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Abstract: This paper explores an important problem in tourism demand analysis, namely, the
inherent uncertainty involved in projecting tourism demand. Tourism demand continues to be
severely affected by unforeseen events associated with the current global health crisis, which has led
to an examination of ways to predict the devastating effects of the COVID-19 pandemic on tourism.
Tourism flow forecasting relating to arrivals is of particular importance for tourism and the entire
hospitality industry, because it is an indicator of future demand. Thus, it provides fundamental
information that can be applied in the planning and development of future strategies. Accurate
forecasts of seasonal tourist flows can help decision-makers increase the efficiency of their strategic
planning and reduce the risk of decision-making failure. Due to the growing interest in more
advanced forecasting methods, we applied the ARMA model method to analyze the evolution of
monthly arrival series for Romania in the period from January 2010 to September 2021, in order to
ascertain the best statistical forecasting model for arrivals. We conducted this research to find the best
method of forecasting tourist demand, and we compared two forecasting models: AR(1)MA(1) and
AR(1)MA(2). Our study results show that the superior model for the prediction of tourist demand
is AR(1)MA(1).

Keywords: projection tourist flow; innovation; AR(1)MA(1); health crisis; seasonality

1. Introduction

The coronavirus pandemic has turned the world upside down since the second quarter
of 2020. The first sectors to be severely impacted by the coronavirus crisis were transport,
tourism, and hospitality, as well as the event planning industry. There is no doubt that
the tourism industry’s status quo has been severely impacted by the pandemic. The latest
annual WTTC [1] research shows that tourism suffered a loss of almost 5 trillion dollars
in 2020, with the contribution to GDP falling by a staggering 49.1% compared with 2019.
In 2020, 62 million jobs were lost, and domestic visitor spending fell by 45% [2], while
spending by international visitors fell by an unprecedented 69.4%.

There have been other crisis situations that have had a detrimental impact on tourism,
including the financial crisis of 2008–2010, various international terrorism events [3], in-
cluding the fall of the twin towers in the United States of America in 2001, bankruptcies in
tourism, and natural disasters, such as the 2021 volcanic eruption in Spain that disrupted
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a considerable number of European flights. However, these different crises did not have
such a devastating impact on travel as the current pandemic, because they were not global
events [4]. In the case of COVID-19, once social distancing policies were implemented,
there was a significant decrease in tourist arrivals, which reduced the total travel expense
income at the point of destination. Tourism seems to be particularly vulnerable to health
crises [5], because policies apply [6] to prevent the spread of contagions, such as restrictions
on mobility and social distancing. These restrictions negatively affect most tourism-related
services by impeding movement [7] between regions or countries and changing travel
motivations, which produces supply shocks [8].

The forecasting of tourist activity in a pandemic is also hampered by the fact that
tourism depends upon direct contact being established at the moment of consumption.
Unlike the market for goods, in the purchase of a tourism product [9], the consumer
is faced with a series of uncertainties and much greater risks, which only arise during
tourist consumption.

Any attempt to forecast tourism activity must consider two essential variables in
tourist circulation, namely, seasonality and motivation. Tourist motivation includes needs,
impulses, intentions, values, and specific tendencies, all of which have a personal feature.
The motivation (vocation, inclination) generate tourist demand, which is always quite
personal and subjective, and it is determined by psychological impulses [10] and exogenous
factors (environmental influences) [11]. Thus, during the current pandemic, the uncertainty
and risk to which a traveler is exposed causes their motivation to travel to decrease in
intensity, which influences the dynamics of travel [12]. The changes in tourism motivation
are a balance between necessity and satisfaction, with the balance tipping in favor of the
latter. On the one hand, satisfaction is one of the most important stimuli of international
tourist traffic, whereas necessity tends to stimulate domestic tourist traffic. The basis for
transforming tourist demand into consumption is mainly the motivation to travel. Tourist
motivation is seen as a stimulating element of tourist traffic. There is an intrinsic link
between motivation and tourist traffic, which is why in the absence of tourist motivation,
any attempt to estimate passenger flows would be difficult to achieve and it would not be
of practical applicability.

Given the current situation in Romania, which is still at the peak of the fourth wave of
COVID-19 infections, we can say that in terms of both real risks and the emotional compo-
nent, there will be a prolonged period in which we will see limited consumption of non-
essential goods, a slowdown in activity in sectors where physical presence is required [13],
and a lower attractiveness of domestic and international travel and tourism packages.

One of the key differences of the tourism industry from other economic sectors is that,
although health hazards do not destroy the infrastructure, they affect the flow [9] of tourists.
The emphasis of this paper is the ability and power to estimate tourist flow in the current,
uncertain conditions.

For central authorities, but also for economic agents that are active in the field of
tourism, the foreknowledge of a possible trend in the number of tourist arrivals is especially
important for establishing a medium- to long-term strategy, depending on the risk and
uncertainty of the conditions. Additionally, the possibility of estimating the flow of tourists
is particularly useful for anticipating the necessary labor force in the field of tourism and
HORECA, which are facing acute staff shortages in Romania. Estimating tourist arrivals
allows for the hiring of immigrant workers as necessary.

The research presented in this paper has theoretical applicability, by establishing a
forecast model of tourist flow in Romania in the context of the current pandemic, as well as
in practice, through offering the possibility of anticipating tourist flow, according to which
the Romanian decision-making bodies can establish the necessary measures to mitigate the
negative effects of the pandemic upon Romanian tourism.
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2. Literature Review

The literature review was approached in this study from two perspectives. On the
one hand, some of the literature reflected the impact of the pandemic crisis caused by the
SARS-CoV-2 virus on the entire tourism industry, and on the other hand, we reviewed the
specialized literature on forecasting tourism.

