<@ sustainability

Article

Impacts of Real-Time Traffic State on Urban Expressway
Crashes by Collision and Vehicle Type

Chen Wang, Ming Zhong

check for
updates

Citation: Wang, C.; Zhong, M.;
Zhang, H.; Li, S. Impacts of
Real-Time Traffic State on Urban
Expressway Crashes by Collision and
Vehicle Type. Sustainability 2022, 14,
2238. https://doi.org/10.3390/
su14042238

Academic Editors: Qiang Zeng,
Pengpeng Xu, Feng Chen
and Zhongxiang Feng

Received: 31 December 2021
Accepted: 11 February 2022
Published: 16 February 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Hui Zhang *® and Siyao Li

Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430063, China;
jgjghzb@163.com (C.W.); mzhong@whut.edu.cn (M.Z.); siyao@whut.edu.cn (S.L.)
* Correspondence: zhanghuiits@whut.edu.cn

Abstract: With the rapid development of urban expressway systems in China in recent years, traffic
safety problems have attracted more attention. Variation of traffic flow is considered to have signif-
icant impact on the safety performance of expressways. Therefore, the motivation of this study is
to explore the mechanism of how the variation of traffic flow measurements such as average speed,
speed variation and traffic volume impact the crash risk. Firstly, the crashes were classified according
to crash type and vehicles involved: and they are labeled with rear-end collisions or side-impact
collisions, they are labeled with heavy-vehicle related collisions or light-vehicle related collisions
as well. Then, the corresponding crash data were aggregated based on the similarity of traffic flow
conditions and types of crashes. Finally, a random effect negative binomial model was introduced to
consider the heterogeneity of the crash risk due to the variance within the traffic flow and crash types.
The results show that the significant influencing factors of each type of crashes are not consistent.
Specifically, the percentage of heavy vehicles within traffic flow is found to have a negative impact
on rear-end collisions and light-vehicle-related collisions, but it has no obvious correlation with
side-impact collisions and heavy-vehicle-related collisions. Average speed, speed variation and traffic
volume have an interactive effect on the crash rate. In conclusion, if the traffic flow is with higher
speed variation within lanes and is with lower average speed, the risk of all types of crashes tends to
be higher. If the speed variation within lanes decreases and the average speed increases, the crash
risk will also increase. In addition, if the traffic flow is under the conditions of higher speed variation
between lanes and lower traffic volume, the risk of rear-end collisions, side-impact collisions and
heavy-vehicles related collisions tend to be higher. Meanwhile, if the speed variation between lanes
decreases and the traffic volume increases, the crash risk is found to increase as well.
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1. Introduction

With the fast rapid development and improvement of traffic detection and information
communication technology, collecting massive amounts of and high-precision real-time traf-
fic flow and crash data is becoming much easier. Therefore, the research on the relationship
between crashes and real-time traffic flow data has attracted extensive attention [1-3] in
recent years. Identifying traffic conditions with a high crash risk can provide strong support
for the formulation of crash early warning strategies during practical traffic operations.

The influence of traffic flow characteristics on crash frequency has been extensively
studied, which provides useful insights for formulating effective traffic safety improvement
measures. Previous studies suggest that there is a certain correlation between speed and
speed variance and the occurrence of crashes [4-6], but their results show that the impact
of speed-related measurements on crash rates is different between each other. Studies
show a positive relationship between speed and speed variation with crash rates [4,7], as
the research results of Wang’s study [4] show that if the average speed of urban arterials
increased by 1%, the crash frequency will increase by 0.7%, and the crash frequency will
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increase with the increase of speed variation. Choudhary divided crashes into heavy/light-
vehicle crashes and killed or serious/slight-injury crashes, and the results show that the
crash rates of these four types of crashes increase with the increase of speed and speed
variance [7]. Abdel-Aty studied the influencing factors of rear-end collisions, and the
results showed that the average speed is positively correlated with crash frequency under
high-speed conditions [8]. On the other hand, under low-speed conditions, the crash risk
will be high if there is a large variation in speed. Imprialou finds that single-vehicle crashes
and multiple-vehicle casualties are related to high speed and low traffic flow, while the
property-damage-only crashes involving multiple vehicles are not correlated with high
speed but are related to traffic congestion [9]. However, there is also a view that the average
speed are not correlated with the crash risk, but higher speed variation will lead to more
crashes [10]. Moreover, studies have found that the average vehicle speed is negatively
correlated with the risk of crashes [11].

