Predicting User Behaviour Based on the Level of Interactivity Implemented in Blockchain Technologies in Websites and Used Devices
Abstract
:1. Introduction
2. Website
3. Interactivity
4. Mobile Ads
5. Materials and Methods
5.1. Pre-Test
5.2. Main Survey
- Type and version of Windows 8.1. Enterprise, Microsoft Corporation 2013;
- Computer configuration:
- Processor: Intel(R) Core (TM) i3-4160 CPU @ 36 GHz;
- Memory (RAM) 4GB;
- System type: 64-bit operating system.
- Computers were connected on an Internet link of 100Mbps to an academic network.
5.3. Research Instruments
5.4. Analysis of Results
The Results of a Two-factor Analysis of the Variation of Different Groups
SONG and ZINKHAN Model
LIU Model
Wu Model
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
- (1)
- <20
- (2)
- 21–25
- (3)
- 26–30
- (4)
- 31–40
- (5)
- >40
- (1)
- Male
- (2)
- Female
- (1)
- <2 years
- (2)
- 2–4 years
- (3)
- 5–6 years
- (4)
- >6 years
- (1)
- <5 hours
- (2)
- 5–20 hours
- (3)
- 21–40 hours
- (4)
- >40 hours
- (1)
- Yes
- (2)
- No
- (1)
- Less than a year
- (2)
- 1 or 2 years
- (3)
- 3 or 4 years
- (4)
- More tan 5 years
- (1)
- <1 hour
- (2)
- from 1 to 3 hours
- (3)
- from 4 to 5 hours
- (4)
- >5 hours
Appendix B
- (1)
- I agree to participate in this study.
- (2)
- I do not agree to participate in this study.
- (1)
- <20
- (2)
- 21–25
- (3)
- 26–30
- (4)
- 31–40
- (5)
- >40
- (1)
- Male
- (2)
- Female
- (1)
- <2 years
- (2)
- 2–4 years
- (3)
- 5–6 years
- (4)
- >6 years
- (1)
- <5 hours
- (2)
- 5–20 hours
- (3)
- 21–40 hours
- (4)
- >40 hours
- (1)
- Less than a year
- (2)
- 1 or 2 years
- (3)
- 3 or 4 years
- (4)
- More tan 5 years
- (1)
- <1 hour
- (2)
- from 1 to 3 hours
- (3)
- from 4 to 5 hours
- (4)
- >5 hours
- (1)
- No
- (2)
- Yes (you can use more than one answer)
- (a)
- Facebook
- (b)
- Tweeter
- (c)
- Google +
- (d)
- Pinterest
- (e)
- LinkedIn
- (f)
- Neki drugi ______________________
- (1)
- <10%
- (2)
- from 11 till 30%
- (3)
- from 31 till 50%
- (4)
- More than 50%
References
- Miller, M. The Ultimate Web Marketing Guide; Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2011; pp. 7–10. [Google Scholar]
- Ryan, D.; Jones, C. Understanding Digital Marketing—Marketing Strategies for Engaging the Digital Generation; Kogan Page Ltd.: London, UK, 2009. [Google Scholar]
- Reed, J. Get Up to Speed with Online Marketing; FT Press: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Downes, E.J.; McMillan, S.J. Defining interactivity: A qualitative identification of key dimensions. New Media Soc. 2000, 2, 157–179. [Google Scholar] [CrossRef]
- Liu, Y.P.; Shrum, L.J. What is interactivity, and is it always such a good thing? Implications of definition, person and situation for the influence of interactivity on advertising effectiveness. J. Advert. 2002, 31, 53–64. [Google Scholar] [CrossRef]
- McMillan, S.; Hwang, J.-S. Measures of Perceived Interactivity: An Exploration of the Role of Direction of Communication, User Control, and Time in Shaping Perceptions of Interactivity. J. Advert. 2002, 31, 29–42. [Google Scholar] [CrossRef]
- McMillan, S.J. A Four-Part Model of Cyber-Interactivity; SAGE Publications: Thousand Oaks, CA, USA, 2002; Volume 4, pp. 271–291. [Google Scholar]
- Liu, Y. Developing a scale to measure the interactivity of websites. J. Advert. Res. 2003, 43, 207–221. [Google Scholar] [CrossRef]
- Albert, T.C.; Goes, P.B.; Gupta, A. GIST: A model for design and management of content and interactivity of customer-centric web sites. MIS Q. 2004, 28, 161–182. [Google Scholar] [CrossRef] [Green Version]