2.1. The Impact of the COVID-19 Health Crisis on the Tourism Industry

The tourism sector is currently facing difficult times, as it is one of the most affected
by the effects of the global pandemic [14].

At the structural changes that are taking place at the social level and that affect [15],
among many other aspects, the way we work, consume and travel, there is a growing
trend towards sustainability [16,17]—prior to the situation caused by COVID-19—which
foreshadows that we are part of a fundamental transition in the vast majority of sectors [18].

The HORECA sector, as a very important part of the tourism sector, is no stranger to
this [19], or to the need for a new management model that respects the environment and
the limits of the planet, as it wishes to ensure the continuity of its activity [20,21].

The positive results obtained in 2019 have prepared the players in the field for a
favorable evolution in 2020 [22]. However, the traffic restrictions imposed during the state
of emergency, some of which have been maintained and are on alert, have seriously affected
the performance of this sector [23].

Humanity is going through a period in which the pace of change [24] is accelerat-
ing, with more and more aspects of the future being characterized by high levels of risk
and uncertainty [25]. As a result, the future no longer flows linearly from the past and
the present; the discontinuities are multiplying [26], which makes forecasting activity
absolutely necessary [27].

The actions are oriented towards excellence for the future [28], which is why specialists
from all over the world who undertake them are good and fine connoisseurs of forecasting
methods [29], procedures and techniques [30].

Given the high degree of uncertainty that the future holds, the hypotheses acquire an
increasingly important role in the forecasts of the tourism industry [31].

Predictive studies in the field of tourism are all the more necessary [32] as the share
of tourism activities in all activities carried out at the level of a national economy become
higher, the more the dynamics of changes in the field of tourism increases, the more
ephemeral the market is and its fluctuations in demand, and the more unstable customers’
behavior becomes in the face of the global challenges posed by the COVID-19 pandemic [33].

In general, there is a consensus on the importance of the forecasting and planning
of activity in the tourism industry. Travel demand forecasting is essential in creating a
rapid response to a variety of unexpected and unpredictable situations [34] that arise in
this activity in the current conditions of uncertainty [35,36].

Tourist flows in most destinations vary seasonally [37]. Seasonality is one of the most
important and distinctive features of tourism demand and has an important impact on
the planning and operation of tourism business and on destination management [38,39] in
terms of infrastructure and resource allocation [40].

The tourist demand usually presents as seasonal models [41]. One of the main charac-
teristics of the tourist product is the existence of seasonal oscillations in the demand and
implicitly of the production of the tourist services [42]. These seasonal fluctuations are
characterized by a high degree of tourist flows in certain periods of the calendar year and
by a significant reduction in them or even a halt in tourist arrivals [43].

Seasonality has direct consequences [44] both on the development of tourism and on
other branches of the national economy whose evolution is related to the development
of tourism [45]. The consequences of the seasonality of the tourist product demand [46]
determine either the incomplete use of the material base and the labor force with negative
effects on the possibility of recovering the expenses (in the periods with reduced demand
(pre-, post- and off-season), or of the accommodation, food and other categories of spaces
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that ensure the provision of tourist services as well as the service staff, which influence the
quality of the services offered, and could cause dissatisfaction to tourists [47].

Seasonal fluctuations are affected by a number of factors either relatively constant [48]
or by a number of other conjunctural factors such as crises (economic, health, etc.). Forecasts
play [48] a major role in tourism planning; they are even more valuable in times of crisis
and post-crisis [49,50].

However, “tourism demand” is a broad concept that is not easy to measure by a certain
standard [51]. Tourism demand could be measured by the number of tourist arrivals, tourist
expenses or the number of nights spent by tourists [52]. The number of tourist arrivals has
been widely used as an adequate indicator of tourism demand [53] because the collection
of data on timely tourist expenditures is complex and very difficult [54]. In the present
research, we have considered the prediction of tourist demand expressed by the number
of arrivals. In Romania, in addition to arrivals registered by the tourism industry, we also
find non-tourist arrivals such as those of migrants who transit the country for working
in western Europe or nationals who return from work in other countries for various
events and mostly do not use the structures classified as tourist reception with tourist
accommodation functions.

Tourism demand is the basis on which all business tourism decisions ultimately
depend [55]. Accurate estimations of tourism demand are essential for the tourism indus-
try, because they can help reduce risk and uncertainty [56], as well as provide effective
background information for better tourism planning [57].

2.2. Specialized Literature That Addresses the Subject of Tourism Prediction

The main purpose of the industry forecast is to identify significant patterns of change
and to develop hypotheses about the most likely dynamics rates of various segments of the
hospitality industry.

The tourism industry experienced a real boom until 2019, many destinations experi-
enced a remarkable development [57] with a growth rate that varied unevenly each year,
but with constant growth for some destinations, but there were also cases when - there
were decreases in the tourist flow [58]. For such an evolution, precise forecasts of tourism
demand are needed.

The literature on tourism modeling and forecasting has developed a lot in the last four
decades [59,60]. In-depth studies have been conducted by both qualitative and quantitative
methods [61,62]. Qualitative methods of tourism forecasting [63] explore the changes
that a certain state of affairs of maximum interest will undergo, in the medium or long
term, based both on the evolution of past data [64] and considering a number of causal
factors [65,66] and inter-correlation [67]. Quantitative methods aim at estimating the
evolution of quantitative indicators in a short period of time [68], based on the future
extrapolation of existing data at a given time [69,70].

Due to the fluctuation and complexity of the tourism industry, the prediction methods
must capture even the finest nuances of non-stationary property and accurately describe its
evolutionary trend. Some authors have used machine learning methods [71–74] or neural
networks to predict tourism demand more accurately [40,67,75–79].

