Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline
Abstract
:1. Introduction
2. Methodology and Study Area
2.1. Study Area
2.2. Analytical Hierarchical Approach and Coastal Vulnerability Assessment
3. Results and Discussion
3.1. Physical Factors
3.1.1. Coastal Slope
3.1.2. Coastal Geomorphology
3.1.3. Shoreline Change Rate
3.1.4. Sea-Level Change
3.1.5. Tidal Range
3.1.6. Wave Height
3.1.7. Bathymetry
3.2. Socioeconomic Measures
3.2.1. Population
3.2.2. Cultural Heritage (Tourist Locations)
3.2.3. Land Use/Land Cover
3.2.4. Road Networks
3.3. Evaluation of Calculated Coastal Vulnerability Indexes
4. Conclusions
- (a)
- Coastal slope changes revealed that 65% of the coastline was ranked as moderate to highly vulnerable, whereas the Barrier–lagoon, Mud, and Benin coasts were rated as potentially low to very low vulnerability.
- (b)
- In terms of coastal geomorphology, the Barrier–lagoon and Mud coasts segments are moderately vulnerable to climate change impacts due to the predominance of lagoons, peninsulas, sand beaches, and estuaries along these coasts. Additionally, the Delta and Strand coasts are projected to be highly vulnerable to climate impacts.
- (c)
- Over the last few years, shoreline changes have revealed significant coastal accretion and erosion, exacerbated by anthropogenic activities. The intensive erosion processes and predominant accretion patterns observed could be linked to localized near-shore bathymetry, wave-current velocity, and tidal wave height. The coastline segments are susceptible to very high to moderate vulnerability.
- (d)
- The Barrier, Mud, Delta, and Strand coasts might be inundated and eroded by ocean water due to receding shoreline with rising sea level. The results of the assessment showed that the coastline is currently very vulnerable to sea-level rise and an accelerated increase in sea level in the coming years could lead to coastal erosion and an inundation of farmlands and residences, which could result to socioeconomic issues such as food crises, increased rural to urban migration, increased rate of diseases and poverty.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahapatra, M.; Ratheesh, R.; Rajawat, A.S. Sea level rise and coastal vulnerability assessment: A review. Int. J. Geol. Earth Environ. Sci. 2013, 3, 67–80. [Google Scholar]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef] [PubMed]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [Green Version]
- Pramanik, M.K.; Biswas, S.S.; Mondal, B.; Pal, R. Coastal vulnerability assessment of the predicted sea level rise in the coastal zone of Krishna–Godavari delta region, Andhra Pradesh, east coast of India. Environ. Dev. Sustain. 2016, 18, 1635–1655. [Google Scholar] [CrossRef]
- Barragán, J.M.; de Andrés, M. Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast. Manag. 2015, 114, 11–20. [Google Scholar] [CrossRef]
- United States Agency for International Development. Adapting to Coastal Climate Change: A Guidebook for Development Planners; United States Agency for International Development: Washington, DC, USA, 2009. Available online: http://www.usaid.gov/our_work/environment/climate/policies_prog/vulnerability.html (accessed on 29 December 2018).
