Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Input Data
3.2. WebGIS Database
3.3. Client–Server Architecture
4. Results
4.1. Displaying of Fishpond Data on a Webpage
4.2. Web-Based Server and a Client-Side Module
5. Discussion
6. Conclusions, Limitations, and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Fluet-Chouinard, E.; Messager, M.; Lehner, B.; Finlayson, C. Freshwater Lakes and Reservoirs. In The Wetland Book. Dordrecht; Finlayson, C., Milton, G., Prentice, R., Davidson, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Sterner, R.W.; Keeler, B.; Polasky, S.; Poudel, R.; Rhude, K.; Rogers, M. Ecosystem services of Earth’s largest freshwater lakes. Ecosyst. Serv. 2020, 41, 101046. [Google Scholar] [CrossRef]
- Mammides, C. A global assessment of the human pressure on the world’s lakes. Glob. Environ. Chang. 2020, 63, 102084. [Google Scholar] [CrossRef]
- Ding, L.; Chen, K.-L.; Cheng, S.-G.; Wang, X. Water ecological carrying capacity of urban lakes in the context of rapid urbanization: A case study of East Lake in Wuhan. Phys. Chem. Earth Parts A/B/C 2015, 89-90, 104–113. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, B.; Xion, J.; Zhang, H. Study on the spatial pattern and influencing factors of population urbanization of Dongting Lake area. Grograph. Res. 2013, 32, 1912–1922. [Google Scholar]
- Zeballos-Velarde, C.; Yamaguchi, K. Impacts of land reclamation on the landscape of Lake Biwa, Japan. Procedia-Soc. Behav. Sci. 2011, 19, 683–692. [Google Scholar] [CrossRef] [Green Version]
- Lienhoop, N.; Messner, F. The Economic Value of Allocating Water to Post-Mining Lakes in East Germany. Water Resour. Manag. 2009, 23, 965–980. [Google Scholar] [CrossRef]
- Jayanthi, M.; Rekha, P.N.; Kavitha, N.; Ravichandran, P. Assessment of impact of aquaculture on Kolleru Lake (India) using remote sensing and Geographical Information System. Aquac. Res. 2006, 37, 1617–1626. [Google Scholar] [CrossRef]
- Hickley, P.; Muchiri, M.; Boar, R.; Britton, R.; Adams, C.; Gichuru, N.; Harper, D. Habitat degradation and subsequent fishery collapse in Lakes Naivasha and Baringo, Kenya. Ecohydrol. Hydrobiol. 2004, 4, 503–517. [Google Scholar]
- Schindler, D.W.; Carpenter, S.; Chapra, S.C.; Hecky, R.E.; Orihel, D. Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef]
- Ekholm, P.; Mitikka, S. Agricultural Lakes in Finland: Current Water Quality and Trends. Environ. Monit. Assess. 2006, 116, 111–135. [Google Scholar] [CrossRef]
- Cooper, S.D.; Lake, P.S.; Sabater, S.; Melack, J.M.; Sabo, J.L. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 2013, 719, 383–425. [Google Scholar] [CrossRef]
- Mao, D.; Cherkauer, K.A. Impacts of land-use change on hydrologic responses in the Great Lakes region. J. Hydrol. 2009, 374, 71–82. [Google Scholar] [CrossRef]
- Pham, S.V.; Leavitt, P.R.; McGowan, S.; Peres-Neto, P. Spatial variability of climate and land-use effects on lakes of the northern Great Plains. Limnol. Oceanogr. 2008, 53, 728–742. [Google Scholar] [CrossRef] [Green Version]
- Hecky, R.E.; Bootsma, H.A.; Kingdon, M.L. Impact of Land Use on Sediment and Nutrient Yields to Lake Malawi/Nyasa (Africa). J. Great Lakes Res. 2003, 29, 139–158. [Google Scholar] [CrossRef]
