When Local Trade-Offs between SDGs Turn Out to Be Wealth-Dependent: Interaction between Expanding Rice Cultivation and Eradicating Malaria in Rwanda
Abstract
:1. Introduction
1.1. Agricultural Growth, Food Security, and Communicable Disease
1.2. The Case of Rice and Malaria in Rwanda
1.3. The Paddy Paradox Revisited
1.4. Material Protection against Malaria
2. Materials and Methods
2.1. Study Setting
2.2. Data Collection
2.3. Ethical Clearance
2.4. Data Analysis
3. Results
3.1. Rice Farming and Wealth Status
3.2. Rice Farming, Fever Incidence, and Wealth Mediation
3.3. Nutritional Benefits Associated with Rice Farming
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nilsson, M.; Griggs, D.; Visbeck, M. Policy: Map the interactions between Sustainable Development Goals. Nature 2016, 534, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Breuer, A.; Janetschek, H.; Malerba, D. Translating Sustainable Development Goal (SDG) interdependencies into policy advice. Sustainability 2019, 11, 2092. [Google Scholar] [CrossRef] [Green Version]
- Hutton, C.W.; Nicholls, R.J.; Lázár, A.N.; Chapman, A.; Schaafsma, M.; Salehin, M. Potential trade-offs between the sustainable development goals in coastal Bangladesh. Sustainability 2018, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Mainali, B.; Luukkanen, J.; Silveira, S.; Kaivo-Oja, J. Evaluating synergies and trade-offs among Sustainable Development Goals (SDGs): Explorative analyses of development paths in South Asia and Sub-Saharan Africa. Sustainability 2018, 10, 815. [Google Scholar] [CrossRef] [Green Version]
- Koch, D.-J. Measuring long-term trends in policy coherence for development. Dev. Policy Rev. 2017, 36, 87–110. [Google Scholar] [CrossRef]
- Zhao, Z.; Cai, M.; Wang, F.; Winkler, J.A.; Connor, T.; Chung, M.G.; Zhang, J.; Yang, H.; Xu, Z.; Tang, Y.; et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. 2021, 751, 141749. [Google Scholar] [CrossRef]
- Ijumba, J.N.; Lindsay, S.W. Impact of irrigation on malaria in Africa: Paddies paradox. Med. Vet. Entomol. 2001, 15, 1–11. [Google Scholar] [CrossRef]
- Independent Group of Scientists appointed by the Secretary-General. In Global Sustainable Development Report 2019: The Future is Now—Science for Achieving Sustainable Development; United Nations: New York, NY, USA, 2019; Available online: https://sustainabledevelopment.un.org/content/documents/24797GSDR_report_2019.pdf (accessed on 29 June 2021).
- Fonseca, L.M.; Domingues, J.P.; Dima, A.M. Mapping the sustainable development goals relationships. Sustainability 2020, 12, 3359. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A systematic study of Sustainable Development Goal (SDG) interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- International Council for Science. A Guide to SDG Interactions: From Science to Implementation; ICSU: Paris, France, 2017; Available online: https://council.science/wp-content/uploads/2017/05/SDGs-Guide-to-Interactions.pdf (accessed on 29 June 2021).
