urban well-being. Ecol. Model. 2017, 360, 328–335. [Google Scholar] [CrossRef]
- Barò, F.; Calderòn-Argelich, A.; Langemeyer, J.; Connolly, J.J.T. Under one canopy? Assessing the distributional environmental justice implications of street tree benefits in Barcelona. Environ. Sci. Policy 2019, 102, 54–56. [Google Scholar] [CrossRef]
- Cariñanos, P.; Marinangeli, F. An uptaded proposal of the Potential Allergenicity of 150 ornamental trees and shrubs in Medirettanean Cities. Urban For. Urban Green. 2021, 63, 127218. [Google Scholar] [CrossRef]
- Demographic Statistic ISTAT. Available online: http://demo.istat.it/bilmens/index.php?anno=2020&lingua=ita (accessed on 5 September 2021).
- European Environment Agency. Climatic Data and Pollution. Available online: https://www.eea.europa.eu/themes/air/explore-air-pollution-data (accessed on 5 September 2021).
- Umbria Region, Hydrographic Regional Service. Available online: https://www.regione.umbria.it/ambiente/servizio-idrografico (accessed on 5 September 2021).
- Coville, R.; Endreny, T.; Nowak, D.J. Modeling the impact of urban trees on hydrology. In Forest-Water Interactions. Ecological Studies (Analysis and Synthesis); Levia, D., Carlyle-Moses, D., Iida, S., Michalzik, B., Nanko, K., Tischer, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 240, pp. 459–487. [Google Scholar]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.; LaPoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E.J. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, S. i-Tree Eco Precipitation Interception Model Descriptions. 2015. Available online: http://www.itreetools.org/eco/resources/iTree_Eco_Precipitation_Interception_Model_Descriptions.pdf (accessed on 10 December 2021).
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Baldocchi, D.D.; Hicks, B.B.; Camera, P. A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos. Environ. 1987, 21, 91–101. [Google Scholar] [CrossRef]
- Van Essen, H.; Schroten, A.; Otten, M.; Sutter, D.; Schreyer, C.; Zandonella, R.; Maibach, M.; Doll, C. External Costs of Transport In Europe; CE Delft: Delft, Netherlands, 2011. [Google Scholar]
- U.S. Environmental Protection Agency. The Social Cost of Carbon. 2015. Available online: http://www.epa.gov/climatechange/EPActivities/economics/scc.html (accessed on 10 December 2021).
- McPherson, E.G.; Simpson, J.R. Carbon Dioxide Reduction through Urban Forestry: Guidelines for Professional and Volunteer Tree Planters; General Technical Report PSW-171; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 1999.
- McPherson, E.G.; Simpson, J.R.; Peper, P.J.; Crowell, A.M.N.; Xiao, Q. Northern California Coast Community Tree Guide: Benefits, Costs, and Strategic Planting; General Technical Report PSW-GTR-228; U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station: Albany, CA, USA, 2010.
- Sacchelli, S.; Fabbrizzi, S.; Geri, F.; Ciolli, M. Place-based policy-making and community security: A decision support system for integrated planning of urban ecosystem services and disservices. Green Energy Technol. 2018, 0, 95–104. [Google Scholar] [CrossRef]
- He, B.J.; Zhao, D.; Xiong, K.; Qi, J.; Ulpiani, G.; Pignatta, G.; Prasad, D.; Jones, P. A framework for addressing urban heat challenges and associated adaptive behavior by the public and the issue of willingness to pay for heat resilient infrastructure in Chongqing, China. Sustain. Cities Soc. 2021, 75, 103361. [Google Scholar] [CrossRef]
- Perugia. Tree Balance 2014–2018. Available online: https://www.lifeclivutspringames.education/wp-content/uploads/2020/04/BilancioArboreoPerugia.pdf (accessed on 5 September 2021).
- Shackleton, C.M.; Blair, A.; De Lacy, P.; Kaoma, H.; Mugwagwa, N.; Dalu, M.T.; Walton, W. How important is green infrastructure in small and medium-sized towns? Lessons from South Africa. Landsc. Urban Plan. 2018, 180, 273–281. [Google Scholar] [CrossRef]
- Dasch, M.J. Measurement of dry deposition to surface in deciduous and pine canopies. Environ. Pollut. 1987, 44, 261–277. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Qiu, S.; Peng, J. Using the modified i-Tree Eco model to quantify air pollution removal by urban vegetation. Sci. Totale Environ. 2019, 688, 673–683. [Google Scholar] [CrossRef]
- Martinico, F.; La Rosa, D.; Privitera, R. Green oriented urban development for urban ecosystem services provision in a medium sized city in southern Italy. IForest 2014, 7, 385–395. [Google Scholar] [CrossRef] [Green Version]
- Municipalty of Perugia, Urban Plan. Implementation Rules. 2021. Available online: https://www.comune.perugia.it/resources/prg/TUNA.pdf (accessed on 5 September 2021).