The continuous increase in tourism demand highlights the importance of correctly
anticipating the number of arrivals at the destination. Improving tourism demand forecasts
has led to a large body of research for times of crisis generated by economic [80,81],
social [82], terrorism [83] or health factors [69].

This paper uses statistical and econometric methods to determine the most accurate
prediction of tourism demand expressed by arrivals [84] in the classic conditions of season-
ality [85], under conditions of uncertainty created by COVID-19 pandemic that influences
all activities [86].
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3. Materials and Methods

Given the fact that the tourist activity has a seasonal feature, and the series chosen to
study the flow of tourists, i.e., the arrivals in Romania proved to be unstable by applying
the ADF (augmented Dickey–Fuller) and PP (Phillips–Perron) stationarity tests, but also
auto-correlation function graph (ACF) and partial auto-correlation function graph (PACF),
we have applied the ARMA method. The result was two possible ARMA models according
to the ACF and PACF correlogram for the initial series that was stationary by logarithm.
Thus, the ARMA models identified as being possible depending on the lags that exceed
the confidence band for autocorrelation and partial correlation were AR(1)MA(1) and
AR(1)MA(2), and by their comparative analysis, we obtained the AR(1)MA(1) model
which can be used to forecast the tourist flow in Romania. This model turned out to be
a stationary and parsimonious model that fits the data well. The model selection criteria
were: significance of the ARMA components, and comparisons of Akaike, Schwartz and
Hannan–Quinn, and Durbin–Watson statistics. Thus, the chosen model AR(1)MA(1) meets
the requirements for a stable univariate process and it accurately describes the previous
evolution of the series of arrivals.

Knowing that an ARMA analysis is more of an art than a science, because there is
no perfect model or true model, it will only be chosen the forecast model if the specialist
considers that it meets the absolutely necessary requirements. Thus, the model found by
the automatic application of the methods offered by machine learning must be completed
with an analysis assisted by the researcher who may or may not confirm the chosen model
automatically. In our study, we checked which model is automatically chosen by the
software EViews, and it turned out that it coincides with that we found by going through
the entire econometric methodology, namely, the AR(1)MA(1) model.

3.1. Study Description and Dataset

This study considers monthly data arrivals in Romania (arr series), in the period
January 2010–September 2021. The statistical data were obtained from the official website
of the National Institute of Statistics Romania (www.insse.ro accessed on 5 December 2021).

The COVID-19 pandemic has impacted a number of economic sectors, one of the
most affected of which has been tourism. The causes that generated the sharp reduction
in the tourism sector in Romania in the post-pandemic period are numerous, as shown
in Figure 1.
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Figure 1. The causes of the reduction in tourism in Romania in the post-pandemic period.

As a result of the reduction in both domestic and international tourist arrivals in
Romania, and implicitly, of the reduced revenues obtained from tourism, it is particularly
important for both tour operators and government institutions to forecast the future, short–
medium-term evolution of tourist arrivals in order to estimate the future income that can
be obtained from this sector. For this purpose, forecasting arrivals in Romania in the next

www.insse.ro
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period, we will look for the best model that can statistically approximate the evolution of
this series of monthly data.

3.2. The Algorithm of the Forecast System of Arrivals in Romania in the Post-Pandemic Period

In order to choose a forecast model for arrivals, we followed the following algorithm
for this study based on the methodology mentioned in Figure 2.
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The evolution of the monthly series of arrivals for Romania between January 2010 and
September 2021, based on statistical data obtained from the National Institute of Statistics
of Romania, www.insse.ro (accessed on 1 December 2021), is plotted in Figure 3.
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In order to choose a statistical forecast model for arrivals in Romania, it must meet
certain conditions, which is why we started by studying the normality and stationarity of
the arr series, according to Table 1.

Table 1. Descriptive statistics for arrivals in Romania.

Indicators Arrivals

Mean 779,086.0
Median 723,934.0

Maximum 1,869,383
Minimum 16,855.00
Std. Dev. 357,065.4
Skewness 0.894571
Kurtosis 3.745785

Jarque–Bera 22.07369
Probability 0.000016

Sum 1.10 × 108

Sum Sq. Dev. 1.78 × 1013

Observations 141

Verifying the stationarity of the initial series arr and the series d (arr, 1) was performed
using the auto-correlation function graph [87] (ACF), partial auto-correlation function
graph [88] (PACF), as well as through the ADF [89] test (augmented Dickey–Fuller) and
PP [90] (Phillips–Perron), and it was found that both series studied were not stationary. For
this reason, we studied the stationarity of the log(arr) series obtained by logarithmizing the
initial series arr, which proved to be stationary according to the ADF and PP tests, which
allowed us to apply an ARMA model (p, q).

The ARMA model attributed to Box–Jenkins (1970) can be applied in tourism fore-
casting for monthly number of tourist arrivals. The ARMA model used the order of the
autoregressive (AR) model (p) and the order of the moving average (MA) model (q), called
ARMA by the Box–Jenkin models (p, q).

“An ARMA based model has a significant advantage in terms of forecast accuracy.
This magnitude of improvement in the accuracy of the model is likely to have a considerable
positive effect on the quality of various managerial decisions made by hospitality industries
and recreation manager” [40].

ARMA is “an algorithm for the covariance determinant of a stationary autoregressive-
moving average model is considered. Some asymptotic properties of this determinant in
the stationarity and invertibility region of the process are studied numerically” [91].

www.insse.ro
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Given that tourism activity is seasonal (Figure 4) in general, and that the logarithmic
series is stationary, the Box and Jenkins test can be applied.

Sustainability 2021, 13, x FOR PEER REVIEW 9 of 22 
 

Given that tourism activity is seasonal (Figure 4) in general, and that the logarithmic 
series is stationary, the Box and Jenkins test can be applied.  