The conflicting conclusions above may be the result of different modeling methods,
data sources and/or low data quality. In addition, the road environment is found to be an
important moderator of the impact of speed-related variables on crash rates [12]. Cameron
suggests that the Nilsson’s model should not be applied to urban arterial roads directly.
In urban arterials, the mean speed needs to be supplemented by the speed variation
because the former is weak in representing the influence on casualty crashes. Using urban
expressways of Shanghai, China for a case study, Yu revealed crash occurrence mechanisms,
such as variations of volume and speed drops, that increase crash occurrence likelihood
during weekday peak hours [13]. Chen suggests that the crash likelihood increases when
the traffic speed is significantly different from the legal speed limit on the I-25 corridor
in Colorado [14]. A similar conclusion was found by Theofilatos’s finding that traffic
variations were found to significantly influence accident likelihood on urban arterials [15].
Therefore, it can be concluded from the above studies indicate that developing refined
models based on crash types and road types can help to better understand the mechanisms
of crashes [16,17]. However, so far, there are only a few studies that have been conducted
to study the relationship between real-time traffic variations and crashes split by collision
types (rear-end collision, side-impact collision, etc.) and vehicle types (heavy and light-
vehicle crashes), especially in context of urban expressway.

In recent years, scholars have discussed the impact of data aggregation methods on
crash frequency modelling. In the previous research, two crash data aggregation methods
were mainly used, namely segment-based and condition-based crash data aggregation
methods. The segment-based method has been widely used in crash frequency prediction
research such as in the “Highway Safety Manual” [18]. This method studies the relationship
between crash frequency and average traffic conditions represented by annual average
daily traffic (AADT). However, it has certain shortcomings in assessing the impact of traffic
variations onto crashes in a short period of time [19,20]. Recently, some scholars [7,9,21,22]
have found that when the crash data are aggregated according to the similarity of the traffic
condition prior to the occurrence of the crash, the modelling results are more reliable than
the traditional segment-based method. Choudhary analyzed the traffic flow conditions
within 5 min before each reported crash time collected by the upstream detector closest to
the crash location and found that a higher speed variance resulted in more crashes [7]. Yu
compared the two methods and found that the condition-based method is more reasonable
for crash risk analysis [21]. Choudhary found that the condition-based method can increase
the understanding of the crash-related factors and help the assessment and formulation of
road safety measures by identifying the traffic flow conditions that are prone to crashes [7].

The counting model in statistics has often been used for crash frequency modelling.
The Poisson regression model and negative binomial regression model are the two fre-
quently used methods [23,24]. Among them, the negative binomial model has been widely
used for solving the problem of over-dispersed data. Although the modelling and analysis
methods are continuously optimized and improved, there are still many unresolved or
easily overlooked problems [25,26], such as those related to data heterogeneity and aggre-
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gation. Random effect negative binomial model is found to be a better choice over other
models because it accounts for over-dispersion and heterogeneity in the data [26-30].

In summary, the above-mentioned studies mainly analyze the direct correlation be-
tween traffic speed or volume and crash risk. Previous studies found that traffic speed or
volume has a significant positive or negative correlation with crash risk, while conflicting
conclusions also exist. To some extent, the interactive impact of traffic variation onto road
safety is still unclear, which, in turn, requires further in-depth and systematic analysis. In
modeling the impact of traffic state, only a few of previous studies considered crash types
or crash vehicles, and they basically ignored the potential effect of data aggregation and
data heterogeneity on crash prediction. Therefore, in order to address the heterogeneity
issues of traffic variations, a random effect negative binomial model is introduced to study
the relationship between traffic variation and crash frequency on urban expressways in
this paper. An aggregation method for the crash data based on the similarity of traffic flow
conditions is used to study the occurrence mechanism of various crashes. It is believed that
the results from this paper should be able to provide theoretical support for real-time early
warning of road safety, particularly for urban expressways.