- Menconi, M.E.; Sipone, A.; Grohmann, D. Complex Systems Thinking Approach to Urban Greenery to Provide Community-Tailored Solutions and Enhance the Provision of Cultural Ecosystem Services. Sustainability 2021, 13, 11787. [Google Scholar] [CrossRef]
Percentage of Urban Forest Inventory Implemented | First-Level | Second-Level |
---|---|---|
% | % | |
for the whole municipal green area | 47 | 33 |
partial/in progress | 44 | 53 |
total | 91 | 86 |
Inventories using georeferenced data | % | % |
for the whole municipal green area | 31 | 31 |
partial/in progress | 36 | 32 |
total | 65 | 63 |
within a geographical information system | 25 |
Species | Carbon Storage | Gross Carbon Sequestration | Avoided Runoff | Pollution Removal | Structural Value | |||||
---|---|---|---|---|---|---|---|---|---|---|
Class | (Metric ton) | Class | (Metric ton/yr) | Class | (m3/yr) | Class | (Metric ton/yr) | Class | (EUR) | |
Abies alba Mill. | 5 | 1.04 × 10−1 | 5 | 4.60 × 10−3 | 5 | 1.70 × 10−1 | 5 | 9.17 × 10−5 | 5 | 1006 |
Acacia Mill. | 5 | 4.0 × 10−4 | 5 | 2.00 × 10−4 | 5 | 6.80 × 10−3 | 5 | 47 | ||
Acer campestre L. | 5 | 3.67 × 10−2 | 5 | 2.80 × 10−3 | 5 | 5.98 × 10−2 | 5 | 3.33 × 10−5 | 5 | 171 |
Acer pseudoplatanus L. | 5 | 8.09 × 10−2 | 5 | 5.60 × 10−3 | 5 | 1.69 × 10−1 | 5 | 9.17 × 10−5 | 5 | 854 |
Acer spp. | 3 | 4.18 × 10−1 | ||||||||
Ailanthus altissima Mill. | 5 | 7.20 × 10−3 | 5 | 1.40 × 10−3 | 5 | 9.82 × 10−2 | 5 | 5.24 × 10−5 | 5 | 92 |
Carpinus betulus L. | 5 | 3.84 × 10−2 | 5 | 6.10 × 10−3 | 5 | 1.53 × 10−1 | 5 | 9.17 × 10−5 | 5 | 597 |
Cedrus spp. | 2 | 5.61 × 10−1 | 4 | 1.20 × 10−2 | 1 | 9.88 × 10−1 | 1 | 5.16 × 10−4 | 1 | 4970 |
Celtis australis L. | 4 | 2.47 × 10−1 | 3 | 1.61 × 10−2 | 1 | 8.64 × 10−1 | 1 | 4.59 × 10−4 | 4 | 1689 |
Cercis siliquastrum L. | 5 | 2.46 × 10−2 | 5 | 2.80 × 10−3 | 5 | 1.19 × 10−1 | 5 | 9.17 × 10−5 | 5 | 471 |
Citrus limon (L.) Osbeck | 5 | 6.00 × 10−4 | 5 | 3.00 × 10−4 | 5 | 1.08 × 10−2 | 5 | 47 | ||
Corylus avellana L. | 5 | 3.06 × 10−2 | 5 | 2.50 × 10−3 | 5 | 1.71 × 10−1 | 5 | 9.17 × 10−5 | 5 | 508 |
Crataegus monogyna Jacq. | 5 | 1.28 × 10−2 | 5 | 2.50 × 10−3 | 5 | 1.44× 10−1 | 5 | 6.88 × 10−5 | 5 | 213 |
Cupressus arizonica E. Greene | 4 | 1.95 × 10−1 | 4 | 6.20 × 10−3 | 3 | 4.32 × 10−1 | 3 | 2.25 × 10−4 | 4 | 1755 |
Cupressus sempervirens L. | 4 | 2.84 × 10−1 | 4 | 9.20 × 10−3 | 4 | 3.43 × 10−1 | 4 | 1.78 × 10−4 | 3 | 2592 |
Cycas revoluta Thunb. | 5 | 9.40 × 10−3 | 5 | 1.00 × 10−4 | 4 | 3.13 × 10−1 | 4 | 1.84 × 10−4 | 5 | 369 |