 

Figure 4. Evolution of arrivals in Romania by season. 

3.3. Methodology 
The Box and Jenkins test (1970) for choosing a model for determining the prediction 

model involves three steps, namely: Identification, Estimation, and Diagnosis and Fore-
casting. 

3.3.1. Identification 
An ARMA model (p, q) is linear, and is obtained as a linear combination of two other 

linear models. 
Based on the output of the ADF test, it is found that the probability associated with 

the constant c is 0.002, being less than the critical value 0.05, which means that this con-
stant c must be included in the ARMA model. 

Thus, for the stationary function log (arr), we can write: 

log (𝑎𝑎𝑎𝑎𝑎𝑎)𝑡𝑡 = 𝑐𝑐 + �𝛼𝛼 ∗ log (𝑎𝑎𝑎𝑎𝑎𝑎)𝑡𝑡−1

𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃 ∗ 𝐸𝐸𝑡𝑡 − 𝑗𝑗

𝑞𝑞

𝑗𝑗=1

+ 𝐸𝐸𝑡𝑡 (1) 

     
                          AR     MA 

Based on the ACF and PACF correlogram for the log (arr) series, possible ARMA 
models are identified based on the lags that exceed the confidence bands for autocorrela-
tion and partial correlation. Thus, it is found that the possible models are AR(1)MA(1) and 
AR(1)MA(2). 

3.3.2. Estimation of Models 
We tested the possible ARMA models, i.e., AR(1)MA(1) and AR(1)MA(2), to find a 

stationary and parsimonious model that fitted the data well. The model selection criteria 
were: 
• Significance of the ARMA components; 
• Comparing Akaike, Schwartz and Hannan–Quinn, and the smaller is better; 
• Comparing Durbin–Watson statistics, with a value closer to two being better. 

Based on these criteria, it is found that the AR(1)MA(1) is the model that could be 
used to forecast the arrival of tourists from Romania. 

3.3.3. Diagnosis and Forecasting 
The requirements for a stable univariate process are: 

• Residuals of the model are white noise applied Ljung–Box Q statistic; 

Figure 4. Evolution of arrivals in Romania by season.

3.3. Methodology

The Box and Jenkins test (1970) for choosing a model for determining the prediction
model involves three steps, namely: Identification, Estimation, and Diagnosis and Forecasting.

3.3.1. Identification

An ARMA model (p, q) is linear, and is obtained as a linear combination of two other
linear models.

Based on the output of the ADF test, it is found that the probability associated with the
constant c is 0.002, being less than the critical value 0.05, which means that this constant c
must be included in the ARMA model.

Thus, for the stationary function log (arr), we can write:

log(arr)t = c +
p

∑
i=1

α ∗ log(arr)t−1 +
q

∑
j=1

θ ∗ Et − j + Et (1)
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Based on the ACF and PACF correlogram for the log (arr) series, possible ARMA
models are identified based on the lags that exceed the confidence bands for autocorre-
lation and partial correlation. Thus, it is found that the possible models are AR(1)MA(1)
and AR(1)MA(2).

3.3.2. Estimation of Models

We tested the possible ARMA models, i.e., AR(1)MA(1) and AR(1)MA(2), to find a sta-
tionary and parsimonious model that fitted the data well. The model selection criteria were:

• Significance of the ARMA components;
• Comparing Akaike, Schwartz and Hannan–Quinn, and the smaller is better;
• Comparing Durbin–Watson statistics, with a value closer to two being better.

Based on these criteria, it is found that the AR(1)MA(1) is the model that could be
used to forecast the arrival of tourists from Romania.

3.3.3. Diagnosis and Forecasting

The requirements for a stable univariate process are:

• Residuals of the model are white noise applied Ljung–Box Q statistic;
• Null hypothesis: residuals are white noise;
• Check if the estimated ARMA process is (covariance) stationary: AR roots should lie

inside the unit circle;
• Check if the estimated ARMA process is invertible: all MA roots should lie inside the

unit circle.
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If the conditions are satisfied, we can forecast with this model and if the conditions
are not satisfied, we need to repeat the selection and estimation method.

On AR(1)MA(1) all these conditions are met so we can move on to the next step,
respectively we can forecast with this model AR(1)MA(1).

Additionally, if we proceeded with the automatic analysis of the forecast with
ARMA model using the statistical program EViews, the whole model AR(1)MA(1) is
determined automatically.

3.3.4. Forecast with the Chosen Model and Comparison with Statistical Data

Finally, the historical data for arrivals were compared with the forecast values from
ARMA (1,1) which revealed a very good approximation. In conclusion, it can be chosen as
forecast model for arrivals in Romania in the conditions of uncertainty generated by the
COVID-19 pandemic is the ARMA model (1,1).

4. Results
4.1. Stationary Verification

To verify the stationarity of the series, we applied the ADF (augmented Dickey–Fuller)
and PP (Phillips–Perron) stationarity tests, and we obtained the following results which
showed us that the arr and d(arr, 1) series are not stationary, whereas the log (arr) series is
stationary. (Table 2). Starting from H0 (null hypothesis): arr/d (arr)/log (arr) has a unit root;
applying ADF and PP using EViews resulted in the following values in Table 2.

Table 2. ADF and PP tests for arrivals series.