2. Data and Methodology

Previous studies show that many factors could influence crash rate of different types
of roads, without exception to urban arterial. Traffic conditions may also be affected
by the traffic signal control and other traffic management countermeasures. As a result,
the relationship between traffic variations and crash rate on expressways is considered
with a strong connection and therefore such a relationship is fully studied in this paper.
This paper first analyzes the aggregated crash data and concurrent traffic data. Then, the
predictive models are developed using selected variables. After that, the model validation
is carried out.

2.1. Collection of Crash and Traffic Data

Detailed crash data and real-time traffic flow data are used to study the impact of traffic
variations on crashes. The urban expressway studied is located inside the City of Wuhan
and it is a part of the Third Ring Road of the city, with a total length of 37 km, and it is
installed with similar guardrail and central median. The alignment radius and road control
of the tested corridor are consistent with those required under the design speed of 80 km/h;
no obvious changes in road factors are found along the test segment, which mainly carries
truck traffic, compared to other urban arterial roads. In addition, the highways selected
for our study underwent safety audits during design and construction and potential road
risks are removed prior to the opening according to the Design Specifications for Highway
Safety Facilities and other standards. As a results, the effects of road geometric design,
weather condition and other factors on crash rates are not considered in this study.

Microwave traffic flow detectors are set along the studied segments for collecting real-
time traffic flow data. The studied segment is designed with divided, two-way, six lanes
or eight lanes, with a design speed of 80 km/h and a corresponding maximum traffic
capacity of 2100 pcu/h/lane. The heavy vehicles are restricted to driving in the third (for
two-way six lanes segments) or third and fourth lane (for the two-way eight lanes seg-
ments). The data collection took place in the following two periods, from 1 September 2018
to 31 November 2018 and from 1 March 2019 to 31 May 2019. The maximum peak hour of
traffic flow is 1784 pcu/h/lane with an average off-peak flow of 772 pcu/h/lane. Average
traffic volume on and off ramps is 168 pcu/h and 152 pcu/h. The corresponding maximum
travel speed is 78 km /h, with an average speed of 52 &+ 15 km/h. The selected expressway
segment is mostly operating at the Level of Service of B or C. No serious congestion is
found during the above periods.

The crash data are extracted from the traffic crash database of the traffic management
department of the city, and their detailed information are also recorded, such as the location,
time and type of the traffic crash. A total of 1188 crashes occurred during the study, of which
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rear-end collisions and side-impact collisions accounted for 54% and 41%, respectively.
The two types of crashes account for 95% of the total, which constitute the majority of the
crashes taking place on the urban expressway studied. Vehicles are divided into heavy
vehicles and light vehicles according to the Chinese Automobile Classification Standard.
In terms of the types of vehicles involved in crashes, once a heavy vehicle is involved, the
crash is counted as a heavy vehicle crash with 353 crashes, whereas the other 835 crashes
involve only light vehicles. A large proportion of crashes involve heavy vehicles, which
poses significant safety risks to the users of the facility. The real-time traffic flow data is
collected by a set of microwave traffic flow detectors installed along the facility. There are
27 sets of detectors along the urban expressway under study, with an average deployment
distance of about 1.37 km, which can collect the following real-time traffic data, such as
vehicle passing time, speed, vehicle type on each lane. The traffic flow measurements,
including average speed, traffic volume, proportion of heavy-vehicles, speed variation
among lanes and within each lane with regards to each crash type and collision vehicle
type are collected every 5-min and summarized in Table 1.

Table 1. Summary statistics of traffic flow measurements per 5 min with regards to crash and collision

vehicle type.