Eriobotrya japonica (Thunb.) Lindl. | 5 | 7.09 × 10−2 | 5 | 6.00 × 10−3 | 5 | 1.46 × 10−1 | 5 | 6.88 × 10−5 | 5 | 736 |
Ficus carica L. | 5 | 1.06 × 10−1 | 4 | 6.20 × 10−3 | 5 | 1.96× 10−1 | 5 | 1.05 × 10−4 | 5 | 788 |
Ilex aquifolium L. | 5 | 4.40 × 10−2 | 5 | 3.90 × 10−3 | 5 | 7.86 × 10−2 | 5 | 567 | ||
Juglans regia L. | 4 | 2.04 × 10−1 | 4 | 1.19 × 10−2 | 2 | 7.28 × 10−1 | 2 | 3.85 × 10−4 | 5 | 890 |
Lagerstroemia indica L. | 5 | 3.97 × 10−2 | 5 | 4.10 × 10−3 | 5 | 6.14 × 10−2 | 5 | 3.44 × 10−5 | 5 | 521 |
Larix decidua Mill. | 5 | 1.21 × 10−1 | 5 | 5.00 × 10−3 | 1 | 8.01 × 10−1 | 1 | 4.59 × 10−4 | 4 | 1457 |
Laurus nobilis L. | 5 | 2.25 × 10−2 | 5 | 2.50 × 10−3 | 5 | 7.24 × 10−2 | 5 | 3.59 × 10−5 | 5 | 262 |
Ligustrum lucidum Aiton | 5 | 6.98 × 10−2 | 5 | 3.00 × 10−3 | 5 | 4.85 × 10−2 | 5 | 2.29 × 10−5 | 5 | 365 |
Ligustrum sinense Lour. | 5 | 2.46 × 10−3 | 5 | 1.83 × 10−4 | 5 | 1.31 × 10−2 | 5 | 59 | ||
Ligustrum vulgare L. | 5 | 1.10 × 10−3 | 5 | 3.00 × 10−4 | 5 | 1.11 × 10−2 | 5 | 31 | ||
Magnolia grandiflora L. | 4 | 2.10 × 10−1 | 4 | 9.90 × 10−3 | 4 | 2.44 × 10−1 | 4 | 1.22 × 10−4 | 4 | 1330 |
Magnolia liliiflora Desr. | 5 | 2.85 × 10−2 | 5 | 3.00 × 10−3 | 5 | 6.49 × 10−2 | 5 | 4.59 × 10−5 | 5 | 440 |
Malus domestica Borkh. | 5 | 1.28 × 10−2 | 5 | 3.20 × 10−3 | 5 | 8.59 × 10−2 | 5 | 171 | ||
Morus nigra L. | 5 | 1.42 × 10−1 | 4 | 7.80 × 10−3 | 4 | 2.06 × 10−1 | 5 | 9.17 × 10−5 | 5 | 695 |
Nerium oleander L. | 5 | 4.30 × 10−3 | 5 | 7.00 × 10−4 | 5 | 3.24 × 10−2 | 5 | 1.31 × 10−5 | 5 | 87 |
Olea europaea L. | 5 | 1.26 × 10−1 | 4 | 7.00 × 10−3 | 5 | 9.27 × 10−2 | 5 | 4.71 × 10−5 | 5 | 814 |
Ostrya carpinifolia Scop. | 5 | 1.87 × 10−2 | 5 | 2.40 × 10−3 | 5 | 4.99 × 10−2 | 5 | 449 | ||
Picea abies (L.) H. Karst. | 4 | 2.03 × 10−1 | 4 | 9.70 × 10−3 | 3 | 4.84 × 10−1 | 3 | 2.57 × 10−4 | 4 | 1534 |
Pinus halepensis Mill. | 3 | 3.77 × 10−1 | 4 | 9.10 × 10−3 | 2 | 7.79 × 10−1 | 2 | 3.67 × 10−4 | 2 | 3055 |
Pinus nigra J.F. Arnold | 5 | 8.19 × 10−2 | 5 | 3.20 × 10−3 | 4 | 3.49 × 10−1 | 4 | 1.84 × 10−4 | 5 | 981 |
Pinus pinea L. | 4 | 2.59 × 10−1 | 4 | 7.90 × 10−3 | 4 | 3.57 × 10−1 | 4 | 1.87 × 10−4 | 3 | 2647 |
Pinus sylvestris L. | 4 | 2.99 × 10−1 | 5 | 5.70 × 10−3 | 4 | 2.12 × 10−1 | 4 | 1.22 × 10−4 | 3 | 2680 |
Platanus x acerifolia (Aiton) Willd. | 2 | 6.16 × 10−1 | 1 | 3.02 × 10−2 | 2 | 6.48 × 10−1 | 2 | 3.67 × 10−4 | 2 | 3377 |
Populus alba L. | 1 | 8.18 × 10−1 | 1 | 2.76 × 10−2 | 2 | 6.34 × 10−1 | 2 | 3.27 × 10−4 | 3 | 2088 |
Prunus amygdalus Batsch | 5 | 4.98 × 10−2 | 5 | 4.60 × 10−3 | 4 | 2.63 × 10−1 | 5 | 9.17 × 10−5 | 5 | 533 |