Serie t-Statistic Prob. *

arr Augmented Dickey–Fuller test statistic −1.951925 0.3078
Test critical values: 1% level −3.482453

5% level −2.884291
10% level −2.578981

arr Phillips–Perron test statistic −3.055846 0.1212
Test critical values: 1% level −4.024935

5% level −3.442238
10% level −3.145744

d(arr, 1) Augmented Dickey–Fuller test statistic −3.782047 0.0206
Test critical values: 1% level −4.031899

5% level −3.445590
10% level −3.147710

d(arr, 1) Phillips–Perron test statistic −3.981783 0.0188
Test critical values: 1% level −4.025426

5% level −3.442474
10% level −3.145882

log(arr) Augmented Dickey–Fuller test statistic −4.872991 0.0006
Test critical values: 1% level −4.025924

5% level −3.442712
10% level −3.146022

log(arr) Phillips–Perron test statistic −3.587904 0.0072
Test critical values: 1% level −3.477487

5% level −2.882127
10% level −2.577827

* MacKinnon (1996) one-sided p-values.

Based on the results obtained by processing the series using the statistical software
EViews for the centralized ADF and PP tests in Table 2, for the series arr and d (arr, 1),
H0 cannot be rejected because the value of the test is higher than the critical value; thus, the
series have a unitary root and they are non-stationary, for a relevance level of 1%. The same
result is obtained if we analyze the probability associated with ADF and PP tests which is
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higher than the lowest level of relevance, namely, 0.01. Therefore, it can be stated that the
hypothesis H0 is accepted and that the series arr and d (arr, 1) have a unitary root; therefore,
it can be stated that these series are non-stationary.

For the log (arr) series, H0 is accepted because the value of the statistical test is less
than the critical value, for a relevance level of 1%. Therefore, we will choose the log (arr)
series because it is stationary and does not require differentiation, unlike the initial arrivals
series which is not stationary even after the difference of order 1. Thus, we can say that
the log (arr) series is stationary, and that an ARMA model (p, q) can be applied because
it does not need differentiation. Given that the probability corresponds to the c constant
in the ADF test, which is 0 < 0.05, we will include the c constant in the ARMA model.
Additionally, for the log (arr) series the Durbin–Watson coefficient has a value of 1.927879
which is close to 2, which means that the parameters are stable, according to Table 3.

Table 3. Output for ADF test log (arr) series.

Variable Coefficient Std. Error t-Statistic Prob.

L_ARRIVALS(−1) −0.268666 0.055134 −4.872991 0.0000
D(L_ARRIVALS(−1)) 0.620091 0.072046 8.606876 0.0000
D(L_ARRIVALS(−2)) −0.249911 0.084399 −2.961081 0.0036

C 3.584175 0.734571 4.879274 0.0000
@TREND(“2010M01”) 0.000451 0.000644 0.699368 0.4855

R-squared 0.433407 Mean dependent var 0.007848
Adjusted R-squared 0.416367 S.D. dependent var 0.388562

S.E. of regression 0.296846 Akaike information criterion 0.444351
Sum squared residual 11.71961 Schwarz criterion 0.550411

Log likelihood −25.66022 Hannan–Quinn criterion 0.487451
F-statistic 25.43409 Durbin–Watson stat 1.927879

Prob(F-statistic) 0.000000

4.2. Identification and Estimation

Based on the ACF and PACF correlation chart for the log (arr) series in Figure 5,
possible ARMA models are identified based on the lags that exceed the confidence band
for autocorrelation and partial correlation. Thus, it is found that the possible models are
AR(1)MA(1) and AR(1)MA(2), according to Figure 5.
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Figure 5. Correlogram for log (arr) series.

The lags exceeding the confidence band for autocorrelation are 1 and 2, and for partial
correlation, the lags exceeding the confidence band are 1 and 2. Thus, the possible values
for p for AR are 1 or 2; those for q corresponding to MA are 1 and 2. Therefore, the
possible models are AR(1)MA(1) and AR(1)MA(2). We tested the two possible ARMA
models, namely:

• Model A: AR(1)MA(1) in Table 4;
• Model B: AR(1)MA(2) in Table 5.
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Table 4. AR(1)MA(1) Model A.

Variable Coefficient Std. Error t-Statistic Prob.

C 13.43362 0.155971 86.12880 0.0000
AR(1) 0.607583 0.039802 15.26505 0.0000
MA(1) 0.822821 0.053136 15.48528 0.0000

SIGMASQ 0.080048 0.004732 16.91652 0.0000

R-squared 0.765493 Mean dependent var 13.44107
Adjusted R-squared 0.760357 S.D. dependent var 0.586329

S.E. of regression 0.287027 Akaike information criterion 0.386513
Sum squared resid 11.28670 Schwarz criterion 0.470166

Log likelihood −23.24919 Hannan–Quinn criterion 0.420507
F-statistic 149.0678 Durbin–Watson stat 1.864215

Prob(F-statistic) 0.000000

Inverted AR Roots 0.61
Inverted MA Roots −0.82

Table 5. AR(1)MA(2) Model B.

Variable Coefficient Std. Error t-Statistic Prob.

C 13.40056 0.207699 64.51900 0.0000
AR(1) 0.960986 0.035982 26.70753 0.0000
MA(2) −0.761904 0.096825 −7.868843 0.0000

SIGMASQ 0.112022 0.005369 20.86579 0.0000

R-squared 0.671820 Mean dependent var 13.44107
Adjusted R-squared 0.664633 S.D. dependent var 0.586329

S.E. of regression 0.339548 Akaike information criterion 0.718858
Sum squared resid 15.79512 Schwarz criterion 0.802510

Log likelihood −46.67946 Hannan–Quinn criterion 0.752851
F-statistic 93.48447 Durbin–Watson stat 0.986999

Prob (F-statistic) 0.000000

Inverted AR Roots 0.96
Inverted MA Roots 0.87 −0.87

The best model must be stationary and parsimonious that fits the data well. Model se-
lection criteria are: Sigma SQ, AIC (Akaike information criterion); SBIC (Schwarz Bayesian
information criterion); HQIC (Hannan–Quinn information criterion); and Durbin–Watson
(DW) statistics which are centralized in Table 6, and according to which the best model is
Model A, i.e., AR(1)MA(1).