Crash Type Variable Mean SD Max Min

Crash Frequency 1188
Average speed (km/h) 51.74 14.66 77.52 10.15
Traffic volume (pcu) 64.36 29.08 148.66 5.00

All collisions

Heavy-vehicle proportion (%) 4.15 6.16 65.52 0.00
Speed variation between lanes (km/h) 4.46 3.14 26.38 0.55
Speed variation within lanes (km/h) 5.50 3.96 39.68 0.27

Crash Frequency 646
Average speed (km/h) 51.82 13.08 73.40 10.15
Traffic volume (pcu) 69.69 26.40 148.66 5.00

Rear-end collisions

Heavy-vehicle proportion (%) 3.30 4.27 56.01 0.00
Speed variation between lanes (km/h) 4.45 2.88 24.31 0.55
Speed variation within lanes (km/h) 5.16 3.74 39.50 0.45

Crash Frequency 489
Average speed (km/h) 54.17 1241 77.72 11.73
Side-impact collisions Traffic volume (pcu) 60.11 27.87 148.33 5.25
Heavy-vehicle proportion (%) 5.26 8.22 86.36 0.00
Speed variation between lanes (km/h) 4.51 2.72 26.39 0.61
Speed variation within lanes (km/h) 6.12 4.15 39.68 0.30

Crash Frequency 353
Average speed (km/h) 53.20 13.64 77.51 11.85
Heavy-vehicle-related Traffic volume (pcu) 56.34 26.41 139.67 5.25
collisions Heavy-vehicle proportion (%) 6.14 9.42 86.36 0.00
Speed variation between lanes (km/h) 4.70 2.82 26.39 0.61
Speed variation within lanes (km/h) 6.18 3.50 23.88 0.30

Crash Frequency 835
Average speed (km/h) 52.79 12.60 73.40 10.15
Light-vehicle-related Traffic volume (pcu) 69.22 27.22 148.67 0.00
collisions Heavy-vehicle proportion (%) 3.36 4.07 56.25 0.00
Speed variation between lanes (km/h) 4.40 2.84 24.32 0.55

Speed variation within lanes (km/h) 5.36 411 39.68 0.43
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2.2. Data Processiong and Filtering

Previous studies show that traffic flow condition prior to the crash is closely re-
lated to the occurrence of the crash. For instance, Oh collected real-time traffic flow data
through upstream loop detector ahead of the crash occurrence location and used the traffic
flow data just 5 min prior to the crash report time to identify the crashes [31,32]. Abdel-
Aty concluded that the speed variation that is detected from the closest loop detector
within 5-10 min’ interval prior to the crash report time has most significant impact on the
crashes [33,34]. Based on these experiences, the pre-crash traffic flow conditions in this
study are defined as those 5-10 min prior to the reported crash time, which are collected
by the closest detectors upstream to the crash location. To improve the reliability of the
modelling results, crashes more than 800 m away from the detectors were screened out,
considering that the average distance between the detectors in the previous research is
around 800 m [2,7,21] The workflow of data collection is shown in Figure 1. The relevant
traffic flow data is determined and extracted by the occurrence time of related crash(s),
and in this way, the corresponding detectors for collecting relevant traffic flow data is
selected according to the location of the crash, aiming to identify traffic flow conditions
before the crash, as shown in Figure 1. For example, if a traffic crash happened at 12:44
on 20 September 2018, then traffic flow data of the nearest microwave traffic flow detector
upstream of the crash location, within the interval of 12:34-12:39 p.m., is extracted and
used to develop the corresponding crash prediction models.

) The nearest detector upstream
Time of The crash

\ 4

Crash data

A 4

The pre-crash traffic flow
conditions

Traffic flow data

v

Location of the T

Location attribute

[
»

crash 5-10 minutes before the crash

Figure 1. The extraction process of the pre-crash traffic flow conditions.

For the urban expressway studied, raw traffic flow data of each lane was recorded and
aggregated at 5-min interval. However, traffic flow data collected often contain abnormal
and missing values because of data noise and hardware equipment failure. It is necessary
to clean such kind of data to avoid the negative impact of abnormal data on the model. The
abnormal data, shown as wrong or missing traffic volume and speed, due to data noise and
equipment failure are quite different from the normal data. Therefore they cannot be used
to study any rules. Therefore, the threshold and logical reasoning method are combined to
detect abnormal data. In this study, all invalid and unrealistic values are excluded from
the further analysis, and the rules for excluding outliers include: (1) “missing or outlier”
records in the raw data; (2) speed < 0 km/h or speed > 100 km /h; (3) traffic volume < 0
pcu, or traffic volume > 150 pcu in five minutes; (4) number of lanes > 5; (5) Heavy-vehicle
proportion < 0.