Prunus armeniaca L. | 5 | 9.69 × 10−2 | 4 | 6.20 × 10−3 | 5 | 1.27 × 10−1 | 5 | 6.88 × 10−5 | 5 | 547 |
Prunus avium L. | 5 | 1.39 × 10−1 | 4 | 1.03 × 10−2 | 5 | 1.64 × 10−1 | 5 | 8.56 × 10−5 | 5 | 787 |
Prunus cerasifera Ehrh. | 5 | 1.85 × 10−2 | 5 | 2.70 × 10−3 | 5 | 6.19 × 10−2 | 5 | 245 | ||
Prunus cerasus L. | 5 | 4.00 × 10−4 | 5 | 3.00 × 10−4 | 5 | 6.20 × 10−3 | 5 | 36 | ||
Prunus domestica L. | 5 | 1.37 × 10−1 | 5 | 5.30 × 10−3 | 5 | 5.39 × 10−2 | 5 | 3.06 × 10−5 | 5 | 511 |
Prunus persica (L.) Batsch | 5 | 1.00 × 10−2 | 5 | 1.80 × 10−3 | 5 | 4.07 × 10−2 | 5 | 1.83 × 10−5 | 5 | 168 |
Punica granatum L. | 5 | 1.06 × 10−2 | 5 | 1.10 × 10−3 | 5 | 2.63 × 10−2 | 5 | 2.29 × 10−5 | 5 | 177 |
Pyrus communis L. | 5 | 2.83 × 10−2 | 5 | 5.00 × 10−3 | 5 | 1.17 × 10−1 | 5 | 9.17 × 10−5 | 5 | 533 |
Quercus ilex L. | 4 | 2.98 × 10−1 | 4 | 1.15 × 10−2 | 4 | 2.32 × 10−1 | 4 | 1.18 × 10−4 | 4 | 1763 |
Quercus pubescens Willd. | 1 | 6.74 × 10−1 | 2 | 2.16 × 10−2 | 3 | 5.42 × 10−1 | 3 | 2.85 × 10−4 | 4 | 1886 |
Quercus robur L. | 5 | 4.41 × 10−2 | 5 | 4.10 × 10−3 | 5 | 7.62 × 10−2 | 5 | 605 | ||
Rhamnus alaternus L. | 5 | 2.40 × 10−3 | 5 | 1.30 × 10−3 | 5 | 4.20 × 10−3 | 5 | 64 | ||
Robinia pseudoacacia L. | 5 | 6.40 × 10−2 | 5 | 4.30 × 10−3 | 4 | 2.02 × 10−1 | 5 | 1.08 × 10−4 | 5 | 303 |
Thuja L. | 5 | 3.57 × 10−2 | 5 | 1.40 × 10−3 | 5 | 1.69 × 10−1 | 5 | 8.51 × 10−5 | 5 | 757 |
Tilia cordata Mill. | 5 | 4.69 × 10−2 | 5 | 5.70 × 10−3 | 4 | 2.64 × 10−1 | 5 | 9.17 × 10−5 | 4 | 1098 |
Washingtonia robusta H.Wendl. | 5 | 3.40 × 10−3 | 5 | 1.00 × 10−4 | 5 | 3.73 × 10−2 | 5 | 3.06 × 10−5 | 5 | 844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, L.; Menconi, M.E.; Grohmann, D.; Brunori, A.; Nowak, D.J. Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment. Sustainability 2022, 14, 1684. https://doi.org/10.3390/su14031684
Rossi L, Menconi ME, Grohmann D, Brunori A, Nowak DJ. Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment. Sustainability. 2022; 14(3):1684. https://doi.org/10.3390/su14031684
Chicago/Turabian StyleRossi, Luca, Maria Elena Menconi, David Grohmann, Antonio Brunori, and David J. Nowak. 2022. "Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment" Sustainability 14, no. 3: 1684. https://doi.org/10.3390/su14031684
APA StyleRossi, L., Menconi, M. E., Grohmann, D., Brunori, A., & Nowak, D. J. (2022). Urban Planning Insights from Tree Inventories and Their Regulating Ecosystem Services Assessment. Sustainability, 14(3), 1684. https://doi.org/10.3390/su14031684