Pitahaya Fruit (Hylocereus spp.) Peels Evaluation for Removal of Pb(II), Cd(II), Co(II), and Ni(II) from the Waters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Characterization Techniques
2.3. Zero-Point Charge (pHPZC)
2.4. Biosorption Experiments
2.5. Desorption and Regeneration Experiments
3. Results
3.1. Characterization
3.1.1. Zero-Point Charge (pHPZC)
3.1.2. FT-IR Spectra of Pitahaya Peel
3.1.3. Scanning Electron Microscopy
3.2. Sorption of the Metallic Chemical Species from Aqueous Solutions
3.2.1. pH Effect
3.2.2. Kinetics
3.2.3. Mass Effect
3.2.4. Isotherms
Isotherm Models | Metal Ions | |||
---|---|---|---|---|
Pb(II) | Cd(II) | Co(II) | Ni(II) | |
Langmuir | ||||
qm(mg g−1) | 82.64 | 17.95 | 6.013 | 5.322 |
KL (L mg−1) | 0.487 | 0.683 | 1.001 | 1.588 |
R2 | 0.994 | 0.998 | 0.998 | 0.998 |
Freundlich | ||||
n | 0.949 | 1.134 | 1.147 | 1.634 |
KF(mg(n−1)/n L1/ng−1) | 0.359 | 0.145 | 0.121 | 0.175 |
R2 | 0.969 | 0.989 | 0.978 | 0.984 |
Peel Fruits | Maximum Metal Uptake Capacity (mg g−1) | Refs | |||
---|---|---|---|---|---|
Pb(II) | Cd(II) | Co(II) | Ni(II) | ||
Modified orange | 476.1 | 293.3 | ----- | 162.6 | [10] |
Banana | 2.18–41.44 | 5.71–98.4 | 4.75–20.97 | 6.88–8.91 | [11,49] |
Kiwi | ----- | 15.87 | ----- | ----- | [50] |
Tangerine | ----- | 17.54 | ----- | ----- | [50] |
Orange | 7.97 | ---- | 1.82 | 6.88 | [51] |
Pummelo | ----- | 21.83 | ----- | ----- | [49] |
Durian | ----- | 18.55 | ----- | ----- | [49] |
Mango | 99.05 | 68.92 | ----- | 39.75 | [52] |
Pomegranate | ----- | ----- | ----- | 52.00 | [52] |
Pitahaya (In this study) | 82.64 | 17.95 | 6.01 | 5.32 |
3.3. Single and Multi-Component Removal
3.4. Sorption–Desorption Cycles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elgarahy, A.M.; Elwakeel, K.Z.; Mohammad, S.H.; Elshoubaky, G.A. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Clean. Eng. Technol. 2021, 4, 100209. [Google Scholar] [CrossRef]
- Jain, C.K.; Malik, D.S.; Yadav, A.K. Applicability of plant based biosorbents in the removal of heavy metals: A review. Environ. Process. 2016, 3, 495–523. [Google Scholar] [CrossRef]
- Yadav, S.; Yadav, A.; Bagotia, N.; Sharma, A.K.; Kumar, S. Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater—A review. J. Water Process Eng. 2021, 42, 102148. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Asgher, M. Biosorption of Reactive Dyes: A Review. Water Air Soil Pollut. 2012, 223, 2417–2435. [Google Scholar] [CrossRef]
- Anastopoulos, I.; Pashalidis, I.; Hosseini-bandegharaei, A.; Giannakoudakis, D.A.; Robalds, A.; Usman, M.; Escudero, L.B.; Zhou, Y.; Colmenares, J.C.; Nunez-Delago, A.; et al. Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions. J. Mol. Liq. 2019, 295, 111684. [Google Scholar] [CrossRef]
- Gunarathne, V.; Ashiq, A.; Ginige, M.P. Green Adsorbents for Pollutant Removal. Environ. Nanotechnol. 2018, 18, 53. Available online: http://link.springer.com/10.1007/978-3-319-92111-2 (accessed on 9 January 2022).