2.3. Variable Selecting and Setting

This study uses the following five variables, including the average traffic volume per
lane, the proportion of heavy vehicles, the average speed, the speed variation between
lanes and the speed variation within each lane, to study the relationship between traffic
variations and the risk of crashes. It should be noted that in the following data analysis
steps, traffic volume of various types of vehicles is converted into the Passenger Car Unit
(PCU) according to the defined conversion coefficient. In addition, the original traffic flow
data is aggregated into 5-min units to remove the impact of occasional flow fluctuation.
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Traffic volume g: average traffic volume per lane in five-minute period:

=Y 8

where g stands for the traffic volume, L is the number of lanes and ¢ is the PCU value for
a five-minute period on each lane.

Heavy-vehicle proportion w: the proportion of heavy vehicles refers to the proportion
of heavy vehicles that passes through a segment in a five-minute period.

w= g x 100% @)

where Q' is the number of heavy vehicles and Q is the summation of the number of
vehicles in a five-minute period.

Average speed v: The average speed of all the vehicles that present on a road section
along one traveling direction in a five-minute period.

1
0= @Z? 90 ®)

where v is the speed of each vehicle.

The speed variation between lanes v': for each one-minute interval, the standard
deviation of speeds between the lanes was calculated, and then the average of these
standard deviations for 5 min was considered as the between-lanes speed variation.

f 2
TZl i Ult Ut) ) @)

where 7; is the average speed for all lanes for minute t and v, ; is the average speed for the
[th lane for minute t, and T is the number of the lanes.

The speed variation within lanes v”: for each lane, the standard deviation of speeds
for a 5 min interval was calculated, and then the average of these standard deviations for
all three lanes was considered as within the lane speed variation.

= LN Li (o = 71) o 0 )

where 7; is the average speed for 5 min within lane I.

2.4. Data Aggregation

In this paper, the impact of traffic states on crash frequency is investigated under
different traffic flow conditions, and each traffic flow condition is defined as a crash
scenario. Thus, a total of 432 crash scenarios (i.e., 4 levels of average speed X 4 levels
of traffic volume x 3 levels of speed variation between lanes x 3 levels of within-lane
speed variation x 3 levels of heavy-vehicle proportion) is developed, covering all possible
traffic flow scenarios that may lead to crashes, and each scenario represents a unique traffic
condition. The crash frequency in each scenario was represented by a combination of
crash type (Rear-end collisions and Side-impact collisions) and vehicle type (Heavy-vehicle
related collisions and Light-vehicle related collisions). The crash data grouped into the
same scene was aggregated to form an analysis dataset, and the median of each traffic
variable in each group is used to represent the corresponding traffic condition. In addition,
the average vehicle-hour spent for going through the testing segment of each scenario is
introduced as an exposure variable to calculate the probability of crashes under a specific
traffic flow condition.

1
VHT; = qiti = qi- - (6)
1
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where, VHT,; represents the average vehicle-hour travelled per kilometer in the ith scenario;
g; is the traffic volume under the corresponding scenario; v; is the average speed under the
same scenario.

2.5. Crash Predicition Modelling

Traditional count models for crash frequency prediction include Poisson regression
model and Negative Binomial distribution model, and the Negative Binomial distribution
models have been widely used to work around the over-dispersion issues inherent in count
data. Similar to previous studies, the crash frequency data aggregated based on traffic
condition are assumed to follow the negative binomial distribution in this paper:

Yik ~ Negative Binomial (A, a) (7)

where Ajx and y;; refer to the expected crash frequency and the observed crash frequency for
collision type k of the scenario i, respectively, and « represents the over-dispersion parameter.