- Mollier, L.; Seyler, F.; Chotte, J.L.; Ringler, C. SDG 2: End Hunger, achieve food security and improved nutrition and promote sustainable agriculture. In A Guide to SDG Interactions: From Science to Implementation; Griggs, D., Nilsson, M., Stevance, A., McCollum, D., Eds.; International Council for Science (ICSU): Paris, France, 2017; pp. 31–75. [Google Scholar]
- Nilsson, M.; Griggs, D.; Visbeck, M.; Ringler, C.; McCollum, D. Introduction: A framework for understanding sustainable development goal interactions. In A Guide to SDG Interactions: From Science to Implementation; Griggs, D., Nilsson, M., Stevance, A., McCollum, D., Eds.; International Council for Science (ICSU): Paris, France, 2017; pp. 18–30. [Google Scholar]
- Reid, M.C.; McKenzie, F.E. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar. J. 2016, 15, 107. [Google Scholar] [CrossRef] [Green Version]
- Mettetal, E. Irrigation dams, water and infant mortality: Evidence from South Africa. J. Dev. Econ. 2019, 138, 17–40. [Google Scholar] [CrossRef]
- Motbainor, A.; Taye, A. Wasting in under five children is significantly varied between rice producing and non-producing households of Libokemkem district, Amhara region, Ethiopia. BMC Pediatr. 2019, 19, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Grais, R.F.; Okiro, E.A.; Stepniewska, K.; Mansoor, R.; van der Kam, S.; Terlouw, D.J.; Tarning, J.; Barnes, K.I.; Guerin, P.J. Complex and vicious interactions between malaria and malnutrition: A systematic review. BMC Med. 2018, 16, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bendabenda, J.; Patson, N.; Hallamaa, L.; Mbotwa, J.; Mangani, C.; Phuka, J.; Prado, E.L.; Cheung, J.B.; Ashorn, U.; Dewey, K.G.; et al. The association of malaria morbidity with linear growth, hemoglobin, iron status, and development in young Malawian children: A prospective cohort study. BMC Pediatr. 2018, 18, 396. [Google Scholar] [CrossRef]
- Lukwa, A.T.; Mawoyo, R.; Zablon, K.N.; Siya, A.; Alaba, O. Effect of malaria on productivity in a workplace: The case of a banana plantation in Zimbabwe. Malar. J. 2019, 18, 390. [Google Scholar] [CrossRef] [Green Version]
- Girardin, O.; Dao, D.; Koudou, B.G.; Essé, C.; Cissé, G.; Yao, T.; N’Goran, E.K.; Tschannen, A.B.; Bordmann, G.; Lehmann, B.; et al. Opportunities and limiting factors of intensive vegetable farming in malaria endemic Côte d’Ivoire. Acta Trop. 2004, 89, 109–123. [Google Scholar] [CrossRef]
- Fink, G.; Masiye, F. Health and agricultural productivity: Evidence from Zambia. J. Health Econ. 2015, 42, 151–164. [Google Scholar] [CrossRef]
- Sedlmayr, R. If it pays, it stays: Can agribusiness internalize the benefits of malaria control? World Bank Econ. Rev. 2018, 32, 410–427. [Google Scholar] [CrossRef]
- Dillon, A.; Friedman, J.; Serneels, P. Health information, treatment, and worker productivity. J. Eur. Econ. Assoc. 2021, 19, 1077–1115. [Google Scholar] [CrossRef]
- Cutler, D.; Fung, W.; Kremer, M.; Singhal, M.; Vogl, T. Early-life malaria exposure and adult outcomes: Evidence from malaria eradication in India. Am. Econ. J. Appl. Econ. 2010, 2, 72–94. [Google Scholar] [CrossRef] [Green Version]
- Venkataramani, A.S. Early life exposure to malaria and cognition in adulthood: Evidence from Mexico. J. Health Econ. 2012, 31, 767–780. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, H. Malaria eradication in the Americas: A retrospective analysis of childhood exposure. Am. Econ. J. Appl. Econ. 2010, 2, 1–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuecken, M.; Thuilliez, J.; Valfort, M.-A. Disease and human capital accumulation: Evidence from the Roll Back Malaria partnership in Africa. Econ. J. 2021, 131, 2171–2202. [Google Scholar] [CrossRef]
- Kateera, F.; Mens, P.F.; Hakizimana, E.; Ingabire, C.M.; Muragijemariya, L.; Karinda, P.; Grobusch, M.P.; Mutesa, L.; van Vugt, M. Malaria parasite carriage and risk determinants in a rural population: A malariometric survey in Rwanda. Malar. J. 2015, 14, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. The Global Health Observatory: Joint Child Malnutrition Estimates. Available online: https://www.who.int/data/gho/data/themes/topics/joint-child-malnutrition-estimates-unicef-who-wb (accessed on 19 October 2021).
- UN Inter-Agency Group for Child Mortality Estimation. Available online: https://childmortality.org/data (accessed on 1 November 2021).