- Mujabar, P.S.; Chandrasekar, N. Coastal erosion hazard and vulnerability assessment for southern coastal Tamil Nadu of India by using remote sensing and GIS. Nat. Hazards 2011, 69, 1295–1314. [Google Scholar] [CrossRef]
- Rani, N.N.V.S.; Satyanarayana, A.N.V.; Bhaskaran, P.K. Coastal vulnerability assessment studies over India: A review. Nat. Hazards 2015, 77, 405–428. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Rani, N.S.; Rice, L.; Sur, K.; Thayaparan, M.; Kulatunga, U.; Rege, R.; Yenneti, K.; Campos, L.C. A Systematic Review of Coastal Vulnerability Assessment Studies along Andhra Pradesh, India: A Critical Evaluation of Data Gathering, Risk Levels and Mitigation Strategies. Water 2019, 11, 393. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, A.; Ferreira, O.; Roelvink, D. Coastal lagoons and rising sea level: A review. Earth-Sci. Rev. 2016, 154, 356–368. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.T.; Bonetti, J.; Rogers, K.; Woodroffe, C.D. Indicator-based assessment of climate-change impacts on coasts: A review of concepts, methodological approaches and vulnerability indices. Ocean Coast. Manag. 2016, 123, 18–43. [Google Scholar] [CrossRef] [Green Version]
- Bevacqua, A.; Yu, D.; Zhang, Y. Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environ. Sci. Policy 2018, 82, 19–29. [Google Scholar] [CrossRef]
- Wang, S.; Wang, W.; Ji, M.; Chen, W.; Xu, S. Assessment of vulnerability to sea-level rise for China’s Coast. In Proceedings of the 2013 21st International Conference on Geoinformatics, Kaifeng, China, 20–22 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Danladi, I.B.; Kore, B.M.; Gül, M. Vulnerability of the Nigerian coast: An insight into sea level rise owing to climate change and anthropogenic activities. J. Afr. Earth Sci. 2017, 134, 493–503. [Google Scholar] [CrossRef]
- Benson, N.U.; Fred-Ahmadu, O.H. Occurrence and distribution of microplastics-sorbed phthalic acid esters (PAEs) in coastal psammitic sediments of tropical Atlantic Ocean, Gulf of Guinea. Sci. Total Environ. 2020, 730, 139013. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013—The Physical Science Basis. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Sydowed, I., Ed.; Intergovernmental Panel on Climate Change: Geneva, Switzerland; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Oloyede, M.O.; Benson, N.U.; Williams, A.B. Climate change and coastal vulnerability assessment methods: A review. IOP Conf. Series Earth Environ. Sci. 2021, 665, 012069. [Google Scholar] [CrossRef]
- Musa, Z.N.; Popescu, I.; Mynett, A. The Niger Delta’s vulnerability to river floods due to sea level rise. Nat. Hazards Earth Syst. Sci. 2014, 14, 3317–3329. [Google Scholar] [CrossRef] [Green Version]
- Ogoro, M.; Oyegun, C.U.; Lawal, O. Vulnerability of coastal communities in Niger Delta region to sea level rise. Quest J. Res. Environ. Earth Sci. 2016, 2, 1–8. [Google Scholar]
- Ojile, M.O.; Koulibaly, C.T.; Ibe, C. Comparative analysis of vulnerabilities of selected coastal communities and populations to climate change impacts and adaptation strategies in Nigeria and Senegal. In Proceedings of the IAIA17 Conference, 37th Annual Conference of the International Association for Impact Assessment, Montréal, QC, Canada, 4–7 April 2017. [Google Scholar]
- Oloyede, M.O.; Williams, A.B.; Benson, N.U. Simulated sea-level rise under future climate scenarios for the Atlantic Barrier-lagoon coast of Nigeria using SimCLIM. IOP Conf. Series Earth Environ. Sci. 2021, 665, 012068. [Google Scholar] [CrossRef]
- Fadahunsi, O.; Pe’eri, S.; Armstrong, A. Characterisation of the Nigerian Shoreline. Available online: https://www.hydrointernational.com/content/article/characterisation-of-the-Nigerian-shoreline (accessed on 21 September 2020).
- Adeaga, O. Morphology analysis of Niger Delta shoreline and estuaries for eco-tourism potentials. In The Land/Ocean Interactions in the Coastal Zone of West and Central Africa; Diop, S., Barusseau, J., Descamps, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 108–118. [Google Scholar]
- French, G.T.; Awosika, L.F.; Ibe, C.E. Sea-level rise and Nigeria: Potential impacts and consequences. J. Coast. Res. 1995, 14, 224–242. [Google Scholar]
- Rajasree, B.R.; Deo, M.C. Assessment of Coastal Vulnerability Considering the Future Climate: A Case Study along the Central West Coast of India. J. Waterw. Port Coast. Ocean Eng. 2020, 146, 5019005. [Google Scholar] [CrossRef]
- Feindouno, S.; Guillaumont, P.; Simonet, C. The Physical Vulnerability to Climate Change Index: An Index to Be Used for International Policy. Ecol. Econ. 2020, 176, 106752. [Google Scholar] [CrossRef]
- Gornitz, V.; Daniels, R.C.; White, T.W.; Birdwell, K.R. The development of a coastal risk assessment database: Vulnerability to sea-level rise in the US Southeast. J. Coast. Res. 1994, 12, 327–338. [Google Scholar]
- Thieler, E.R.; Hammar-Klose, E.S. National Assessment of Coastal Vulnerability to Sea-Level Rise; U.S. Geological Survey Open-File Report 99-593; U.S. Geological Survey: Woods Hole, MA, USA, 1999.