To describe the unobserved heterogeneity of the modeling data, a random effect term
@ix was introduced into the negative binomial model, as follows:

In(A) = Bro + Y, BrmXikm + In(e;) + @i 8

m=1

o1 ~ N(0,03) ©)

where By represents the intercept of crash type k, By, is the coefficient of mth explanatory
variable for crash type k, ¢; is the value of exposure variable for ith observation, X, is
the value of mth explanatory variable for ith observation for crash type k and ¢y is the
unobserved heterogeneity for ith observation for crash type k, which follows the normal
distribution with a mean value of zero and a variance of (T(%.

2.6. Prediciton Performance Evaluation

Akaike Information Criterion (AIC) is the main statistic to check the goodness-of-fit
of the models developed in this paper. The smaller value of AIC information criterion
indicates the better goodness-of-fit. The BIC information criterion is usually used as a
supplement to the AIC information criterion. The smaller value of the BIC information
criterion indicates a better fit of the model.

To evaluate the accuracy of the predicted results, two indicators were introduced:
Mean Absolute Deviation (MAD) and Mean Squared Error (MSE). MAD describes the
average deviation between the predicted and the observed crash frequency under each
scenario, and the MSE refers to the average deviation squared. The smaller value of MAD
and MSE mean a higher prediction accuracy of the model. Besides, R? is introduced to
describe the accuracy of the model, and its value ranges from 0 to 1. A higher value of
R? means a better model fit. Literature indicates that when R? is greater than 0.4, the
developed model is considered to have a good fit.

1 n
MAD = -3 [yix — Ail (10)
i=1
1 n
MSE = Y (yik — Ai)* (11)

i=1

R2 _ Z?:l ()\ik B ﬁ)Z (12)
Y (vik — Vi)

where ¥jx is the observed average crash frequency for k crash type of the scenario i.
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3. Results
3.1. Analysis of Traffic Flow and Crash Data

Analysis and visualization of the above variables reveals that the traffic flows show
very interesting temporal distribution characteristics, as shown in Figure 2. For instance,
traffic volume data collected on the site clearly presents a morning and evening peak, as
demonstrated in Figure 2a. The proportion of heavy vehicles is lower in the daytime and
much higher at nighttime and early mornings, which is related to the travel restriction
policies regarding heavy vehicles of the urban expressways, as shown in Figure 2b. Figure 2c
shows the changes in the speed variation among lanes and the within-lane speed variation
over time. The two variables are higher at nighttime and early mornings. The lower traffic
volume and larger speed variation at those times may be the reason for such an observation.
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— 30%
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5 5 25%
o B
9 2
> ST
] 20%
40 =8 lu)
& =
30 g % 15%
> ol
20 < 3 10%
jus]
10 5%

——Speed variation between lanes

Speed variation within lane

z =
ERl 10 75
= &
1]

= ]
g8 w 8 E
g e
@ =
£ s 6 %
2 =1
g £
2 =
g 4 4 E
‘g g
g s
. o
o L
2 2 2 &
ou [7]
w1

o 0

Figure 2. The 24 h distribution of traffic flow characteristic variables: (a) average speed and traf-

fic volume; (b) heavy-vehicle proportion; (c) speed variation between lanes and speed variation
within lanes.

Pre-crash traffic conditions are extracted and then combined with the historical traffic
crash data. For each traffic variable, it is defined as follows. To be specific, the average
speed was firstly divided into 4 equal levels with each level covering 25% of its cumulative
distribution, then the dataset for each average speed division is divided into 4 equal parts
according to the cumulative distribution of traffic volume. Similarly, the speed variation
between lanes for each separate traffic volume quantile is divided into 3 again; the speed
variation within lanes for each speed variation between lanes division was divided into 3;
and the heavy-vehicle proportion for each speed variation within lanes division was
divided into 3 as well. After data aggregation, there is 432 traffic scenarios. The summary
statistics of the scenario-based dataset are shown in Table 2.
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Table 2. Summary statistics of the scenario-based data set.