Table 6. Model comparison—choosing the best ARMA model.

Criteria Model A
ARMA (1,1)

Model B
ARMA (1,2) Best Model

C, AR and MA 2/2 3/3 Model A and Model B
Sigma SQ 0.08 0.11 Model A (smaller is better)

Log likelihood −23.24 −46.67 Model A (Bigger is better)
AIC 0.38 0.71 Model A (smaller is better)
SBIC 0.47 0.80 Model A (smaller is better)
HQIC 0.42 0.75 Model A (smaller is better)
DW 1.86 0.98 Model A (closer to 2 is better)

Best Model Model A
Note: author’s own calculation.

Table 6 indicates best model: Sigma SQ, AIC: Akaike information criterion; SBIC:
Schwarz Bayesian Information Criterion, HQIC: Hannan–Quinn information criterion and
DW Durbin–Watson statistic.
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4.3. Diagnosis and Forecasting

In order to determine whether the forecast can be made using the potential candidate
model, Model A—AR(1)MA(1), we needed to test whether it meets the conditions to be
considered a stable univariate process:

• We need to check if Residuals of the potential model can be considered White Noise,
so applied the Ljung–Box Q statistic. We start from:

Hypothesis H0. Residuals are White Noise.

By applying Ljung–Box Q statistic for the potential model AR(1)MA(1), it is observed
that the p Value associated with the Q statistic > 0.05; thus, we cannot reject the null
hypothesis, i.e., residuals are White Noise (Table 7).

Table 7. Q-statistic probabilities adjusted for 2 ARMA terms.

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

.|. | .|. | 1 0.060 0.060 0.5236

.|. | .|. | 2 0.021 0.018 0.5900
*|. | *|. | 3 −0.135 −0.138 3.2684 0.071
*|. | *|. | 4 −0.131 −0.117 5.7781 0.056
.|. | .|. | 5 0.014 0.035 5.8068 0.121
.|. | *|. | 6 −0.051 −0.068 6.2024 0.185
.|. | .|. | 7 0.069 0.042 6.9105 0.227
*|. | *|. | 8 −0.078 −0.093 7.8357 0.250
*|. | *|. | 9 −0.103 −0.112 9.4502 0.222
.|* | .|* | 10 0.091 0.113 10.722 0.218
.|. | .|. | 11 0.041 0.030 10.979 0.277
.|** | .|** | 12 0.309 0.264 25.925 0.004

• Check if the estimated ARMA process is (covariance) stationary: AR roots should lie
inside the unit circle;

• Check if the estimated ARMA process is invertible: all MA roots should lie inside the
unit circle.

If the conditions are satisfied, we can forecast with this potential model AR(1)MA(1),
but if the conditions are not satisfied, we need to repeat the selection and estimation method,
according to Table 8 and Figure 6.

Table 8. AR/MA Roots.

AR Root(s) Modulus Cycle Observation

0.607583 0.607583 No root lies outside the unit circle.
ARMA model is stationary.

MA Root(s) Modulus Cycle

−0.822821 0.822821 No root lies outside the unit circle.
ARMA model is invertible.

Thus, AR roots should lie inside the unit circle, and we can say the estimated ARMA
process is (covariance) stationary, and although all MA roots should lie inside the unit
circle, the estimated ARMA process is invertible.

Thus, if the conditions are satisfied, we can forecast with the model AR(1)MA(1). It can
be seen from Figure 7 that the tested model AR(1)MA(1) approximates the past evolution
very well, and that the residuals exceed the confidence interval only during the pandemic
and post-pandemic periods, in 2020 and 2021, respectively.
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Based on the analyses in Figure 8 and Table 9, it can be seen that the chosen model
of type AR(1)MA(1), on the basis of which the forecast for arrivals in Romania is made,
perfectly approximates the previous evolution of arrivals.

Table 9. Comparative analysis between Log(arr) and Log(arr) _Forecast.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 Year

Year 2010 2010
Log(arr) 12.6 12.7 12.8 12.9 13.2 13.3 13.5 13.6 13.3 13.1 13.0 12.9 13.1

Log(arr)_Forecast 12.6 12.7 12.8 12.9 13.2 13.3 13.5 13.6 13.3 13.1 13.0 12.9 13.1

Year 2011 2011
Log(arr) 12.8 12.8 12.9 13.0 13.3 13.4 13.7 13.8 13.4 13.3 13.1 13.1 13.2

Log(arr)_Forecast 12.8 12.8 12.9 13.0 13.3 13.4 13.7 13.8 13.4 13.3 13.1 13.1 13.2

Year 2012 2012
Log(arr) 12.9 12.8 13.1 13.2 13.4 13.6 13.8 13.9 13.5 13.4 13.2 13.0 13.3

Log(arr)_Forecast 12.9 12.8 13.1 13.2 13.4 13.6 13.8 13.9 13.5 13.4 13.2 13.0 13.3

Year 2013 2013
Log(arr) 13.0 13.0 13.1 13.2 13.4 13.6 13.8 13.9 13.5 13.4 13.3 13.1 13.4

Log(arr)_Forecast 13.0 13.0 13.1 13.2 13.4 13.6 13.8 13.9 13.5 13.4 13.3 13.1 13.4

Year 2014 2014
Log(arr) 13.0 13.1 13.2 13.2 13.5 13.6 13.8 14.0 13.6 13.5 13.3 13.2 13.4

Log(arr)_Forecast 13.0 13.1 13.2 13.2 13.5 13.6 13.8 14.0 13.6 13.5 13.3 13.2 13.4

Year 2015 2015
Log(arr) 13.1 13.2 13.3 13.4 13.6 13.8 14.1 14.2 13.8 13.6 13.5 13.4 13.6