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclim. Palaeoecol. 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Cutter, S.; Ash, K.; Emrich, C.T. The geographies of community disaster resilience. Glob. Environ. Chang. 2014, 29, 65–77. [Google Scholar] [CrossRef]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Zaghlol, G.M.; El-Garawani, I.M.; Ahmed, E.F.; Rateb, M.E.; Abdel Moneim, A.E. Ganoderma applanatum secondary metabolites induced apoptosis through different pathways: In vivo and in vitro anticancer studies. Biomed. Pharmacother. 2018, 101, 264–277. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.-K.; Liou, J.-C.; Chen, W.-W. Protection Priority in the Coastal Environment Using a Hybrid AHP-TOPSIS Method on the Miaoli Coast, Taiwan. J. Coast. Res. 2012, 280, 369–374. [Google Scholar] [CrossRef]
- Ju, C.Y.; Jia, Y.G.; Shan, H.X.; Tang, C.W.; Ma, W.J. GIS-based coastal area suitability assessment of geo-environmental factors in Laoshan district, Qingdao. Nat. Hazards Earth Syst. Sci. 2012, 12, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Yin, Z.; Wang, J.; Xu, S. National assessment of coastal vulnerability to sea-level rise for the Chinese coast. J. Coast. Conserv. 2012, 16, 123–133. [Google Scholar] [CrossRef]
- Gornitz, V.M.; White, T.W.; Cushman, R.M. Vulnerability of the U.S to Future Sea Level Rise; Rep. No. CONF-910780-1; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1991.
- Dinh, Q.; Balica, S.; Popescu, I.; Jonoski, A. Climate change impact on flood hazard, vulnerability and risk of the Long Xuyen Quadrangle in the Mekong Delta. Int. J. River Basin Manag. 2012, 10, 103–120. [Google Scholar] [CrossRef]
- Cutter, S.L.; Barnes, L.; Berry, M.; Burton, C.; Evans, E.; Tate, E.; Webb, J. A place-based model for understanding community resilience to natural disasters. Glob. Environ. Chang. 2008, 18, 598–606. [Google Scholar] [CrossRef]
- Birkmann, J. Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications. Environ. Hazards 2007, 7, 20–31. [Google Scholar] [CrossRef]
- Diez, P.G.; Perillo, G.M.E.; Piccolo, M.C. Vulnerability to Sea-Level Rise on the Coast of the Buenos Aires Province. J. Coast. Res. 2007, 231, 119–126. [Google Scholar] [CrossRef]
- Rao, Y.R.; Hawley, N.; Charlton, M.N.; Schertzer, W.M. Physical processes and hypoxia in the central basin of Lake Erie. Limnol. Oceanogr. 2008, 53, 2007–2020. [Google Scholar] [CrossRef] [Green Version]
- Athanasiou, P.; van Dongeren, A.; Giardino, A.; Vousdoukas, M.; Gaytan-Aguilar, S.; Ranasinghe, R. Global distribution of nearshore slopes with implications for coastal retreat. Earth Syst. Sci. Data 2019, 11, 1515–1529. [Google Scholar] [CrossRef] [Green Version]
- Thieler, E.R. National Assessment of Coastal Vulnerability to Future Sea-Level Rise. 2000. Available online: https://www.usgs.gov/centers/whcmsc/science/national-assessment-coastal-vulnerability-sea-level-rise (accessed on 23 October 2021).