Variable

Description Mean SD Min Max

Average speed (km/h)

Median speed for the crash occurrence scenario 50.31 15.90 4.85 76.00

Median volume per lane in 5 min intervals for the

Traffic volume (pcu) crash occurrence scenario 41.56 25.92 6 101.25
Heavy-vehicle proportion (%) " chan heavy-vehice proportion in S min intervals for 1y 35 1778 0 55.56
Speed variation between lanes (km/h) Me.dlan between-lanes speed variation in 5.m1n 6.19 4.25 0.39 23.84
intervals for the crash occurrence scenario
Speed variation within lanes (km/h) ~ Viedian Wﬁ‘ﬁ?ﬁiﬁiaﬁfﬁiﬁ?ﬁ;ﬁﬁiéﬂ rf’ag‘om intervals 4 ¢ 296 0.66 23.56
Rear-end collisions 1.47 1.99 0 15
Crash frequency Side-impact collisions 1.09 1.23 0 8
per 5 min interval Heavy-vehicle-related collisions 0.77 0.95 0 7
Light-vehicle-related collisions 191 242 0 17

3.2. Negative Binomial Model

Different combinations among the above independent variables are tested for devel-
oping the optimal models, in order to control the possible interactions among independent
variables. Based on the criteria of minimum AIC, the best combination of independent
variables is selected. Table 3 shows the posterior estimation of the random effect nega-
tive binomial model based on the crash scenario dataset. The estimated parameters are
statistically significant based on their 95% significance levels.

According to the estimation results for the rear-end collision and side-impact col-
lision prediction models, the significant independent variables finally included inside
the models are: average speed (Mean = 0.0801, p value = 0.00 < 0.05), traffic volume
(Mean = 0.0258, p value = 0.00 < 0.05), speed variation among lanes (Mean = 0.1939,
p value = 0.00 < 0.05), within-lane speed variation (Mean = 0.6270, p value = 0.00 < 0.05),
interaction terms between average speed and speed variation within lane (Mean = —0.0124,
p value = 0.00 < 0.05), and interaction terms between traffic volume and speed variation
between lanes (Mean = —0.0041, p value = 0.00 < 0.05). Different from the side-impact colli-
sion model, the heavy-vehicle proportion is also a significant independent variable for the
rear-end collision model (p value = 0.00 < 0.05). Its coefficient is negative (Mean = —6.4851),
indicating that it has a negative impact onto the crash risk. According to the analysis
of traffic variation patterns of heavy vehicles, the number of heavy vehicles traveling at
nighttime and early mornings in the studied area is much higher than that during the
daytime. However, the majority of recorded crashes occurred during daylight hours, which
may explain the inverse relationship between the proportion of heavy vehicles and the
crash rate.

R? When analyzing the relationship between the crash frequency and related indepen-
dent variables, such as traffic volume and average speed, their effects on crashes cannot be
analyzed separately due to their combined interaction effects. As shown in Figure 3, the
relationship between the average speed, the speed variation within lane and the crash rate
was plotted. In the case of a combination of higher speed variation within lane and a lower
average speed (or vice versa), the curve line becomes very steep, indicating that the crash
rate increases very quickly under such a scenario. There is a high-speed variation in the
same lane combined with a low average speed and it may indicate that the roadway is in a
congested traffic flow condition with vehicles taking frequent stop-and-go actions. Due to
the limited distance between vehicles, the driver’s response time to a sudden speed change
of front vehicle is reduced, so it leads to more rear-end collisions. On the other hand, higher
average speed and lower within-lane speed variation increase the crash risk, which is
mainly reflected by the impact of higher average speed on the crash risk. When the vehicle
is operating at a higher speed, the risk of crash will increase because the braking distance
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will be increased and the driver’s response time will be very limited and. Nevertheless,
the reduced crash risk under the scenario with a combination of higher speed variation
and higher average within-lane speed may be related to the sample size. In this study,
such traffic conditions were less frequent in the crash sample data used for the analysis.
An earlier study has divided rear-end collisions crashes into low-speed and high-speed
scenario, and corresponding findings are consistent with the conclusions of this study.
Under high-speed conditions, speed is positively correlated with crash frequency; while
under low-speed conditions, a larger speed variation is found to increase crash risk.

Table 3. Estimation results of random effect negative binomial model.