- World Health Organization. World Malaria Report 2020. Available online: https://www.who.int/publications/i/item/9789240015791 (accessed on 19 October 2021).
- Food and Agriculture Organization. FAOSTAT: Food and Agriculture Data. Available online: https://www.fao.org/faostat/en/#data (accessed on 2 November 2021).
- Paridaens, A.-M.; Jayasinghe, S. Rwanda: Comprehensive Food Security and Vulnerability Analysis 2018; World Food Programme: Kigali, Rwanda, 2018; Available online: https://www.wfp.org/publications/rwanda-comprehensive-food-security-vulnerability-analysis-december-2018 (accessed on 6 July 2021).
- Republic of Rwanda. 2019 Rwanda Voluntary National Review (VNR) Report. Available online: https://sustainabledevelopment.un.org/content/documents/23432Rwanda_2019_VNR_Final_Draft___17_06_2019.pdf (accessed on 29 June 2019).
- Arouna, A.; Fatognon, I.A.; Saito, K.; Futakuchi, K. Moving toward rice self-sufficiency in sub-Saharan Africa by 2030: Lessons learned from 10 years of the Coalition for African Rice Development. World Dev. Perspect. 2021, 21, 100291. [Google Scholar] [CrossRef]
- Awoniyi, S.O.M.; Apata, T.G.; Igbalajobi, A.O.; Fakayode, S.B.; Sanusi, R.A.; Olorunfemi, B.J.; Ogunjimi, S.I. Malaria and agriculture: Evidence of relationship and labour/ income loss among rural rice-farming households in Nigeria. Res. Crop. 2018, 19, 353–364. [Google Scholar] [CrossRef]
- Chan, K.; Tusting, L.S.; Bottomley, C.; Saito, K.; Djouaka, R.; Lines, J. Rice and malaria in Africa: A systematic review and meta-analysis. Lancet 2021. [Google Scholar] [CrossRef]
- Wondwosen, B.; Birgersson, G.; Seyoum, E.; Tekie, H.; Torto, B.; Fillinger, U.; Hill, S.R.; Ignell, R. Rice volatiles lure gravid malaria mosquitoes, Anopheles arabiensis. Sci. Rep. 2016, 6, 37930. [Google Scholar] [CrossRef] [Green Version]
- Ijumba, J.N.; Shenton, F.C.; Clarke, S.E.; Mosha, F.W.; Lindsay, S.W. Irrigated crop production is associated with less malaria than traditional agricultural practices in Tanzania. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 476–480. [Google Scholar] [CrossRef]
- Rumisha, S.F.; Shayo, E.H.; Mboera, L.E.G. Spatio-temporal prevalence of malaria and anaemia in relation to agro-ecosystems in Mvomero district, Tanzania. Malar. J. 2019, 18, 228. [Google Scholar] [CrossRef]
- Tuyishimire, J.; Kateera, F.; Mugisha, J.; Amer, S.; Mens, P. Spatial modelling of malaria risk factors in Ruhuha sector in the east of Rwanda. Rwanda J. 2016, 1, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Rulisa, S.; Kateera, F.; Bizimana, J.P.; Agaba, S.; Dukuzumuremyi, J.; Baas, L.; Harelimana, J.D.; Mens, P.F.; Boer, K.R.; de Vries, P.J. Malaria prevalence, spatial clustering and risk factors in a low endemic area of Eastern Rwanda: A cross sectional study. PLoS ONE 2013, 8, e69443. [Google Scholar] [CrossRef] [PubMed]
- Murindahabi, M.M.; Hoseni, A.; Vreugdenhil, L.C.C.; van Vliet, A.J.H.; Umupfasoni, J.; Mutabazi, A.; Hakizimana, E.; Poortvliet, P.M.; Mutesa, L.; Takken, W.; et al. Citizen science for monitoring the spatial and temporal dynamics of malaria vectors in relation to environmental risk factors in Ruhuha, Rwanda. Malar. J. 2021, 20, 453. [Google Scholar] [CrossRef]
- Oguoma, V.M.; Anyasodor, A.E.; Adeleye, A.O.; Eneanya, O.A.; Mbanefo, E.C. Multilevel modelling of the risk of malaria among children aged under five years in Nigeria. Trans. R. Soc. Trop. Med. Hyg. 2021, 115, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Homenauth, E.; Kajeguka, D.; Kulkarni, M.A. Principal component analysis of socioeconomic factors and their association with malaria and arbovirus risk in Tanzania: A sensitivity analysis. J. Epidemiol. Community Health 2017, 71, 1046–1051. [Google Scholar] [CrossRef]