- Ibe, A.C. Nigeria. In Artificial Structures and Shorelines; Walker, H.F., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; pp. 287–294. [Google Scholar]
- Kumar, T.S.; Mahendra, R.S.; Nayak, S.; Radhakrishnan, K.; Sahu, K.C. Coastal Vulnerability Assessment for Orissa State, East Coast of India. J. Coast. Res. 2010, 263, 523–534. [Google Scholar] [CrossRef]
- Badru, G.; Odunuga, S.; Omojola, A.; Oladipo, E. Shoreline change analysis in parts of the Barrier-lagoon and Mud sections of Nigeria coast. J. Extreme Events 2017, 4, 1850004. [Google Scholar] [CrossRef]
- Zabbey, N.; Giadom, F.D.; Babatunde, B.B. Nigerian Coastal Environments. In World Seas: An Environmental Evaluation, 2nd ed.; Sheppard, C., Ed.; Academic Press: London, UK, 2018; pp. 835–854. [Google Scholar] [CrossRef]
- Benson, N.U. National Priorities for Implementing Adaptation to Climate in Nigeria. IOC-UNESCO Workshop Series for Adaptation to Climate Change in Africa; IOC-UNESCO: Paris, France, 2010; p. 20. [Google Scholar]
- Awosika, L.F.; Folorunsho, R. Climate change and impact on the coastal environment of Nigeria. In Sustainable Environmental Management in Nigeria; Ivbijaro, M.F., Akintola, F., Okechukwu, R.U., Eds.; Mattivi Production: Ibadan, Nigeria, 2006; p. 465. [Google Scholar]
- Dolan, R.; Fenster, M.S.; Holme, S.J. Temporal Analysis of Shoreline Recession and Accretion. J. Coast. Res. 1991, 7, 723–744. [Google Scholar]
- Mani Murali, M.R.; Ankita, M.; Vethamony, P. A new insight to vulnerability of Central Odisha coast, India using analytical hierarchical process (AHP) based approach. J. Coast. Conserv. 2018, 22, 799–819. [Google Scholar] [CrossRef]
- Abuodha, P.; Woodroffe, C.D. Assessing vulnerability of coasts to climate change: A review of approaches and their application to the Australian coast. In GIS for the Coastal Zone: A Selection of Papers from Coast GIS 2006; Bruce, E., Puotinen, M., Furness, R.A., Eds.; Australian National Centre for Ocean Resources and Security University of Wollongong: Wollongong, Australia, 2006; p. 458. [Google Scholar]
- Boak, E.H.; Turner, I. Shoreline Definition and Detection: A Review. J. Coast. Res. 2005, 214, 688–703. [Google Scholar] [CrossRef] [Green Version]
- Ibe, A.C.; Antia, E. Preliminary Assessment of the Impact of Erosion along the Nigerian Shoreline. 1983. Available online: https://aquadocs.org/handle/1834/1206 (accessed on 23 October 2021).
- Akinluyi, F.O.; Adebola, A.O.; Adeseko, A.A. Assessment of Shoreline and Associated Landuse/Land cover Changes along Part of Lagos Coastline, Nigeria. Contemp. Trends Geosci. 2018, 7, 59–70. [Google Scholar] [CrossRef]
- Odunuga, S.; Ajijola, A.; Patience, A.; Delima, T.; Akpan, A. Geomorphic mapping and human activities along the southwestern Nigeria coastline. In Proceedings of the HP1, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 1 July 2013; IAHS Publ.: Gothenburg, Sweden, 2013; p. 358. [Google Scholar]
- Awosika, L.F.; Ibe, C.E.; Adekoya, A.; Balogun, A. Monitoring of the 1990/91 Beach Replenishment Project at the Bar Beach, Lagos; Federal Ministry of Works and Housing: Lagos, Nigeria, 1991.
