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Abstract: A high performance and fast response sensor was fabricated as a monitoring system for
the determination of butylated hydroxyanisole (BHA) in food and wastewater samples. In this
regard, a carbon paste electrode (CPE) that was amplified with platinum-decorated single wall
carbon nanotubes (Pt/SWCNTs) and 1-Butyl-3-methylimidazolium chloride ([C4mim][Cl]) was
investigated as a new electroanalytical sensor for the monitoring of BHA in aqueous solution. The
[C4mim][Cl]/Pt/SWCNTs/CPE offered an excellent catalytic activity on oxidation signal of BHA
and enhanced its oxidation current about 5.51 times. In the final step, the standard addition results
confirmed the powerful ability of [C4mim][Cl]/Pt/SWCNTs/CPE to the monitoring of BHA in
different water and food samples with acceptable recovery data.

Keywords: butylated hydroxyanisole; Pt/SWCNTs nanocomposite; 1-butyl-3-methylimidazolium chloride

1. Introduction

The monitoring of food compounds is one of the major steps in the investigation of
food quality [1,2]. There are several ingredients in food products that should be studied
before use by customers. For many years, due to the close relationship between food
quality and human health, measuring and evaluating food quality has been one of the
priorities of global organizations [3]. Here, sensors show a significant role in this field,
as they gather relevant information from the quality and safety of food products. These
data help to create smart food. On the other hand, many of the biomass-derived materials
are highly recommended for the fabrication of electro-analytical tools due to their unique
features such as sustainability, regenerative nature, and cost-effectiveness [4]. Therefore,
sensors and especially electrochemical sensors are a new approach in analytical systems to
achieve sustainability goals. Among food additives, antioxidants have been considered
more than other additives due to their many benefits and key roles in improving food
quality [5]. Tert-butyl-4-methoxyphenol or butylated hydroxyanisole (C11H16O2) is one
of the more commonly used antioxidant food additives that are permitted for application
in approximately 50 countries [6]. According to the US Food and Drug Administration
reported data, the presence of 0.02% w/w of BHA in the total value food produces is safe
and cannot create any problems for human health in low concentrations. However, the
National Toxicological Program (NTP) report showed that a high dose of BHA is harmful
and can cause cancer. Therefore, controlling the amount of BHA in the food production
process is important [7].

Accordingly, measurement methods have been used for many years as a suitable
strategy to evaluate the quality of food products [8]. Various measurement methods such
as chromatography, spectroscopy, and electrochemical sensors have been proposed to
monitor food composition [9–13]. Electrochemical methods have received greater attention
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than the other techniques [14,15]. Butylated hydroxyanisole is a common antioxidant and
is added to edible fats and fat-containing foods [6]. Research studies confirm that high
doses of BHA in food products can be hazardous for the human body and the monitoring
of its concentration is important in food products. Therefore, some analytical methods
such as electrochemical sensors [16], fluorimetry [17], gas-liquid chromatography [18],
capillary electrophoresis [19], and high performance liquid chromatograpy (HPLC) [20]
were suggested for the electrochemical determination of BHA concentrations.

Electrochemical sensors are one of the biggest branches of sensor tools that create a
relationship between electrical signals and the concentration of compounds [21–25]. Elec-
trochemical sensors have many benefits in monitoring biological and food products such
as fast response, low cost, easy operation, portability, and easy modification compared to
other analytical systems [26–29]. Electrochemical sensors can be easily modified to create
sensitive and selective analytical instruments for monitoring systems [30–32]. Recently,
electrochemical methods have gained a special place in food and pharmaceutical analysis
as an alternative to most measurement methods [31,33–35]. The unique features of electro-
chemical sensors, such as fast measurement speed and the ability to become portable kits,
have led most large companies to accept this technique as a suitable strategy [36,37]. The
behavior of electrochemical sensors is relative to the modification process [38–40]. In this
regard, nanomaterials and ionic liquids have been widely used to modify electrodes [41,42].

Nanomaterials are powerful and strategic materials with unique properties and are
useful for different branches of science [43–53]. Due to the unique properties of nano-
materials, extensive research has been conducted on the application of nanomaterials
in various sciences such as the food industry, pharmaceutical industry, water-treatment
measurement sensors, mechanical engineering, and energy industries [54–61]. Platinum-
based nanomaterials have shown high-performance catalytic activity in electrochemical
systems [62].

Ionic liquids are a group of organic materials with unique properties and high electrical
conductivity that have been widely used in the synthesis of chemicals and the catalysis of
various chemical reactions as well as electrochemical sensors [63,64]. In recent years, they
have been employed as a suitable alternative to paraffin in the manufacture of carbon paste
electrodes due to their superior electrical conductivity [64,65]. According to the literature,
[C4mim][Cl] is a good conductive mediator for the modification of paste electrodes and is
the suitable choice for the fabrication of highly sensitive electrochemical sensors [66].