- Khatib, R.A.; Chaki, P.P.; Wang, D.-Q.; Mlacha, Y.P.; Mihayo, M.G.; Gavana, T.; Xiao, N.; Zhou, X.-N.; Abdullah, S. Epidemiological characterization of malaria in rural southern Tanzania following China-Tanzania pilot joint malaria control baseline survey. Malar. J. 2018, 17, 292. [Google Scholar] [CrossRef]
- Weber, A.C.; Bogler, L.; Vollmer, S.; Simen-Kapeu, A.; Ekpini, E.R.; Zagre, N.M. The wealth gradient in diarrhoea, acute respiratory infections, and malaria in childhood over time: A descriptive analysis using DHS and MICS from Western and Central Africa between 1995 and 2017. J. Glob. Health 2021, 11, 13009. [Google Scholar] [CrossRef]
- Bousema, T.; Drakeley, C.; Gesase, S.; Hashim, R.; Magesa, S.; Mosha, F.; Otieno, S.; Carneiro, I.; Cox, J.; Msuya, E.; et al. Identification of hot spots of malaria transmission for targeted malaria control. J. Infect. Dis. 2010, 201, 1764–1774. [Google Scholar] [CrossRef] [Green Version]
- Deressa, W.; Ali, A.; Berhane, Y. Household and socioeconomic factors associated with childhood febrile illnesses and treatment seeking behaviour in an area of epidemic malaria in rural Ethiopia. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 939–947. [Google Scholar] [CrossRef]
- Morakinyo, O.M.; Balogun, F.M.; Fagbamigbe, A.F. Housing type and risk of malaria among under-five children in Nigeria: Evidence from the malaria indicator survey. Malar. J. 2018, 17, 311. [Google Scholar] [CrossRef] [Green Version]
- Essendi, W.M.; Vardo-Zalik, A.M.; Lo, E.; Machani, M.G.; Zhou, G.; Githeko, A.K.; Yan, G.; Afrane, Y.A. Epidemiological risk factors for clinical malaria infection in the highlands of Western Kenya. Malar. J. 2019, 18, 211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donnelly, B.; Berrang-Ford, L.; Labbé, J.; Twesigomwe, S.; Lwasa, S.; Namanya, D.B.; Harper, S.L.; Kulkarni, M.; Ross, N.A.; IHACC Research Team; et al. Plasmodium falciparum malaria parasitaemia among indigenous Batwa and non-indigenous communities of Kanungu district, Uganda. Malar. J. 2016, 15, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tusting, L.S.; Bottomley, C.; Gibson, H.; Kleinschmidt, I.; Tatem, A.J.; Lindsay, S.W.; Gething, P.W. Housing improvements and malaria risk in sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 2017, 14, e1002234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, K.L.; Randell, H.F.; Kramer, R.A.; Shayo, E.H. Socio-economic status and malaria-related outcomes in Mvomero District, Tanzania. Glob. Public Health 2012, 7, 384–399. [Google Scholar] [CrossRef] [PubMed]
- Novignon, J.; Nonvignon, J. Socioeconomic status and the prevalence of fever in children under age five: Evidence from four sub-Saharan African countries. BMC Res. Notes 2012, 5, 380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, V.; Mcelroy, B.; Conteh, L.; Stevens, W. Malaria prevention in The Gambia: Patterns of expenditure and determinants of demand at the household level. Trop. Med. Int. Health 2006, 11, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Romay-Barja, M.; Cano, J.; Ncogo, P.; Nseng, G.; Santana-Morales, M.A.; Valladares, B.; Riloha, M.; Benito, A. Determinants of delay in malaria care-seeking behaviour for children 15 years and under in Bata district, Equatorial Guinea. Malar. J. 2016, 15, 187. [Google Scholar] [CrossRef] [Green Version]
- Hartung, C.; Anokwa, Y.; Brunette, W.; Lerel, A.; Tseng, C.; Boriello, G. Open Data Kit: Tools to Build Information Services for Developing Regions. Information and Communication Technologies and Development (ICTD). 2010. London, UK. Available online: http://opendatakit.org/wp-content/uploads/2010/10/ODKPaper-ICTD-2010.pdf (accessed on 11 December 2021).