Log(arr)_Forecast 13.1 13.2 13.3 13.4 13.6 13.8 14.1 14.2 13.8 13.6 13.5 13.4 13.6

Year 2016 2016
Log(arr) 13.3 13.4 13.4 13.5 13.7 13.8 14.2 14.3 13.9 13.7 13.6 13.5 13.7

Log(arr)_Forecast 13.3 13.4 13.4 13.5 13.7 13.8 14.2 14.3 13.9 13.7 13.6 13.5 13.7

Year 2017 2017
Log(arr) 13.4 13.4 13.5 13.6 13.8 14.0 14.3 14.3 14.0 13.8 13.6 13.6 13.8

Log(arr)_Forecast 13.4 13.4 13.5 13.6 13.8 14.0 14.3 14.3 14.0 13.8 13.6 13.6 13.8

Year 2018 2018
Log(arr) 13.5 13.5 13.5 13.6 13.8 14.0 14.3 14.4 14.1 13.9 13.7 13.6 13.8

Log(arr)_Forecast 13.5 13.5 13.5 13.6 13.8 14.0 14.3 14.4 14.1 13.9 13.7 13.6 13.8

Year 2019 2019
Log(arr) 13.5 13.5 13.6 13.7 13.9 14.1 14.3 14.4 14.1 13.9 13.7 13.6 13.9

Log(arr)_Forecast 13.5 13.5 13.6 13.7 13.9 14.1 14.3 14.4 14.1 13.9 13.7 13.6 13.9

Year 2020 2020
Log(arr) 13.6 13.5 12.4 9.7 10.5 12.7 13.7 14.1 13.6 13.1 12.7 12.7 12.7

Log(arr)_Forecast 13.6 13.5 12.4 9.7 10.5 12.7 13.7 14.1 13.6 13.1 12.7 12.7 12.7

Year 2021 2021
Log(arr) 13.1 13.1 13.0 13.0 13.3 13.6 14.2 14.4 13.9 – – – 13.5

Log(arr)_Forecast 13.1 13.1 13.0 13.0 13.3 13.6 14.2 14.4 13.9 13.6 13.5 13.5 13.5

Year 2022 2022
Log(arr) – – – – – – – – – – – – –

Log(arr)_Forecast 13.5 13.5 13.4 13.4 13.4 13.4 13.4 13.4 13.4 – – – 13.4

This chosen model offers us the possibility to estimate the values of the flow of tourists
from Romania, which is of great practical importance for the decision-making bodies in the
field of tourism which can thus adapt their policies and strategies in the field of tourism
according to these forecasted values to mitigate the negative effects of the current pandemic
and uncertainty on Romanian tourism.

The existence of a model that predicts how tourist activity will evolve is very useful
for adapting tourism policies according to the expected results that can be estimated for
the next period.
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Additionally, depending on the estimated values for the flow of tourists, it is possible
to estimate the necessary personnel in the field and the correlation of the policies for
establishing the quotas of migrants that can be employed in the tourism field, considering
the fact that Romania is facing a personnel crisis in the field of tourist services.

5. Discussion

We have applied the ARMA method starting from the fact that the analyzed activity
has a seasonal component, and the analyzed series regarding the tourist arrivals was
not stationary.

Based on the studies performed, we found that the tourism phenomenon in Romania
can be predicted using an AR(1)MA(1) model that accurately describes the previous evolu-
tion of the series of arrivals. The only deviations from the residuals for the forecast model
from the confidence interval occurred during the pandemic, because due to the lockdowns,
the tourism sector was particularly affected.

If we used only the computerized analysis of the tourism phenomenon in Romania
with the help of EViews, it established that the best forecast model for the arr series is also
AR(1)MA(1) (Table 10).

Table 10. Automatic ARIMA forecasting.

Selected Dependent Variable: LOG(ARRIVALS)

Number of estimated ARMA models: 1521
Number of non-converged estimations: 4

Selected ARMA model: (1,1)(1,1)
AIC value: 0.217870160741

Variable Coefficient Std. Error t-Statistic Prob.

C 13.40016 0.345544 38.77988 0.0000
AR(1) 0.602030 0.048188 12.49348 0.0000

SAR(12) 0.951003 0.087732 10.83989 0.0000
MA(1) 0.821729 0.077311 10.62886 0.0000

SMA(12) −0.780987 0.164679 −4.742496 0.0000
SIGMASQ 0.062633 0.003186 19.66038 0.0000
R-squared 0.816511 Mean dependent var 13.44107

Adjusted R-squared 0.809715 S.D. dependent var 0.586329
S.E. of regression 0.255766 Akaike information criterion 0.217870

Sum squared residual 8.831210 Schwarz criterion 0.343349
Log likelihood −9.359846 Hannan–Quinn criterion 0.268861

F-statistic 120.1478 Durbin–Watson stat 1.876450
Prob(F-statistic) 0.000000

Inverted AR Roots 1.00 0.86–0.50i 0.86 + 0.50i 0.60
0.50 − 0.86i 0.50 + 0.86i 0.00 − 1.00i −0.00 + 1.00i
−0.50 + 0.86i −0.50 − 0.86i −0.86 + 0.50i −0.86 − 0.50i

−1.00

Inverted MA Roots 0.98 0.85 + 0.49i 0.85 − 0.49i 0.49 − 0.85i
0.49 + 0.85i 0.00 + 0.98i −0.00 − 0.98i −0.49 − 0.85i
−0.49 + 0.85i −0.82 −0.85 − 0.49i −0.85 + 0.49i

The criteria on the basis of which the forecast model is chosen by EViews software are
given in Table 11 and Figure 9.