- Anastopoulos, I.; Pashalidis, I. Environmental applications of Luffa cylindrica-based adsorbents. J. Mol. Liq. 2020, 319, 114127. [Google Scholar] [CrossRef]
- Abbas, M.N.; Abass, S. Rice Husks as a Biosorbent Agent for Pb 2 + Ions From Contaminated Aqueous Solutions: A Review. Biochem. Cell Arch. 2020, 20, 1813–1820. [Google Scholar]
- Feng, N.; Guo, X.; Liang, S.; Zhu, Y.; Liu, J. Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J. Hazard. Mater. 2011, 185, 49–54. [Google Scholar] [CrossRef]
- Akpomie, K.G.; Conradie, J. Banana peel as a biosorbent for the decontamination of water pollutants. A review. Environ. Chem. Lett. 2020, 18, 1085–1112. [Google Scholar] [CrossRef]
- Adaobi, C.; Ighalo, J.O.; Ahmadi, S.; Engineering, E.H.; Ugonabo, V.I. Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: A review. Biomass Convers. Biorefnery 2021, 42, 1–19. [Google Scholar]
- Ngah, W.W.; Hanafiah, M.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef] [PubMed]
- Bagotia, N.; Sharma, A.K.; Kumar, S. A review on modified sugarcane bagasse biosorbent for removal of dyes. Chemosphere 2021, 268, 129309. [Google Scholar]
- Anastopoulos, I.; Karamesouti, M.; Mitropoulos, A.; Kyzas, G. A review for coffee adsorbents. J. Mol. Liq. 2017, 229, 555–565. [Google Scholar] [CrossRef]
- Liakos, E.V.; Rekos, K.; Giannakoudakis, D.A.; Mitropoulos, A.C.; Fu, J.; Kyzas, G.Z. Activated Porous Carbon Derived from Tea and Plane Tree Leaves Biomass for the Removal of Pharmaceutical Compounds from Wastewaters. Antibiotics 2021, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Suddique, M.; Shah, G.M.; Ahmad, I.; Murtaza, B.; Shah, N.S.; Mubeen, M.; Ahmad, S.; Zakir, A.; Schotting, R.J. Kinetic and equilibrium studies for cadmium biosorption from contaminated water using Cassia fistula biomass. Int. J. Environ. Sci. Technol. 2018, 16, 3099–3108. [Google Scholar] [CrossRef]
- Abatal, M.; Olguin, M.; Anastopoulos, I.; Giannakoudakis, D.; Lima, E.; Vargas, J.; Aguilar, C. Comparison of Heavy Metals Removal from Aqueous Solution by Moringa oleifera Leaves and Seeds. Coatings 2021, 11, 508. [Google Scholar] [CrossRef]
- Giannakoudakis, D.A.; Hosseini-Bandegharaei, A.; Tsafrakidou, P.; Triantafyllidis, K.S.; Kornaros, M.; Anastopoulos, I. Aloe vera waste biomass-based adsorbents for the removal of aquatic pollutants: A review. J. Environ. Manag. 2018, 227, 354–364. [Google Scholar] [CrossRef]
- Bayuo, J. An extensive review on chromium (vi) removal using natural and agricultural wastes materials as alternative biosorbents. J. Environ. Health Sci. Eng. 2021, 19, 1193–1207. [Google Scholar] [CrossRef]
- Mussa, M.; Mateso, S.; Chebude, Y. Potentials of agricultural wastes as the ultimate alternative adsorbent for cadmium removal from wastewater. A review. Sci. Afr. 2021, 13, e00934. [Google Scholar]
- Pathak, P.; Mandavgane, S.; Kulkarni, B.D. Fruit Peel Waste: Characterization and its Potential Uses. Curr. Sci. 2017, 113, 444–454. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Z.; Yang, Y.; Fang, G.; Yao, J.; Shao, Z.; Chen, X. Robust Protein Hydrogels from Silkworm Silk. ACS Sustain. Chem. Eng. 2016, 4, 1500–1506. [Google Scholar] [CrossRef]
- Maity, S.; Biswas, R.; Verma, S.K.; Sarkar, A. Natural polysaccharides as potential biosorbents for heavy metal removal. Food Med. Environ. Appl. Polysacch. 2021, 627–665. [Google Scholar]
- Phuengphai, P.; Singjanusong, T.; Kheangkhun, N.; Wattanakornsiri, A. Removal of copper(II) from aqueous solution using chemically modified fruit peels as efficient low-cost biosorbents. Water Sci. Eng. 2021, 14, 286–294. [Google Scholar] [CrossRef]
- De Ello, F.R.; Bernardo, C.L.; Dias, C.O.; Zuge, L.C.B.; Silveira, J.L.M.; Amante, E.R.; Canido, L.M.B. Evaluation of the chemical characteristics and rheological behavior of pitaya (Hylocereus undatus) peel. Exot. Fruits 2014, 69, 381–390. [Google Scholar] [CrossRef]
- Mercado-Silva, E.M. Pitaya—Hylocereus undatus (Haw). In Exotic Fruits Reference Guide; Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–338. [Google Scholar]
- Antonio, P. Mercado y Consumo de Fruta del Dragón en 2020. 2020, pp. 1–14. Available online: https://avogoconsulting.com (accessed on 26 September 2021).