- Rudasingwa, G.; Cho, S.-I. Determinants of the persistence of malaria in Rwanda. Malar. J. 2020, 19, 36. [Google Scholar] [CrossRef]
- Habyarimana, F.; Ramroop, S. Prevalence and risk factors associated with malaria among children aged six months to 14 years old in Rwanda: Evidence from 2017 Rwanda malaria indicator survey. Int. J. Environ. Res. Public Health 2020, 17, 7975. [Google Scholar] [CrossRef]
- United States Agency for International Development. Rwanda: Malaria Operational Plan FY 2016 (President’s Malaria Initiative); Penny Hill Press: Damascus, MD, USA, 2016.
- Kateera, F.; Ingabire, C.M.; Hakizimana, E.; Karinda, P.; Mens, P.F.; Grobusch, M.P.; Mutesa, L.; van Vugt, M. Malaria, anaemia and under-nutrition: Three frequently co-existing conditions among preschool children in rural Rwanda. Malar. J. 2015, 14, 440. [Google Scholar] [CrossRef] [Green Version]
- Alkire, S.; Santos, M.E. Measuring acute poverty in the developing world: Robustness and scope of the multidimensional poverty index. World Dev. 2014, 59, 251–274. [Google Scholar] [CrossRef] [Green Version]
- Sabates-Wheeler, R.; Yates, S.; Wylde, E.; Gatsinzi, J. Challenges of measuring graduation in Rwanda. IDS Bull. 2015, 46, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Owoeye, D.O.; Akinyemi, J.O.; Yusuf, O.B. Decomposition of changes in malaria prevalence amongst under-five children in Nigeria. MalariaWorld J. 2018, 9, 1–6. [Google Scholar]
- Stoler, J.; Awandare, G.A. Febrile illness diagnostics and the malaria-industrial complex: A socio-environmental perspective. BMC Infect. Dis. 2016, 16, 683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, S.H.; van Kempen, L.; Ruben, R. The long shadow of faith-based social networks on agricultural performance: Evidence from Ethiopian apple growers. Eur. J. Dev. Res. 2018, 30, 297–319. [Google Scholar] [CrossRef]
- Yé, Y.; Kyobutungi, C.; Louis, V.R.; Sauerborn, R. Micro-epidemiology of Plasmodium falciparum malaria: Is there any difference in transmission risk between neighbouring villages? Malar. J. 2007, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Weatherspoon, D.D.; Miller, S.; Ngabitsinze, J.C.; Weatherspoon, L.J.; Oehmke, J.F. Stunting, food security, markets and food policy in Rwanda. BMC Public Health 2019, 19, 882. [Google Scholar] [CrossRef] [Green Version]
- Rulisa, A.; van Kempen, L.; Mutesa, L.; Hakizimana, E.; Ingabire, C.M.; Kateera, F.; Koenraadt, C.J.M.; van Vugt, M.; van den Borne, B. Willingness to contribute to bio-larviciding in the fight against malaria: A contingent valuation study among rice farmers in Rwanda. Int. J. Environ. Res. Public Health 2021, 18, 11575. [Google Scholar] [CrossRef]
- Crookston, B.T.; Schott, W.; Cueto, S.; Dearden, K.A.; Engle, P.; Georgiadis, A.; Lundeen, E.A.; Penny, M.E.; Stein, A.D.; Behrman, J.R. Postinfancy growth, schooling, and cognitive achievement: Young lives. Am. J. Clin. Nutr. 2013, 98, 1555–1563. [Google Scholar] [CrossRef]
- Unger, H.W.; Ashorn, P.; Cates, J.E.; Dewey, K.G.; Rogerson, S.J. Undernutrition and malaria in pregnancy—A dangerous dyad? BMC Med. 2016, 14, 142. [Google Scholar] [CrossRef] [Green Version]