- Unnikrishnan, A.; Shankar, D. Are sea-level-rise trends along the coasts of the north Indian Ocean consistent with global estimates? Glob. Planet. Chang. 2007, 57, 301–307. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change: The Physical Science Basis; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; p. 996. [Google Scholar]
- Benson, N. Climate change, effects. In Encyclopedia of Global Warming and Climate Change; Philander, S., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 210–215. [Google Scholar]
- Benson, N. Global warming. In Encyclopedia of Global Warming and Climate Change; Philander, S., Ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008; pp. 457–461. [Google Scholar]
- Woodworth, P.L.; Player, R. The permanent service for mean sea level: An update to the 21st century. J. Coast. Res. 2003, 19, 287–295. [Google Scholar]
- Popoola, O.O. Vulnerability of the Nigerian coast to Inundation consequent on sea level rise. J. Eng. Environ. Stud. 2015, 5, 25–38. [Google Scholar]
- Badru, G.; Odunuga, S.; Amaeshi, L.L.N. Vulnerability to sea level rise of Badagry coastline, Lagos, Nigeria. Adv. Sci. Technol. 2012, 6, 91–106. [Google Scholar]
- Penland, S.; Connor, P.F.; Beall, A.; Fearnley, S.; Williams, S.J. Changes in Louisiana’s shoreline: 1855–2002. J. Coast. Res. 2005, 44, S3–S7. [Google Scholar]
- Centre for Environment and Development in Africa. Coastal Profile of Nigeria. In Federal Environmental Protection Agency; Center for Environment and Development in Africa: Abuja, Nigeria, 1997. [Google Scholar]
- Obinwanne, C.O.; Okpoko, P.U. Comparative assessment of coastal tourism potentials of selected areas in Rivers State, Nigeria. Int. J. Sci. Technol. Res. 2015, 4, 262–269. [Google Scholar]
- Markovic, M.; Salta, A.; Skkaricie, Z.; Trumbric, I. Sustainable Coastal Tourism: An intergrated Planning and Management Approach; United Nation Environmental Programme (UNEP): Milan, France, 2009. [Google Scholar]
- Ademiluyi, I.A.; Okude, A.S.; Akanni, C.O. An appraisal of land use and landcover mapping in Nigeria. Afr. J. Agric. Res. 2008, 3, 581–586. [Google Scholar]
- Fasona, M.J.; Omojola, A.S. Climate Change, Human Security and Communal Clashes in Nigeria. In Proceedings of the International Workshop on Human Security and Climate Change, Asker, Norway, 21–23 June 2007. [Google Scholar]
- Verburg, P.H.; Veldkamp, W.S.A.; Espaldon, R.L.V.; Mastura, S.S.A. Modeling the spatial dynamics of regional landuse: The CLUE-S Model. Environ. Manag. 2002, 30, 301–405. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change (IPCC) Report. 2021. Available online: https://www.ipcc.ch/2021/08/09/ar6-wg1-20210809-pr/ (accessed on 10 December 2021).
- Doukakis, E. Coastal vulnerability and risk parameters. Eur. Water 2005, 11, 3–7. [Google Scholar]
Coastal Vulnerability Index | ||||||
---|---|---|---|---|---|---|
Type of Parameter | Variable | Very Low = 1 | Low = 2 | Moderate = 3 | High = 4 | Very High = 5 |
Socioeconomic measures | Population (Million) | 500,000 T < 1 | 1–1.5 | 1.5–2.0 | 2–2.5 | >2.5 |
Land use/land cover | Barren land | Vegetated land or open uncultivated land | Agriculture/fallow land | Heavily cultivated land | Urban/ecological reserved lands | |
Road network (distance from shoreline) | 2 km buffer | 1.5 km buffer | 1 km buffer | 500 m buffer | 250 m buffer | |
Cultural heritage (tourist locations) | N/A | Absent | N/A | Present | N/A | |
Physical and geomorphological measures | Coastal slope (%) | >1.0 | 0.8–0.6 | 0.6–0.4 | 0.4–0.2 | <0.2 |