Based on the explanations that are provided in the previous paragraphs, nanomate-
rials and ionic liquids have been used as suitable modifiers for electrochemical sensors.
Numerous scientific reports have shown that the simultaneous use of these modifiers can
create unique features for electrochemical sensors.

In this research work, a new and powerful electroanalytical sensor ([C4mim][Cl]/Pt/
SWCNTs/CPE) was fabricated for monitoring BHA as an antioxidant food additive. The
results showed the powerful ability of [C4mim][Cl]/Pt/SWCNTs/CPE for trace level
analysis of BHA in food samples. The [C4mim][Cl]/Pt/SWCNTs/CPE can be monitored
BHA in low concentrations with a detection limit of 0.5 nM, which is the equivalent to (and
in many cases better than) the previously described electrochemical sensors.

2. Experimental Section
2.1. Materials

Butylated hydroxyanisole (99.0%), sodium hydroxide (99.0%), and phosphoric acid
(85.0%) were purchased from Alfa Aesar Company. 1,2-hexadecanediol (90.0%), Pt(acac)2,
SWCNTs, graphite powder < 150 µm (99%), 1-butyl-3-methylimidazolium chloride, hexane
(≥90%), and ethanol (99%) were purchased from Sigma-Aldrich Company. The phos-
phate buffer solution (PBS 0.1 M) was prepared using phosphate salts such as NaH2PO4,
Na2HPO4, Na3PO4.

Pt/SWCNTs was synthesized by the reported procedure in our previously published
paper by polyol strategy [62].
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2.2. Fabrication of Sensor

The ratio of graphite powder to Pt/SWCNTs nanocomposite and also the ratio of
[C4mim][Cl] to paraffin oil (as binders) in the fabrication of [C4mim][Cl]/Pt/SWCNTs/CPE
were optimized in the presence of BHA. After optimization, the [C4mim][Cl]/Pt/SWCNTs/
CPE was prepared by mixing 0.94 g graphite powder + 0.06 gr Pt/SWCNTs in a mor-
tar and pestle in the presence 10 mL ethanol as a solvent. After evaporation of the
ethanol in 40 ◦C, the suitable amount of paraffin oil and [C4mim][Cl] (8:2 v:v) were added
drop wise as binders in a mortar and pestle and hand mixed for 60 min. The obtained
paste was transferred into a glass tube with a diameter of 3.0 mm and connected with
Ivium-Vertex as a working electrode by a copper wire. Before recording of any signal,
[C4mim][Cl]/Pt/SWCNTs/CPE was polished by white paper.

2.3. Instruments

Electrochemical signals were recorded by an electrochemical machine Ivium-Vertex
(Netherlands). The recording systems were connected to an Ag/AgCl/KClsat, Pt wire, and
[C4mim][Cl]/Pt/SWCNTs/CPE as the reference, counter, and working electrode, respec-
tively. Transmission electron microscope (TEM) model Zeiss-EM10C-100 KV (Germany)
was used for morphological investigation.

2.4. Real Sample Preparation

Edible oil, orange juice, and wastewater were selected for real sample analysis. The
orange juice and wastewater were centrifuged (3000 rpm) and filtered. Afterwards, 5 mL
of the filtered juice or wastewater sample was mixed with phosphate buffer solution (0.1 M
pH = 7.0) and used for real sample analysis. The edible oil was prepared by mixing 2 mL
of the sample and 20 mL hexane in an erlenmeyer flask, followed by centrifugation at
3200 rpm for 10 min. Following that, 10 mL hexane was added to the sample, and the
mixture was shaken for 45 min in the same conditions. In the final step, 2 mL of the extracted
sample was dissolved by 2 mL pure ethanol and the sample was mixed with phosphate
buffer solution and transferred into an electrochemical cell for real sample analysis.

2.5. Electrochemical Measurement of [C4mim][Cl]/Pt/SWCNTs/CPE

The [C4mim][Cl]/Pt/SWCNTs/CPE was polished with white paper. The BHA (0.01 m)
solution was prepared by dissolving 0.018 g BHA into 10.0 mL of the buffer solution (PBS,
0.1 M, pH 7.0). The SW voltammograms were recorded in the potential range −0.20 and
+0.75 V vs. Ag/AgCl with a frequency 10 HZ. Linear sweep voltammograms were acquired
from the solution containing 700 µM BHA in the potential range −0.3–650 mV. The plot of
net-current vs. concentration was used for the calibration curve plot.