- Fink, G.; Venkataramani, A.S.; Zanolini, A. Early life adversity, biological adaptation, and human capital: Evidence from an interrupted malaria control program in Zambia. J. Health Econ. 2021, 80, 102532. [Google Scholar] [CrossRef] [PubMed]
- Chapman, A.; Darby, S. Evaluating sustainable adaptation strategies for vulnerable mega-deltas using system dynamics modelling: Rice agriculture in the Mekong Delta’s an Giang Province, Vietnam. Sci. Total Environ. 2016, 559, 326–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhumiratana, A.; Intarapuk, A.; Sorosjinda-Nunthawarasilp, P.; Maneekan, P.; Koyadun, S. Border malaria associated with multidrug resistance on Thailand-Myanmar and Thailand-Cambodia borders: Transmission dynamic, vulnerability, and surveillance. Biomed Res. Int. 2013, 2013, 363417. [Google Scholar] [CrossRef]
- Sheahan, M.; Barrett, C.B.; Goldvale, C. The Unintended Consequences of Agricultural Input Intensification: Human Health Implications of Agro-Chemical Use in Sub-Saharan Africa; African Development Bank Working Paper 234; African Development Bank: Abidjan, Côte d’Ivoire, 2016. [Google Scholar]
- Mrema, E.J.; Ngowi, A.V.; Kishinhi, S.S.; Mamuya, S.H. Pesticide exposure and health problems among female horticulture workers in Tanzania. Environ. Health Insights 2017, 11, 1178630217715237. [Google Scholar] [CrossRef]
- Mora, A.M.; Hoppin, J.A.; Córdoba, L.; Cano, J.C.; Soto-Martínez, M.; Eskenazi, B.; Lindh, C.H.; van Wendel de Joode, B. Prenatal pesticide exposure and respiratory health outcomes in the first year of life: Results from the infants’ Environmental Health (ISA) study. Int. J. Hyg. Environ. Health 2020, 225, 113474. [Google Scholar] [CrossRef]
- Galactionova, K.; Smith, T.A.; de Savigny, D.; Penny, M.A. State of inequality in malaria intervention coverage in sub-Saharan African countries. BMC Med. 2017, 15, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makate, C.; Makate, M.; Mango, N. Wealth-related inequalities in adoption of drought-tolerant maize and conservation agriculture in Zimbabwe. Food Secur. 2019, 11, 881–896. [Google Scholar] [CrossRef]
SDG(-Related) Indicator | 2010 (Pre-SDG) | 2015 (Baseline SDG) | 2019 (Update) | |
---|---|---|---|---|
2.1.1. | Prevalence of undernourishment in total population (%) [29] | 31.3 | 35.3 | 35.2 |
2.2.1. | Prevalence of stunting, height for age (% of children under 5) [29] | 44.3 | 36.9 | 33.1 * |
3.2.1. | Under-five mortality rate per 1000 live births [30] | 63.5 | 41.5 | 34.3 |
3.3.3. | Malaria incidence per 1000 pop. [31] | 107.6 | 339.1 | 366.1 |
Malaria mortality per 100,000 pop. [31] | 31.2 | 27.5 | 26.2 | |
Malaria case fatality rate (per 1000 cases) [31] | 2.9 | 0.8 | 0.7 | |
2.3. | Indicators on rice paddy cultivation [32] | |||
Area harvested (ha) | 12,975 | 30,204 | 32,896 | |
Production (tonnes) | 67,253 | 97,435 | 131,577 | |
Yield (t/ha) | 5.2 | 3.2 | 4.0 | |
Value of production (in 1000 int. $) | 26,301 | 38,104 | 51,456 |
Low Wealth Status | Medium Wealth Status | High Wealth Status |
---|---|---|