- Jamilah, B.; Shu, C.E.; Kharidah, M.; Dzulkifly, M.A.; Noranizan, A. Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. Int. Food Res. J. 2011, 286, 279–285. [Google Scholar]
- Naseer, A.; Jamshaid, A.; Hamid, A.; Muhammad, N.; Ghauri, M.; Iqbal, J.; Rafiq, S.; Khuram, S.; Shah, N.S. Lignin and Lignin Based Materials for the Removal of Heavy Metals from Waste Water-An Overview. Z. Phys. Chem. 2019, 233, 315–345. [Google Scholar] [CrossRef]
- Cimá-Mukul, C.A.; Olguín, M.T.; Abatal, M.; Vargas, J.; Barrón-Zambrano, J.A.; Ávila-Ortega, A. Assessment of leucaena leucocephala as bio-based adsorbent for the removal of pb2+, cd2+ and ni2+ from water. Desalin Water Treat. 2020, 173, 331–342. [Google Scholar] [CrossRef]
- Rauf, A.; Mahmud, T.; Ashraf, M.; Rehman, R.; Basharat, S. Sorption studies on removal of Cd2+ from the aqueous solution using fruit-peels of Litchi chinensis Sonn. Desalination Water Treat. 2020, 187, 277–286. [Google Scholar] [CrossRef]
- Erdem, M.; Ucar, S.; Karagöz, S.; Tay, T. Removal of Lead (II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. Sci. World J. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaghetti, J.C.P.; Lima, E.C.; Royer, B.; Cunha, B.M.; Cardoso, N.F.; Brasil, J.L.; Dias, S.L.P. Pecan nutshell as biosorbent to remove Cu (II), Mn (II) and Pb (II) from aqueous solutions. J. Hazard Mater. 2009, 162, 270–280. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, E.; Arslan, G. Removal of metal ions using lignite in aqueous solution—Low cost biosorbents. Fuel Process Technol. 2007, 88, 609–615. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Gutierrez-Pinilla, D.; Gomez-Lahoz, C.; Vereda-Alonso, C.; Rodriguez-Maroto, J.; Arhoun, B. Optimization of Ni (II) biosorption from aqueous solution on modified lemon peel. Environ. Res. 2019, 179, 108849. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpää, M.; Witek-krowiak, A. Agricultural waste peels as versatile biomass for water purification—A review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar] [CrossRef]
- Kayranli, B.; Gok, O.; Yilmaz, T.; Gok, G.; Celebi, H.; Seckin, I.Y.; Kalat, D. Zinc Removal Mechanisms with Recycled Lignocellulose: From Fruit Residual to Biosorbent then Soil Conditioner. Water Air Soil Pollut. 2021, 232, 1–15. [Google Scholar] [CrossRef]
- Morosanu, I.; Teodosiu, C.; Paduraru, C.; Ibanescu, D.; Tofan, L. Biosorption of lead ions from aqueous ef fl uents by rapeseed biomass. New Biotechnol. 2017, 39, 110–124. [Google Scholar] [CrossRef]
- Singh, R.J.; Martin, C.E.; Barr, D.; Rosengren, R.J.; Jasmine, R.; Martin, C.E.; Bar, D.; Rosengren, R.J. Immobilised apple peel bead biosorbent for the cocktail solution. Cogent. Environ. Sci. 2019, 5, 1673116. [Google Scholar] [CrossRef]
- Prasanna, L.; Reddy, J.; Roh, H.; Choi, Y.; Chang, Y.; Yang, J. Hydrometallurgy Adsorption removal of Co (II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90–96. [Google Scholar]