3. Results
3.1. Charactrization of Modified Electrode

The electrochemical impedance spectroscopic (EIS) method was employed for the char-
acterization of modified and unmodified sensors in the presence of BHA (not shown). The
charge transfer resistance (Rct) was detected about 2.70 KΩ, 1.8 KΩ, 1.3 KΩ, and 0.7 KΩ at
the surface of CPE, Pt/SWCNTs/CPE, [C4mim][Cl]/CPE, and [C4mim][Cl]/Pt/SWCNTs/
CPE, respectively. The moving from 2.7 KΩ to 0.8 KΩ from CPE to [C4mim][Cl]/Pt/SWCNTs/
CPE confirmed the high electrical conductivity of [C4mim][Cl] and Pt/SWCNTs as two
new electro-catalysts.

3.2. pH Investigation

The oxidation signal of BHA was recorded in different pH ranges at the surface of
[C4mim][Cl]/Pt/SWCNTs/CPE using the square wave voltametric method. The results
were depicted in the inset of Figure 1. Using oxidation peak potentials, a linear relation-
ship was observed between the oxidation potential of BHA and pH with an equation of
E = 0.0603 pH + 0.7177 (R2 = 0.9987) that confirmed a pH-dependent reaction according to
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Scheme 1 for redox reaction of BHA in aqueous solutions (Figure 1). As can be seen, with
an increasing pH value, the value of protons in the solution was reduced and the redox
process was performed more easily and shifted the potential to lower values.

Figure 1. Potential-pH curve for electro-oxidation of BHA at the surface of [C4mim][Cl]/Pt/SWCNTs/CPE.
(Inset). Relative SW voltammograms.

Scheme 1. Redox mechanism of BHA.

On the other hand, the maximum oxidation signal for redox reaction of BHA was
observed on pH = 7.0 and this condition was used for the next steps (Figure 2).

3.3. Modification Effect

The SW voltammograms of BHA were recorded at the surface of the amplified and
unmodified electrodes. BHA offered the oxidation currents of 5.66 µA, 13.0 µA, 20.4 µA,
and 31.2 µA with the oxidation potentials of 439 mV, 310 mV, 312 mV, and 285 mV at
surface of CPE (curve a), Pt/SWCNTs/CPE (curve b), [C4mim][Cl]/CPE (curve c), and
[C4mim][Cl]/Pt/SWCNTs/CPE (curve d), respectively. When comparing the oxidation
current and oxidation potential at the surface of CPE with [C4mim][Cl]/Pt/SWCNTs/CPE
confirmed an improvement in the current of about 5.51 times and a reduction in the
oxidation potential of about 185 mV (Figure 3). These improvements were ascribed to the
addition of the conductive mediators ([C4mim][Cl] and Pt/SWCNTs in this case) at the
surface of CPE. Replacing [C4mim][Cl] with paraffin oil and Pt/SWCNTs nanocomposite
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with carbon powder in the sensor greatly increased the electrical conductivity of the
electrode surface, creating a sensor with good electrical conductivity. This catalytic property
can make it possible to monitor a low concentration of BHA.

Figure 2. Current-pH curve for electro-oxidation of BHA at the surface of [C4mim][Cl]/Pt/SWCNTs/CPE.

Figure 3. SW voltammograms of BHA at the surface of CPE (a), Pt/SWCNTs/CPE (b), [C4mim][Cl]/CPE
(c), and [C4mim][Cl]/Pt/SWCNTs/CPE (d), respectively.
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3.4. Scan Rate Study and Stability Invesigation

The linear sweep voltammograms (LSV) of 700 µM BHA were recorded in the scan
rate range 50–300 mV/s (Figure 4 inset). The linear relationship between the oxidation
current of BHA and ν1/2 with an equation of I = 3.3609 ν1/2 −14.6670 (R2 = 0.9979) in the
scan rate range 50–300 mV/s, suggested a diffusion process for redox reaction of BHA at
the surface of [C4mim][Cl]/Pt/SWCNTs/CPE (Figure 4).

Figure 4. Current −ν1/2 curve for electro-oxidation of 700 µM BHA. (Inset) LS voltammograms
700 µM BHA at scan rates (a) 50; (b) 90; (c) 140; and (d) 300 mV/s.

The stability of [C4mim][Cl]/Pt/SWCNTs/CPE for monitoring of 240 µM BHA was
checked over a period of 95 days. The results confirmed that 90% of the initial sig-
nal of BHA remained at the end of the period of three months at surface of the new
sensor, confirming the high stability of [C4mim][Cl]/Pt/SWCNTs/CPE in monitoring
(see Figure 5). The RSD% value for 11 successive assays of BHA was about 1.1% using
[C4mim][Cl]/Pt/SWCNTs/CPE as a sensor. The seven [C4mim][Cl]/Pt/SWCNTs/CPEs
were fabricated in the same condition and used for monitoring of 240 µM BHA at pH = 7.0.
The RSD% was determined about 2.6%. This point confirmed the good reproducibility of
[C4mim][Cl]/Pt/SWCNTs/CPE for the monitoring of BHA.