Household lives in a rented house with a dung floor, walls in mud and poles, and a wooden roof. They do not own livestock nor land and rely on agricultural wage labor. They cannot afford medical treatment nor buy medication when a member falls ill. They lack access to basic public amenities. The main source of drinking water is harvested rainwater. They have no sanitation in the home and use bush toilet instead. In a typical week, they cannot afford to eat tubers, cereals, pulses, or vegetables every day. | Household lives in own house with a clay floor, walls in adobe, and iron sheets as roofing. They own livestock and a piece of land, on which they engage in self-employed agriculture. They spend what they earn and cannot afford to build savings. Hence, there are no reserves to draw from if a member falls ill, but by stretching their means they somehow manage to pay for medical treatment and medication in emergencies. They have access to most basic amenities, often shared with other families. The main source of drinking water is a public well and they use a pit latrine for sanitation. Candles are used as source of lighting. In a typical week, they can eat tubers, cereals, pulses, or vegetables on a daily basis, but they cannot afford to eat meat, fish, or fruits, or drink milk every week. Meals are prepared on stoves fueled by firewood. | Household lives in own house with a concrete floor, walls from concrete blocks, and a tiled roof. They farm on their own land, which generates income that outstrips consumptive needs, allowing them to save some of it every season. If a member falls ill, expenses for medical treatment and medication can be met by dissaving. They have private access to all basic amenities, such as a piped water connection and a flush toilet in the home. The home is electrified, which serves for lighting and cooking. In a typical week, they can afford to eat meat, fish, or fruits, or drink milk at least once. |
Rice | Non-Rice | Difference | |
---|---|---|---|
Demographics | |||
Mean age head of household | 41.5 | 43.0 | =[t = −1.43] |
Mean age spouse | 36.9 | 35.5 | =[t = 1.54] |
Head of household without schooling (%) | 27.5 | 36.1 | <[X2 = 4.96 **] |
Spouse without schooling (%) | 22.5 | 30.1 | <[X2 = 3.71 *] |
Protestant/Evangelical head of household (%) | 52.2 | 55.2 | =[X2 = 0.54] |
Head of household separated or widowed (%) | 13.8 | 26.8 | <[X2 = 19.65 ***] |
Female-headed household (%) | 14.4 | 27.4 | <[X2 = 13.17 ***] |
Mean household size (no.) | 5.2 | 4.3 | >[t = 6.36 ***] |
Location (sub-sector) | |||
Ruhuha (%) | 18.7 | 16.1 | 0 [X2 = 1.80] |
Kindama (%) | 25.3 | 27.5 | |
Gikundamvura (%) | 17.0 | 18.4 | |
Gatanga (%) | 23.1 | 20.8 | |
Bihari (%) | 15.9 | 17.2 | |
Livelihood | |||
Head of household is farmer (%) | 90.6 | 82.6 | >[X2 = 6.89 ***] |
Spouse is farmer (%) | 96.5 | 90.3 | >[X2 = 5.99 **] |
Household owns land | 97.3 | 80.5 | >[X2 = 32.13 ***] |
Mean wealth index (min. score: −12; max. score 14) | 3.38 | 1.36 | >[t = 9.36 ***] |
Health/malaria | |||
ITN ownership (%) (household level) | 97.8 | 92.7 | >[X2 = 6.96 ***] |
Health insurance coverage (%) (household level) | 79.1 | 65.7 | >[X2 = 14.02 ***] |
Fever during past year (%) (household level) | 70.3 | 56.1 | >[X2 = 14.27 ***] |
Household in which ≥ 1 individual tested positive on malaria at time of survey (%) ^ | 13.8 | 13.1 | 0 [X2 = 0.07] |