Coastal geomorphology | Rocky coast | Indented coast/Medium cliff | Dunes/estuaries/creeks/ lagoons/ponds | Mangroves, Coarse unconsolidated mudflats, coarse sandflats | Delta, floodplains, barrier beaches, Fine unconsolidated psammitic sediment, mudflats. | |
Shoreline change rate (m/year) | >2.0 | 1.0–2.0 | −1.0 and 1.0 | −1.0 and −2.0 | <−2.0 | |
Bathymetry (elevation) (m) | >6.0 | 6.0–5.0 | 5.0–4.0 | 4.0–3.0 | <2.0 | |
Wave height (m) | <0.6 | 0.6–1.2 | 1.2–1.8 | 1.8–2.4 | >2.4 | |
Sea level rise (mm/year) | <0.8 | 0.8–1.6 | 1.6–2.4 | 2.4–3.2 | >3.2 | |
Mean tidal range | >4.0 | 3.0–4.0 | 2.0–3.0 | 1.0–2.0 | <1.0 |
Socioeconomic Measures | ||
---|---|---|
Parameter | Source | Duration |
Population | Worldometer https://www.worldometers.info/world-population/nigeria-population/ (accessed on 10 December 2021) National Population Commission | 2010–2019 |
Land use/land cover | LandSat Imagery and ArcGIS | |
Road network (distance from shoreline) | Geographic Information System (GIS) | NA |
Cultural heritage (tourist locations) | Geographic Information System (GIS) | NA |
Physical and geomorphological measures | ||
Coastal slope | SRTM 90m DEM Version 4 and multi-spectral satellite imagery http://srtm.csi.cgiar.org/ (accessed on 10 December 2021) | NA |
Coastal geomorphology | Nigerian Institute of Oceanography and Marine Research Database; Sexton & Murday (1994) | |
Shoreline change rate | Digital Shoreline Analysis System (DSAS) v5.0 https://www.usgs.gov/centers/whcmsc/science/digital-shoreline-analysis-system-dsas (accessed on 10 December 2021); Nigerian Institute of Oceanography and Marine Research Database | 1986–2015 |
Bathymetry (elevation) | Nigerian Institute of Oceanography and Marine Research Database | 1986–2015 |
Wave height (m) | MIKE 21 SW + RCM + NIOMR Database | 2005–2015 |
Sea level rise (mm/year) | Nigerian Institute of Oceanography and Marine Research Database | 1986–2015 |
Mean tidal range | Nigerian Institute of Oceanography and Marine Research Database | 1986–2015 |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 |
Variable | Physical and Geomorphological Measures | Socioeconomic Measures |
---|---|---|
8.09 | 4.55 | |
N | 7 | 4 |
CI | 0.18 | 0.18 |
RI | 1.32 | 0.90 |
CR | 0.13 | 0.20 |
Parameter | SEG 1 | SEG 2 | SEG 3 | SEG 4 | SEG 5 | SEG 6 | SEG 7 | SEG 8 | SEG 9 | SEG 10 | SEG 11 | SEG 12 | SEG 13 | SEG 14 | SEG 15 | SEG 16 | SEG 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | 4 | 5 | 5 | 3 | 3 | 3 | 4 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 5 | 5 |
Land use/land cover | 4 | 4 | 5 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 |
Road network (distance from shoreline) | 4 | 4 | 5 | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 5 | 5 |
Cultural heritage (tourist locations) | 4 | 4 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 3 |
Coastal slope | 4 | 3 | 3 | 2 | 4 | 4 | 2 | 3 | 4 | 2 | 4 | 4 | 4 | 2 | 1 | 1 | 1 |
Coastal geomorphology | 5 | 4 | 5 | 5 | 4 | 4 | 4 | 5 | 4 | 4 | 4 | 4 | 4 | 4 | 3 | 3 | 3 |
Shoreline change rate | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3 | 3 | 3 |
Bathymetry (elevation) | 3 | 3 | 2 | 1 | 1 | 1 | 2 | 2 | 3 | 4 | 2 | 4 | 2 | 5 | 3 | 1 | 2 |
Wave height (m) | 5 | 5 | 4 | 4 | 5 | 5 | 4 | 5 | 5 | 4 | 4 | 5 | 4 | 4 | 5 | 4 | 4 |
Sea level rise (mm/year) | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Mean tidal range | 3 | 3 | 4 | 3 | 3 | 4 | 4 | 5 | 3 | 4 | 4 | 5 | 5 | 4 | 5 | 5 | 5 |