- Bleischwitz, R.; Spataru, C.; Vandeveer, S.D.; Obersteiner, M.; Van Der Voet, E.; Johnson, C.; Andrews-Speed, P.; Boersma, T.; Hoff, H.; Van Vuuren, D.P. Resource nexus perspectives towards the United Nations Sustainable Development Goals. Nat. Sustain. 2018, 1, 737–743. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. The Nexus Approach to Managing Water, Soil, and Waste under Changing Climate and Growing Demands on Natural Resources. In Governing the Nexus: Water, Soil, and Waste Resources Considering Global Change; Kurian, M., Ardakanian, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 39–60. [Google Scholar]
- Jain, S.K.; Lohani, A.K.; Singh, R.D.; Chaudhary, A.; Thakural, L.N. Glacial lakes and glacial lake outburst flood in a Himalayan basin using remote sensing and GIS. Nat. Hazards 2012, 62, 887–899. [Google Scholar] [CrossRef]
- Mergili, M.; Schneider, J.F. Regional-scale analysis of lake outburst hazards in the southwestern Pamir, Tajikistan, based on remote sensing and GIS. Nat. Hazards Earth Syst. Sci. 2011, 11, 1447–1462. [Google Scholar] [CrossRef] [Green Version]
- Leblanc, M.; Favreau, G.; Tweed, S.; Leduc, C.; Razack, M.; Mofor, L. Remote sensing for groundwater modelling in large semiarid areas: Lake Chad Basin, Africa. Appl. Hydrogeol. 2006, 15, 97–100. [Google Scholar] [CrossRef]
- Ye, Q.; Zhu, L.; Zheng, H.; Naruse, R.; Zhang, X.; Kang, S. Glacier and lake variations in the Yamzhog Yumco basin, southern Tibetan Plateau, from 1980 to 2000 using remote-sensing and GIS technologies. J. Glaciol. 2007, 53, 673–676. [Google Scholar] [CrossRef] [Green Version]
- Zainab, N.; Tariq, A.; Siddiqui, S. Development of Web-Based GIS Alert System for Informing Environmental Risk of Dengue Infections in Major Cities of Pakistan. Geosfera Indones. 2021, 6, 77–95. [Google Scholar] [CrossRef]
- D’Amico, G.; Szopik-Depczyńska, K.; Beltramo, R.; D’Adamo, I.; Ioppolo, G. Smart and Sustainable Bioeconomy Platform: A New Approach towards Sustainability. Sustainability 2022, 14, 466. [Google Scholar] [CrossRef]
- Li, C.; Longley, P. A Test Environment for Location-Based Services Applications. Trans. GIS 2006, 10, 43–61. [Google Scholar] [CrossRef]
- Constanza, R.; Kubiszewski, I. A Nexus Approach to Urban and Regional Planning Using the Four-Capital Frame-work of Ecological Economics. In Environmental Resource Management and the Nexus Approach; Hettiarachchi, H., Ardakanian, R., Eds.; Springer: Cham, Switzerland, 2016; pp. 79–111. [Google Scholar]
- Kurian, M.; Ardakanian, R. The Nexus Approach to Governance of Environmental Resources Considering Global Change. In Governing the Nexus: Water, Soil and Waste Resources Considering Global Change; Kurian, M., Ardakanian, R., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 3–13. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Karthe, D.; Groll, M. Mapping of Major Land-Use Changes in the Kolleru Lake Freshwater Ecosystem by Using Landsat Satellite Images in Google Earth Engine. Water 2020, 12, 2493. [Google Scholar] [CrossRef]
- Kolli, M.K.; Opp, C.; Groll, M. Identification of Critical Diffuse Pollution Sources in an Ungauged Catchment by Using the Swat Model- A Case Study of Kolleru Lake, East Coast of India. Asian J. Geogr. Res. 2020, 3, 53–68. [Google Scholar] [CrossRef]
- Azeez, P.; Kumar, A.; Choudhury, B.; Sastry, V.; Upadhyay, S.; Reddy, K.; Rao, K. Report on the Proposal for Downsizing the Kolleru Wildlife Sanctuary (+5 to +3 Feet Contour); The Ministry of Environment and Forests Government of India: New Delhi, India, 2011.