No. of households | 182 | 3786 | |
No. of individuals | 912 | 16,108 |
Coeff. (St. Dev.) | Wald (p-Value) | Odds Ratio | |
---|---|---|---|
Rice-cultivating household | 0.482 (0.172) | 7.86 *** (0.005) | 1.62 |
Wealth category (omitted: medium wealth status) | |||
Low wealth status | 0.166 (0.079) | 4.42 ** (0.036) | 1.18 |
High wealth status | −0.261 (0.089) | 8.62 *** (0.003) | 0.77 |
Household composition | |||
No of members in household | 0.227 (0.019) | 136.78 *** (0.000) | 1.26 |
No of children in household | 0.135 (0.077) | 3.06 * (0.080) | 1.15 |
Any child born in past 5 years | 0.084 (0.126) | 0.44 (0.507) | 1.09 |
Sub-sector (omitted category: Ruhuha) | |||
Bihari | 0.102 (0.117) | 0.75 (0.386) | 1.11 |
Gatanga | 0.308 (0.113) | 7.43 *** (0.006) | 1.36 |
Gikundamvura | −0.131 (0.115) | 1.30 (0.254) | 0.88 |
Kindama | −0.336 (0.104) | 10.32 *** (0.001) | 0.72 |
Obs. | n = 3968 | ||
Overall model test | X2 = 317.21 *** (p < 0.01) |
Coeff. (St. Dev.) | Wald (p-Value) | Odds Ratio | |
---|---|---|---|
Rice-cultivating household | 0.974 (0.542) | 3.22 * (0.073) | 2.65 |
Rice-cultivating household * age of child (months) | −0.038 (0.016) | 5.36 ** (0.021) | 0.96 |
Wealth category (omitted: medium wealth status) | |||
Low wealth status | 0.243 (0.113) | 4.59 ** (0.032) | 1.28 |
High wealth status | −0.003 (0.135) | 0.00 (0.984) | 1.00 |
Child characteristics | |||
Gender (1 = female; 0 = male) | −0.120 (0.098) | 1.49 (0.222) | 0.89 |
Age (in months) | −0.001 (0.003) | 0.13 (0.721) | 1.00 |
Parent characteristics | |||
Age of household head | 0.000 (0.004) | 0.01 (0.914) | 1.00 |
Female-headed household | 0.419 (0.138) | 9.28 *** (0.002) | 1.52 |
Household head has not gone to school | 0.193 (0.110) | 3.06 * (0.080) | 1.21 |
Sub-sector (omitted category: Ruhuha) | |||
Bihari | −0.285 (0.176) | 2.61 (0.106) | 0.75 |
Gatanga | 0.071 (0.155) | 0.21 (0.650) | 1.07 |
Gikundamvura | −0.235 (0.165) | 2.03 (0.154) | 0.79 |
Kindama | −0.135 (0.158) | 0.73 (0.394) | 0.87 |
Obs. | n = 1761 | ||
Overall model test | X2 = 38.83 *** (p < 0.01) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rulisa, A.; van Kempen, L.; Koch, D.-J. When Local Trade-Offs between SDGs Turn Out to Be Wealth-Dependent: Interaction between Expanding Rice Cultivation and Eradicating Malaria in Rwanda. Sustainability 2022, 14, 2100. https://doi.org/10.3390/su14042100
Rulisa A, van Kempen L, Koch D-J. When Local Trade-Offs between SDGs Turn Out to Be Wealth-Dependent: Interaction between Expanding Rice Cultivation and Eradicating Malaria in Rwanda. Sustainability. 2022; 14(4):2100. https://doi.org/10.3390/su14042100
Chicago/Turabian StyleRulisa, Alexis, Luuk van Kempen, and Dirk-Jan Koch. 2022. "When Local Trade-Offs between SDGs Turn Out to Be Wealth-Dependent: Interaction between Expanding Rice Cultivation and Eradicating Malaria in Rwanda" Sustainability 14, no. 4: 2100. https://doi.org/10.3390/su14042100
APA StyleRulisa, A., van Kempen, L., & Koch, D. -J. (2022). When Local Trade-Offs between SDGs Turn Out to Be Wealth-Dependent: Interaction between Expanding Rice Cultivation and Eradicating Malaria in Rwanda. Sustainability, 14(4), 2100. https://doi.org/10.3390/su14042100