- Johnson, G.J.; Ii, G.C.B.; Kumar, A. Interactivity and its Facets Revisited: Theory and Empirical Test. J. Advert. 2006, 35, 35–52. [Google Scholar] [CrossRef]
- Wu, G. Conceptualising and Measuring the Perceived Interactivity of Websites. J. Curr. Issues Res. Advert. 2006, 28, 87–104. [Google Scholar] [CrossRef]
- Song, J.H.; Zinkhan, G.M. Determinants of Perceived Web Site Interactivity. J. Mark. 2008, 72, 99–133. [Google Scholar] [CrossRef]
- Jiang, Z.; Chan, J.; Tan, B.C.Y.; Chua, W.S. Effects of Interactivity on Website Involvement and Purchase Intention. J. Assoc. Inf. Syst. 2010, 11, 34–59. [Google Scholar] [CrossRef]
- Trevinal, A.M.; Stenger, T. Toward a conceptualisation of the online shopping experience. J. Retail. Consum. Serv. 2014, 21, 314–326. [Google Scholar] [CrossRef] [Green Version]
- McLean, G.J. Investigating the online customer experience—A B2B perspective. Mark. Intell. Plan. 2017, 35, 657–672. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.H.; Barreda, A.A.; Okumus, F.; Nusair, K. Website interactivity and brand development of online travel agencies in China: The moderating role of age. J. Bus. Res. 2019, 99, 382–389. [Google Scholar] [CrossRef]
- Islam, H.; Jebarajakirthy, C.; Shankar, A. An experimental based investigation into the effects of website interactivity on customer behavior in online purchase context. J. Strat. Mark. 2021, 29, 117–140. [Google Scholar] [CrossRef]
- Wu, L. Website interactivity may compensate for consumers’ reduced control in E-Commerce. J. Retail. Consum. Serv. 2019, 49, 253–266. [Google Scholar] [CrossRef]
- Varnali, K.; Toker, A. Mobile marketing research: State-of-the-art. Int. J. Inf. Manag. 2010, 30, 144–151. [Google Scholar] [CrossRef]
- Leppaniemi, M.; Karjaluoto, H. Factors influencing consumers’ willingness to accept mobile advertising: A conceptual model. Int. J. Mob. Commun. 2005, 3, 197–213. [Google Scholar] [CrossRef]
- Scharl, A.; Dickinger, A.; Murphy, J. Diffusion and success factors of mobile marketing. Electron. Commer. Res. Appl. 2005, 4, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Michael, A.; Salter, B. Mobile Marketing; Routledge: London, UK, 2006. [Google Scholar]
- Smutkupt, P.; Krairit, D.; Esichaikul, V. Mobile marketing: Implications for marketing strategies. Int. J. Mob. Mark. 2010, 5, 126–139. [Google Scholar]
- Gascó-Hernández, M.; Torres-Coronas, T. Information Communication Technologies and City Marketing: Digital Opportunities for Cities around the World Information Science Reference; IGI Global: Hershey, PA, USA, 2009. [Google Scholar]
- Krum, C. Mobile Marketing Finding Your Customers No Matter Where They Are; Pearson Education, Inc.: Indianopolis, IN, USA, 2010. [Google Scholar]
- Matti, L.; Heikki, K. Mobile marketing: From marketing strategy to mobile marketing campaign implementation. Int. J. Mob. Mark. 2008, 3, 50–61. [Google Scholar]
- Weber, L. Marketing to the Social Web, How Digital Customer Communities Build Your Business; John Wiley & Sons, Inc.: Hoboken, NY, USA, 2009. [Google Scholar]
- Van Duyne, D.K.; Landay, J.A.; Hong, J.I. The Design of Sites: Patterns for Creating Winning Web Sites; Prentice Hall: Hoboken, NY, USA, 2007. [Google Scholar]
- Charlesworth, A. Digital Marketing, 2nd ed.; Taylor & Francis Group: Abingdon, UK; Routledge: New York, NY, USA, 2014. [Google Scholar]
- Wolk, A.; Theysohn, S. Factors influencing website traffic in the paid content market. J. Mark. Manag. 2007, 23, 769–796. [Google Scholar] [CrossRef]
- Ceptureanu, S.; Ceptureanu, E.; Popescu, D.; Orzan, O.A. Eco-innovation Capability and Sustainability Driven Innovation Practices in Romanian SMEs. Sustainability 2020, 12, 7106. [Google Scholar] [CrossRef]