- Rao, K.; Krishna, G.; Malini, B. Kolleru lake is vanishing—A revelation through digital image processing of IRS-1D LISS III sensor data. Curr. Sci. 2004, 86, 1312–1316. [Google Scholar]
- Harikrishna, K. Land Use/Land Cover patterns in and around Kolleru Lake, Andhra Pradesh, India Using Remote Sensing and GIS Techniques. Int. J. Remote Sens. Geosci. 2013, 2, 2319–3484. [Google Scholar]
- Belton, B.; Padiyar, A.; Ravibabu, G.; Rao, K.G. Boom and bust in Andhra Pradesh: Development and transformation in India’s domestic aquaculture value chain. Aquaculture 2017, 470, 196–206. [Google Scholar] [CrossRef]
- Pattanaik, C.; Prasad, S.; Nagabhatla, N.; Sellamuthu, S. A case study of Kolleru Wetland (Ramsar site), India using remote sensing and GIS. IUP J. Earth Sci. 2010, 4, 70–77. [Google Scholar]
- Barman, R.P. The fishes of the Kolleru Lake, Andhra Pradesh, India, with comments. Rec. Zool. Sur. India 2004, 103, 83–89. [Google Scholar]
- Butler, H.; Daly, M.; Doyle, A.; Gillies, S.; Hagen, S.; Schaub, T. The Geojson Format; Technical Report; Internet Engineering Task Force (IETF): Fremon, CA, USA, 2016. [Google Scholar]
- Piedrafita, R.; Béjar, R.; Blasco, R.; Marco, A.; Zarazaga-Soria, F.J. The digital ‘connected’ earth: Open technology for providing location-based services on degraded communication environments. Int. J. Digit. Earth 2017, 11, 761–782. [Google Scholar] [CrossRef] [Green Version]
- Horbiński, T.; Lorek, D. The use of Leaflet and GeoJSON files for creating the interactive web map of the preindustrial state of the natural environment. J. Spat. Sci. 2020, 1–17. [Google Scholar] [CrossRef]
- Masetti, G.; Kelley, J.G.W.; Johnson, P.; Beaudoin, J. A Ray-Tracing Uncertainty Estimation Tool for Ocean Mapping. IEEE Access 2017, 6, 2136–2144. [Google Scholar] [CrossRef]
- Dai, Y.; Duan, Z.; Ai, D. Construction and Application of Field Investigation Support Platform for Land Spatial Planning Based on GeoServer. J. Phys. Conf. Ser. 2020, 1621. [Google Scholar] [CrossRef]
- Gao, S.; Mioc, D.; Anton, F.; Yi, X.; Coleman, D.J. Online GIS services for mapping and sharing disease information. Int. J. Heal. Geogr. 2008, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.W.; Liu, H.Y.; Yang, Y.C.; Zhang, X.; Li, Y.W. GeoServer Based Forestry Spatial Data Sharing and Integration. Appl. Mech. Mater. 2013, 295–298, 2394–2398. [Google Scholar] [CrossRef]
- Boulos, M.N.K.; Honda, K. Web GIS in practice IV: Publishing your health maps and connecting to remote WMS sources using the Open Source UMN MapServer and DM Solutions MapLab. Int. J. Heal. Geogr. 2006, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordogna, G.; Kliment, T.; Frigerio, L.; Brivio, P.A.; Crema, A.; Stroppiana, D.; Boschetti, M.; Sterlacchini, S. A Spatial Data Infrastructure Integrating Multisource Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture. ISPRS Int. J. Geo-Inf. 2016, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yi, J. Management methods of spatial data based on PostGIS. In Proceedings of the 2010 Second Pacific-Asia Conference on Circuits, Communications and System, Beijing, China, 1–2 August 2010; Volume 1, pp. 410–413. [Google Scholar]
- Peterson, G. GIS cartography. In A Guide to Effective Map Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolli, M.K.; Opp, C.; Karthe, D.; Kumar, N.M. Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability 2022, 14, 2044. https://doi.org/10.3390/su14042044
Kolli MK, Opp C, Karthe D, Kumar NM. Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability. 2022; 14(4):2044. https://doi.org/10.3390/su14042044
Chicago/Turabian StyleKolli, Meena Kumari, Christian Opp, Daniel Karthe, and Nallapaneni Manoj Kumar. 2022. "Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India" Sustainability 14, no. 4: 2044. https://doi.org/10.3390/su14042044
APA StyleKolli, M. K., Opp, C., Karthe, D., & Kumar, N. M. (2022). Web-Based Decision Support System for Managing the Food–Water–Soil–Ecosystem Nexus in the Kolleru Freshwater Lake of Andhra Pradesh in South India. Sustainability, 14(4), 2044. https://doi.org/10.3390/su14042044