3.5. Analytical Investigation

The application of [C4mim][Cl]/Pt/SWCNTs/CPE for the determination of BHA was
checked in this step by the square wave voltammetric (SWV) method (Figure 6). The results
showed that the oxidation signal of BHA had a linear relationship with its concentration
with the equation of I = 0.1209 C + 2.2790 (R2 = 0.9966) in the range of 1.0–300 µM. On the
other hand, the sensor showed a detection limit (LOD = 3 Sb/m) of 0.5 nM and LOQ of
1.5 nM for the monitoring of BHA at the optimum conditions. These LDR and LOD values
for [C4mim][Cl]/Pt/SWCNTs/CPE monitoring of BHA were comparable to, and in some
cases, were better than the prior recommended sensors (see Table 1).

3.6. Selectivity Investigation

In this stage, the selectivity of [C4mim][Cl]/Pt/SWCNTs/CPE for monitoring 10 M
BHA was investigated in the presence of certain food and inorganic substances. The results
were displayed in Table 2 with an acceptable error rate of 5% in current. As can be seen, the
[C4mim][Cl]/Pt/SWCNTs/CPE showed a good selectivity for the monitoring of BHA in
an aqueous solution.
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Figure 5. Stability diagram of BHA at surface of [C4mim][Cl]/Pt/SWCNTs/CPE (n = 4.0).

Figure 6. Current-concentration curve for electro-oxidation of BHA at the surface of [C4mim][Cl]/Pt/
SWCNTs/CPE (n = 4.0). (Inset). The relative SW voltammograms in the range of 1.0–300 µM.

3.7. Real Sample Analysis

The capability of [C4mim][Cl]/Pt/SWCNTs/CPE for the monitoring of BHA in the
real samples was checked by the standard addition methods. For this propose, edible oil
and orange juice were selected and prepared according to reported procedure in Section 2.
The results were tabulated in Table 3, and the recovery range of 98.25–104.3% confirmed
the capability of [C4mim][Cl]/Pt/SWCNTs/CPE as new analytical tool for the monitoring
of BHA in real samples.
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Table 1. Comparing the sensing ability of [C4mim][Cl]/Pt/SWCNTs/CPE with previously reported
sensors for the monitoring of BHA.

Electrode Mediator LOD (µM) LDR (µM) Ref.

Glassy carbon electrode Poly L−cysteine 0.1 1.0–10.0 [67]
Platinum Multiwalled carbon nanotube 0.094 0.1–1.0 [68]
Graphite Manganese (II) hexacyanoferate 0.05 0.49–142 [69]

Paraffin wax impregnated graphite O-cresolphthalein complexone (OC)
over the multiwalled carbon nanotubes 0.11 0.33–110 [70]

Carbon paste [C4mim][Cl]/Pt/SWCNTs 0.0005 0.001–300 This work

Table 2. Selectivity of [C4mim][Cl]/Pt/SWCNTs/CPE for the monitoring of BHA.

Species Tolerance Limits (WSubstance/WBHA)

glucose, citric acid, and fructose 400
Starch saturation

SCN−, Br−, Ca2+, K+, Na+ 1000
glycine, lucine, phenylalanine 500

Table 3. Real sample analysis of BHA using [C4mim][Cl]/Pt/SWCNTs/CPE.

Sample BHA Added (µM) BHA Expected (µM) BHA Founded (µM) Recovery%

Orange juice — — <LOD —
10.00 10.00 10.43 ± 0.87 104.3

Edible oil — — <LOD —
20.00 20.00 19.65 ± 0.98 98.25

Wastewater — — <LOD —
15.00 15.00 15.63 ± 0.79 104.2

4. Conclusions

A novel, powerful, and fast analytical sensor was fabricated for the monitoring of
BHA in the aqueous solutions. In this regard, CPE was amplified with [C4mim][Cl] and
Pt/SWCNTs and employed for electrochemical determination of BHA in the concentration
range of 1.0–300 µM. The [C4mim][Cl]/Pt/SWCNTs/CPE showed a high catalytic activity
on the oxidation signal of BHA and improved the redox reaction of this antioxidant under
optimum conditions. In the final step, [C4mim][Cl]/Pt/SWCNTs/CPE was successfully
used for the monitoring BHA in different food and wastewater samples with acceptable
recovery data.
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