- Grant, R.; Clarke, R.J.; Kyriazis, E. Modelling real-time online information needs: A new research approach for complex consumer behaviour. J. Mark. Manag. 2013, 29, 950–972. [Google Scholar] [CrossRef] [Green Version]
- Steuer, J. Defining Virtual Reality: Dimensions Determining Telepresence. J. Commun. 1992, 42, 73–93. [Google Scholar] [CrossRef]
- Wu, G. The Mediating Role of Perceived Interactivity in the Effect of Actual Interactivity on Attitude Toward the Website. J. Interact. Advert. 2005, 5, 29–39. [Google Scholar] [CrossRef]
- Chung, H.; Zhao, X. Effects of Perceived Interactivity on Web Site Preference and Memory: Role of Personal Motivation. J. Comput. Commun. 2006, 10. [Google Scholar] [CrossRef]
- Wu, G. Perceived Interactivity and Attitude toward Website. In Proceedings of the Annual Conference of American Academy of Advertising, Albuquerque, NM, USA, 4–7 April 1999. [Google Scholar]
- Yoon, D.; Youn, S. Brand Experience on the Website: Its Mediating Role Between Perceived Interactivity and Relationship Quality. J. Interact. Advert. 2016, 16, 1–15. [Google Scholar] [CrossRef]
- Chen, Q.; Wells, W.D. Attitude Toward the Site. J. Advert. Res. 1999, 39, 27–37. [Google Scholar]
- Bruner, G.C.; Kumar, A. Web Commercials and Advertising Hierarchy-of-Effects. J. Advert. Res. 2000, 40, 35–42. [Google Scholar] [CrossRef]
- Coyle, J.R.; Thorson, E. The Effects of Progressive Levels of Interactivity and Vividness in Web Marketing Sites. J. Advert. 2001, 30, 65–77. [Google Scholar] [CrossRef]
- Bruner, G.C.; Kumar, A. Similarity Analysis of Three Attitude-Toward-the-Website Scales. Q. J. Electron. Commer. 2002, 3, 163–172. [Google Scholar]
- Cheon, E. Energising business transactions in virtual worlds: An empirical study of consumers’ purchasing behaviours. Inf. Technol. Manag. 2013, 14, 315–330. [Google Scholar] [CrossRef]
- Martin, J.; Mortimer, G.; Andrews, L. Re-examining online customer experience to include purchase frequency and perceived risk. J. Retail. Consum. Serv. 2015, 25, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Jevremovic, M.; Stavljanin, V.; Kostic-Stankovic, M. Study on the actual and perceptual interactivity of the website. Info. M. 2016, 15, 42–47. [Google Scholar]
- Jevremovic, M.; Stavljanin, V.; Vasic, Z.; Stankovic, M. Comparative analysis of the influence on consumers via mobile phones and computers. J. Eng. Manag. Compet. (JEMC) 2016, 6, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Štavljanin, V.; Jevremović, M. Comparison of Perceived Interactivity Measures of Actual Websites Interactivity. J. Inf. Technol. Appl. 2017, 13, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, N.; Ruiz de Maya, S. The impact of complexity and perceived difficulty on consumer revisit intentions. J. Mark. Manag. 2013, 29, 625–645. [Google Scholar] [CrossRef]
- Peterson, M.; Koch, V.; Gröne, F.; Vo, H.T.K. Online customers, digital marketing: The CMO-CIO connection. J. Direct Data Digit. Mark. Pract. 2010, 11, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Kuleto, V.; Ilić, M.P.; Šević, N.P.; Ranković, M.; Stojaković, D.; Dobrilović, M. Factors Affecting the Efficiency of Teaching Process in Higher Education in the Republic of Serbia during COVID-19. Sustainability 2021, 13, 12935. [Google Scholar] [CrossRef]
- Bucea-Manea-Țoniş, R.; Martins, O.M.D.; Bucea-Manea-Țoniş, R.; Gheorghiță, C.; Kuleto, V.; Ilić, M.P.; Simion, V.-E. Blockchain Technology Enhances Sustainable Higher Education. Sustainability 2021, 13, 12347. [Google Scholar] [CrossRef]