- Parab, H.; Joshi, S.; Shenoy, N.; Lali, A. Determination of kinetic and equilibrium parameters of the batch adsorption of Co (II), Cr (III) and Ni (II) onto coir pith. Process Biochem. 2006, 41, 609–615. [Google Scholar] [CrossRef]
- Olu-Owolabi, B.I.; Oputu, O.U.; Adebowale, K.O.; Ogunsolu, O.; Olujimi, O.O. Biosorption of Cd 2 + and Pb 2 + ions onto mango stone and cocoa pod waste: Kinetic and equilibrium studies. Sci. Res. Essays 2012, 7, 1614–1629. [Google Scholar] [CrossRef]
- Qaiser, S.; Saleemi, A.R.; Umar, M. Biosorption of lead from aqueous solution by Ficus religiosa leaves: Batch and column study. J. Hazard. Mater. 2009, 166, 998–1005. [Google Scholar] [CrossRef]
- Bayomie, O.S.; Kandeel, H.; Shoeib, T.; Yang, H.; Youssef, N.; El-Sayed, M.M.H. Novel approach for effective removal of methylene blue dye from water using fava bean peel waste. Sci. Rep. 2020, 10, 7824. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Raja, F.D. Experimental characterisation and evaluation of perlite as a sorbent for heavy metal ions in single and quaternary solutions. J. Water Process Eng. 2014, 4, 179–184. [Google Scholar] [CrossRef]
- Jnr, M.H.; Spiff, A.I. Equilibrium Sorption Study of Al3+, Co2+ and Ag+ in Aqueous Solutions by Fluted Pumpkin (Telfairia Occidentalis HOOK f) Waste Biomass. Acta Chim Slov. 2005, 52, 174–181. [Google Scholar]
- Saikaew, W.; Kaewsarn, P. Cadmium ion removal using biosorbents derived from fruit peel wastes. Songklanakarin J. Sci. Technol. 2009, 31, 547–554. [Google Scholar]
- Al-Qahtani, K.M. Water purification using different waste fruit cortexes for the removal of heavy metals. J. Taibah Univ. Sci. 2016, 10, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, M. Adsorption of heavy metals from water using banana and orange peels. Indian J Sci Technol. 2017, 10, 1–14. [Google Scholar]
- Gupta, V.K.; Nayak, A.; Agarwal, S. Bioadsorbents for remediation of heavy metals: Current status and their future prospects. Environ. Eng. Res. 2015, 20, 1–18. [Google Scholar] [CrossRef]
- Masood, F.; Malik, A.; Masood, F.; Malik, A. Single and Multi-Component Adsorption of Metal Ions by Acinetobacter sp. FM4. Sep. Sci. Technol. 2015, 50, 892–900. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Balasubramanian, R. Is biosorption suitable for decontamination of metal-bearing wastewaters ? A critical review on the state-of-the-art of biosorption processes and future directions. J. Environ. Manag. 2015, 160, 283–296. [Google Scholar] [CrossRef]
- Ronda, A.; Calero, M.; Blázquez, G.; Pérez, A.; Martín-Lara, M. Optimization of the use of a biosorbent to remove heavy metals: Regeneration and reuse of exhausted biosorbent. J. Taiwan Inst. Chem. Eng. 2015, 51, 109–118. [Google Scholar] [CrossRef]