SoVI | 8 | 8.94 | 9.68 | 5.19 | 5.19 | 7.74 | 6.00 | 6.00 | 6.00 | 6.92 | 7.74 | 7.74 | 11.18 | 11.18 | 11.18 | 5.19 | 9.68 |
PVI | 56.69 | 43.92 | 41.40 | 20.70 | 33.80 | 30.23 | 51.75 | 50.70 | 42.76 | 42.76 | 75.59 | 47.80 | 47.81 | 21.95 | 11.33 | 33.80 | 16.04 |
CVI | 32.34 | 26.43 | 25.54 | 12.94 | 19.50 | 18.99 | 28.87 | 28.35 | 24.38 | 24.84 | 41.66 | 27.77 | 29.49 | 16.56 | 11.25 | 19.50 | 12.86 |
Parameter | SEG 1 | SEG 2 | SEG 3 | SEG 4 | SEG 5 | SEG 6 | SEG 7 | SEG 8 | SEG 9 | SEG 10 | SEG 11 | SEG 12 | SEG 13 | SEG 14 | SEG 15 | SEG 16 | SEG 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coastal slope | 0.092 | 0.069 | 0.069 | 0.046 | 0.092 | 0.092 | 0.046 | 0.069 | 0.092 | 0.046 | 0.092 | 0.092 | 0.092 | 0.046 | 0.023 | 0.023 | 0.023 |
Coastal geomorphology | 0.265 | 0.212 | 0.265 | 0.265 | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 | 0.212 | 0.159 | 0.159 | 0.159 |
Shoreline change rate | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.444 | 0.267 | 0.267 | 0.266 |
Bathymetry (elevation) | 0.449 | 0.449 | 0.299 | 0.149 | 0.149 | 0.149 | 0.149 | 0.299 | 0.449 | 0.599 | 0.299 | 0.599 | 0.299 | 0.748 | 0.449 | 0.149 | 0.299 |
Wave height (m) | 0.160 | 0.160 | 0.128 | 0.128 | 0.160 | 0.160 | 0.128 | 0.160 | 0.160 | 0.128 | 0.128 | 0.160 | 0.128 | 0.128 | 0.160 | 0.128 | 0.128 |
Sea level rise (mm/year) | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 1.288 | 0.129 |
Mean tidal range | 1.186 | 1.186 | 1.582 | 1.186 | 1.186 | 1.581 | 1.581 | 1.977 | 1.186 | 1.581 | 1.581 | 1.977 | 1.977 | 1.581 | 1.977 | 1.977 | 1.977 |
PVI | 3.886 | 3.810 | 4.077 | 3.509 | 3.534 | 3.929 | 4.000 | 4.504 | 3.833 | 4.300 | 4.047 | 4.774 | 4.442 | 4.450 | 4.324 | 3.992 | 4.142 |
Parameter | SEG 1 | SEG 2 | SEG 3 | SEG 4 | SEG 5 | SEG 6 | SEG 7 | SEG 8 | SEG 9 | SEG 10 | SEG 11 | SEG 12 | SEG 13 | SEG 14 | SEG 15 | SEG 16 | SEG 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Population | 2.528 | 3.160 | 3.160 | 1.896 | 1.896 | 1.896 | 2.528 | 1.896 | 1.896 | 1.896 | 2.528 | 3.160 | 3.160 | 3.160 | 3.160 | 3.160 | 3.160 |
Land use/land cover | 0.974 | 0.974 | 1.218 | 0.730 | 0.730 | 0.730 | 0.974 | 0.974 | 0.974 | 0.974 | 0.974 | 0.974 | 0.974 | 1.218 | 1.218 | 1.218 | 1.217 |
Road network (distance from shoreline) | 0.325 | 0.325 | 0.406 | 0.325 | 0.325 | 0.325 | 0.406 | 0.406 | 0.325 | 0.325 | 0.325 | 0.325 | 0.325 | 0.406 | 0.406 | 0.406 | 0.410 |
Cultural heritage (tourist locations) | 0.172 | 0.172 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.129 | 0.172 | 0.172 | 0.172 | 0.215 |
SoVI | 4.000 | 4.632 | 4.913 | 3.081 | 3.081 | 3.081 | 4.038 | 3.324 | 3.325 | 3.325 | 3.957 | 4.589 | 4.589 | 4.957 | 4.957 | 4.957 | 5.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oloyede, M.O.; Williams, A.B.; Ode, G.O.; Benson, N.U. Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline. Sustainability 2022, 14, 2097. https://doi.org/10.3390/su14042097
Oloyede MO, Williams AB, Ode GO, Benson NU. Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline. Sustainability. 2022; 14(4):2097. https://doi.org/10.3390/su14042097
Chicago/Turabian StyleOloyede, Mary O., Akan B. Williams, Godwin O. Ode, and Nsikak U. Benson. 2022. "Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline" Sustainability 14, no. 4: 2097. https://doi.org/10.3390/su14042097
APA StyleOloyede, M. O., Williams, A. B., Ode, G. O., & Benson, N. U. (2022). Coastal Vulnerability Assessment: A Case Study of the Nigerian Coastline. Sustainability, 14(4), 2097. https://doi.org/10.3390/su14042097