- Kuleto, V.; Stanescu, M.; Ranković, M.; Šević, N.P.; Păun, D.; Teodorescu, S. Extended Reality in Higher Education, a Responsible Innovation Approach for Generation Y and Generation Z. Sustainability 2021, 13, 11814. [Google Scholar] [CrossRef]
- Kuleto, V.; Ilić, M.; Dumangiu, M.; Ranković, M.; Martins, O.M.D.; Păun, D.; Mihoreanu, L. Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions. Sustainability 2021, 13, 10424. [Google Scholar] [CrossRef]
Devices (Channel) | Website Type | M | SD |
---|---|---|---|
Desktop | High interactivity | 5.1866 | 0.61003 |
Low interactivity | 4.4848 | 0.62866 | |
Total | 4.8463 | 0.70968 | |
Mobile | High interactivity | 5.4051 | 0.55328 |
Low interactivity | 4.8794 | 0.76159 | |
Total | 5.1422 | 0.71295 | |
Total | High interactivity | 5.2936 | 0.59027 |
Low interactivity | 4.6842 | 0.72306 | |
Total | 4.9935 | 0.72483 |
df | F | p | Partial Eta Squared | |
---|---|---|---|---|
Devices (Channel) | 1 | 11.198 | 0.001 | 0.055 |
Website type | 1 | 44.886 | 0.000 | 0.189 |
Devices * Website type | 1 | 0.924 | 0.338 | 0.005 |
Devices (Channel) | Website Type | M | SD |
---|---|---|---|
Desktop | High interactivity | 5.0967 | 0.53621 |
Low interactivity | 4.2639 | 0.49182 | |
Total | 4.6929 | 0.66160 | |
Mobile | High interactivity | 5.1633 | 0.63887 |
Low interactivity | 4.5823 | 0.66608 | |
Total | 4.8728 | 0.71188 | |
Total | High interactivity | 5.1293 | 0.58671 |
Low interactivity | 4.4247 | 0.60487 | |
Total | 4.7824 | 0.69122 |
df | F | p | Partial Eta Squared | |
---|---|---|---|---|
Devices (Channel) | 1 | 5.282 | 0.023 | 0.027 |
Website type | 1 | 71.250 | 0.000 | 0.270 |
Devices * Website type | 1 | 2.262 | 0.134 | 0.012 |
Devices (Channel) | Website Type | M | SD |
---|---|---|---|
Desktop | High interactivity | 4.9564 | 0.64677 |
Low interactivity | 3.9699 | 0.74685 | |
Total | 4.4781 | 0.85235 | |
Mobile | High interactivity | 5.0181 | 0.54213 |
Low interactivity | 4.4921 | 0.93128 | |
Total | 4.7551 | 0.80281 | |
Total | High interactivity | 4.9867 | 0.59559 |
Low interactivity | 4.2337 | 0.88067 | |
Total | 4.6159 | 0.83755 |
Source | df | F | p | Partial Eta Squared |
---|---|---|---|---|
Devices (Channel) | 1 | 7.871 | 0.006 | 0.039 |
Website type | 1 | 52.827 | 0.000 | 0.215 |
Devices * Website type | 1 | 4.895 | 0.028 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevremović, M.; Staletić, N.; Orzan, G.; Ilić, M.P.; Jelić, Z.; Bălăceanu, C.T.; Paraschiv, O.V. Predicting User Behaviour Based on the Level of Interactivity Implemented in Blockchain Technologies in Websites and Used Devices. Sustainability 2022, 14, 2216. https://doi.org/10.3390/su14042216
Jevremović M, Staletić N, Orzan G, Ilić MP, Jelić Z, Bălăceanu CT, Paraschiv OV. Predicting User Behaviour Based on the Level of Interactivity Implemented in Blockchain Technologies in Websites and Used Devices. Sustainability. 2022; 14(4):2216. https://doi.org/10.3390/su14042216
Chicago/Turabian StyleJevremović, Milica, Nada Staletić, Gheorghe Orzan, Milena P. Ilić, Zorica Jelić, Cristina Teodora Bălăceanu, and Oana Valeria Paraschiv. 2022. "Predicting User Behaviour Based on the Level of Interactivity Implemented in Blockchain Technologies in Websites and Used Devices" Sustainability 14, no. 4: 2216. https://doi.org/10.3390/su14042216
APA StyleJevremović, M., Staletić, N., Orzan, G., Ilić, M. P., Jelić, Z., Bălăceanu, C. T., & Paraschiv, O. V. (2022). Predicting User Behaviour Based on the Level of Interactivity Implemented in Blockchain Technologies in Websites and Used Devices. Sustainability, 14(4), 2216. https://doi.org/10.3390/su14042216