- Kyzas, G.Z. Commercial Coffee Wastes as Materials for Adsorption of Heavy Metals from Aqueous Solutions. Materials 2012, 5, 1826–1840. [Google Scholar] [CrossRef]
- Costley, S.C.; Wallis, F.M. Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res. 2001, 35, 3715–3723. [Google Scholar] [CrossRef]
Functional Group | Wavelength (cm−1) | ||||
---|---|---|---|---|---|
PP | PP-Loads Pb(II) | PP-Loads Cd(II) | PP-Loads Co(II) | PP-Loads Ni(II) | |
O-H | 3316 | 3335 | 3331 | 3329 | 3331 |
C=O | 1615 | 1637 | 1620 | 1633 | 1632 |
C–O | 1322 | 1312 | 1318 | 1320 | 1320 |
Kinetic Model | Non-Linear Equation | Linear Equation |
---|---|---|
Pseudo-first order | ||
Pseudo-second order | ||
Elovich | ||
Intraparticle diffusion |
Kinetic Model | Metal Ions | |||
---|---|---|---|---|
Pb(II) | Cd(II) | Co(II) | Ni(II) | |
Pseudo-second order | ||||
qe,cal (mg.g−1) | 5.91 | 4.93 | 1.77 | 1.11 |
k2 (g.mg−1·min−1) | 0.21 | 0.14 | 0.02 | 0.07 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 |
Pseudo-first order | ||||
qe,cal (mg.g−1) | 0.26 | 0.14 | 2.95 | 1.64 |
k1/10−2 (min−1) | 0.17 | 0.01 | 0.02 | 0.01 |
R2 | 0.55 | 0.91 | 0.84 | 0.67 |
Elovich | ||||
α (mg. g−1.min−1) | 4.47·1016 | 1.07·1029 | 50.25 | 51.16 |
β (g.mg−1) | 7.87 | 15.41 | 7.63 | 11.76 |
R2 | 0.92 | 0.94 | 0.92 | 0.95 |
Intraparticle diffusion | ||||
kid (mg. g−1.min−0.5) | 0.02 | 0.01 | 0.02 | 0.01 |
C | 5.50 | 4.70 | 1.11 | 0.78 |
R2 | 0.74 | 0.77 | 0.93 | 0.81 |
qe,exp (mg.g−1) | 5.89 | 4.93 | 4.20 | 2.23 |
Isotherm Model | Non-Linear Equation | Linear Equation |
---|---|---|
Langmuir | ||
Freundlich |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abatal, M.; Lima, E.C.; Giannakoudakis, D.A.; Vargas, J.; Anastopoulos, I.; Olguin, M.T.; Alfonso, I. Pitahaya Fruit (Hylocereus spp.) Peels Evaluation for Removal of Pb(II), Cd(II), Co(II), and Ni(II) from the Waters. Sustainability 2022, 14, 1685. https://doi.org/10.3390/su14031685
Abatal M, Lima EC, Giannakoudakis DA, Vargas J, Anastopoulos I, Olguin MT, Alfonso I. Pitahaya Fruit (Hylocereus spp.) Peels Evaluation for Removal of Pb(II), Cd(II), Co(II), and Ni(II) from the Waters. Sustainability. 2022; 14(3):1685. https://doi.org/10.3390/su14031685
Chicago/Turabian StyleAbatal, Mohamed, Eder C. Lima, Dimitrios A. Giannakoudakis, Joel Vargas, Ioannis Anastopoulos, Maria T. Olguin, and Ismeli Alfonso. 2022. "Pitahaya Fruit (Hylocereus spp.) Peels Evaluation for Removal of Pb(II), Cd(II), Co(II), and Ni(II) from the Waters" Sustainability 14, no. 3: 1685. https://doi.org/10.3390/su14031685
APA StyleAbatal, M., Lima, E. C., Giannakoudakis, D. A., Vargas, J., Anastopoulos, I., Olguin, M. T., & Alfonso, I. (2022). Pitahaya Fruit (Hylocereus spp.) Peels Evaluation for Removal of Pb(II), Cd(II), Co(II), and Ni(II) from the Waters. Sustainability, 14(3), 1685. https://doi.org/10.3390/su14031685