Starting from what is known as ARMA analysis, which is more an art than a science,
because there is no perfect model or true model, we chose that model with which the
forecast will be made only if the specialist considers that it meets the absolutely necessary
requirements. Therefore, the automatic application of the methods offered by machine
learning must be completed with an analysis assisted by a researcher who may or may not
confirm the chosen model automatically.



Sustainability 2022, 14, 1964 16 of 21

Table 11. Choosing the best ARMA model using EViews.

Model LogL AIC * BIC HQ

(1,1)(1,1) −9.359846 0.217870 0.343349 0.268861
(2,1)(1,1) −8.532700 0.220322 0.366714 0.279811
(1,2)(1,1) −8.568524 0.220830 0.367222 0.280319
(1,1)(2,0) −10.135520 0.228873 0.354352 0.279863
(1,1)(2,1) −9.237388 0.230318 0.376710 0.289806
(1,1)(1,2) −9.271864 0.230807 0.377199 0.290295
(0,3)(1,1) −9.304888 0.231275 0.377667 0.290764
(2,1)(2,0) −9.380115 0.232342 0.378734 0.291831
(1,2)(2,0) −9.452434 0.233368 0.379760 0.292857
(2,1)(2,1) −8.482311 0.233792 0.401097 0.301779
(1,3)(1,1) −8.483892 0.233814 0.401120 0.301801
(2,1)(1,2) −8.497281 0.234004 0.401310 0.301991
(1,2)(2,1) −8.514241 0.234245 0.401550 0.302232
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In this paper, we have studied two ARMA-type models econometrically starting from
the idea that the tourist activity is a seasonal and non-stationary one. Thus, through the
comparative analysis of the models AR(1)MA(1) and AR(1)MA(2) we demonstrated that
for the tourist flow in Romania can be forecast with the help of the model AR(1)MA(1),
as we have searched a stationary and parsimonious model that fits the data well. Model
selection criteria were: significance of the ARMA components, compare Akaike, Schwartz
and Hannan–Quinn, and Durbin–Watson statistic. We found that the tourism phenomenon
in Romania can be predicted using an AR(1)MA(1)-type model that meets the requirements
for a stable univariate process and that it accurately describes the previous evolution of the
series of arrivals. The only deviations from the residuals for the forecast model away from
the confidence interval occurred during the pandemic, because due to the lockdowns, the
tourism sector was particularly affected. We can say that for a short and medium time, the
forecast with such a model is almost identical to reality.

In our study, the model automatically chosen by the software is the same as the one
we found by reviewing the entire econometric methodology; therefore, the model with
which we made the forecast for the tourist flow in Romania was the AR model (1) MA(1).

This paper is subject to study limitations, but may also suggest additional lines of
research. This approach to tourism demand forecasting may continue in the future with
interest for researchers by expanding the geographical area or pursuing tourism activity
following this study, or may serve as a starting point for further research.
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The tourism phenomenon is a very important field for Romania, and the effects
generated by the COVID-19 pandemic on it are both social and economic, which is why a
series of coherent measures are needed to resume and boost domestic tourism, as well as
external tourism.

6. Conclusions

Tourism has been one of the sectors most affected globally due to the restrictions
imposed during the COVID-19 pandemic, but also the reluctance of consumers to travel.
Romania is no exception. Many holidays have been canceled during lockdowns and travel
budgets have been tightened. As governments work to limit the spread of new, increasingly
contagious strains of COVID-19, the tourism industry is hoping for an economic recovery.
However, “green certificates” are not enough to relaunch tourism, which is only expected
to return to pre-pandemic values in 2024.

The particularities of tourist services determine the fact there are many factors which
influence the tourist demand, so that the prediction of the tourist demand becomes more
complex and uncertain.

Knowing that the tourism system is affected, and it must respond to a growing number
of global challenges, including the continuing uncertainty surrounding the health crisis
and other challenges related to the market preferences of major tourism flows in emerging
economies, new realities of mobility related to travel restrictions, the need for forecasting is
necessary. In the hospitality industry, the idea that planning and forecasting activities are
exclusively a function of management has been rejected. This appears at all levels, from the
government downwards. Workers must consider the elements of the forecast so that the
activity can be carried out successfully, but also the knowledge of how to predict market
trends in order to be prepared for customer requests. During the COVID-19 pandemic,
the global tourism industry suffered considerably, and many countries are trying to make
forecasts and plans in order to recover tourism.

Tourism demand forecasting is a relevant and stimulating topic for various actors
involved in the tourism sector, such as practitioners and policy makers. Access to good
forecasts would help these agents anticipate future tourism demand and adapt their supply
capacity conveniently, as well as optimize their human resources. Resources related to
tourism could be allocated more efficiently, and the sector could produce more profit. For
this reason, it is crucial for researchers and operational managers to choose a forecasting
method that provides good predictive accuracy.

This study is apt because it addresses the severely affected tourist activity in a pan-
demic context, and it has both a theoretical applicability, by determining a model with
which to predict the flow of tourists from Romania; and practically, it can estimate the
values of tourist arrivals and enables the decision-making bodies in the field to take the
necessary measures to mitigate the negative effects of the pandemic on this sector of the
Romanian economy. For tourism decision makers, knowing a forecast of the trend for the
flow of tourist arrivals in the short and medium term is useful for adopting strategies to
support this field in the post-pandemic period. Additionally, the possibility to forecast
the flow of tourist arrivals is useful for anticipating the necessary workforce in the field of
tourist services.

The pandemic was a real shock for the Romanian tourism industry; therefore, we
intend to study future if the reduction in the number of tourist arrivals was only temporary,
being the manifestation of the shock, or whether the downward trend will continue in
the future. We also intend to study in our future research on tourism activity whether
the chosen model of type AR(1)MA(1) is suitable for other datasets, such as domestic or
international arrivals.
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