Variables Rear-End Collisions Cotivons o Cotnstons P Collstons
Mean p Value Mean p Value Mean p Value Mean p Value
Intercept —6.4276 0.0000 —5.9460 0.0000 —6.4090 0.000 —5.9740 0.0000
Average speed 0.0801 0.0000 0.0706 0.0000 0.0784 0.0000 0.0804 0.0000
Traffic volume 0.0258 0.0000 0.0139 0.0386 / / 0.0231 0.0000
Speed variation between lanes 0.1939 0.0000 0.0961 0.0129 0.1939 0.0034 0.1807 0.0000
Speed variation within lanes 0.6270 0.0000 0.4871 0.0000 0.5092 0.0005 0.6260 0.0000
Heavy-vehicle proportion —6.4851 0.0000 / / / / —6.8611 0.0000
Average speed * Speed variation 5154 900 —0.0075 0.0004 ~0.0074 0.0047 —0.0105 0.0000
within lanes
Volume * Spee‘fa‘r’lzgiaﬁon between _nooa1 0.0000 —0.0021  0.0010 / / —0.0039  0.0000
Average sbpee,fsvw}3 ;j}faeszlsvariation / / / / —0.0031 0.0100 / /
In(exposure) 1
AIC 1353.1 1321.7 1120.9 1549.3
BIC 1393.5 1357.5 1152.2 1589.6
MAD 0.85 1.04 0.58 1.02
MSE 2.73 1.93 0.79 3.28
R? 0.81 0.85 0.76 0.83

Note: * means “the results given are considered the impact of these two factors”.

3.3. Correlation between Traffic Volume, Speed Variation and Crash Rate

The relationship among traffic volume, speed variation among lanes and the crash
rate are plotted in Figure 4. Basically, the speed variation among lanes reflects the driving
behavior related to lane change or overtaking operation. The results show that the crash
rate is higher under the low flow conditions with a high-speed variation. The entrances and
exits of ramps are closely distributed over the section of the urban expressway under study,
and the frequency of vehicle weaving and overtaking near the ramps is high. Frequent lane
changes and overtaking will lead to a higher risk of collision. Besides, with high traffic
volumes, there is more interweaving among vehicles, which leads to greater exposure to
crash risks.

According to the results of estimation results, the relationship between traffic flow vari-
ables and heavy-vehicle/light-vehicle related collision rate are drawn in Figures 5 and 6,
respectively. In terms of light-vehicle related collisions, the significant independent vari-
ables used in the model include average speed, traffic volume, proportion of heavy vehicles,
speed variation among lanes, within-lane speed variation, interaction terms between aver-
age speed and within-lane speed variation, and interaction terms between traffic volume
and speed variation between lanes. As shown in Figure 5, for light-vehicle related collision
model, different between rear-end collisions and side-impact collisions, it is found that
the effect of traffic volume on crash rate is decreased by the large speed variation among
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lanes, due to the existence of interaction term between within-lane speed variation and
traffic volume.
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Figure 3. Relationships between average speed, speed variation within lanes and crash probability.
(a) Rear-end collisions. (b) Side-impact collisions.
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Figure 4. Relationships between traffic volume, speed variation between lanes and crash probability.
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Figure 5. Relationships between average speed, speed variation within lanes and crash probability.
(a) Light-vehicle-related collisions. (b) Heavy-vehicle-related collisions.
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Figure 6. (a) Relationships between traffic volume, speed variation between lanes and light-vehicle-
related collisions probability. (b) Relationships between average speed, speed variation between
lanes and heavy-vehicle-related collisions probability.

In terms of heavy-vehicle related collision model, the significant independent variables
included in the model are: average speed, speed variation among lanes, within-lane speed
variation, interaction terms between average speed and within-lane speed variation, and
interaction terms between average speed and speed variation among lanes. Heavy-vehicle
related collisions are more probable to occur under a high level of within-lane speed
variation combined with a low level of average speed. The post speed limit of heavy
vehicles and light vehicles on the urban expressway are different with each other, and the
heavy vehicles generally drive at a relatively slower speed. Under such an operation policy,
the within-lane speed variation is higher and the average speed of the road segment is low.
Therefore, it may be because of the impact of heavy vehicles on traffic operation speed,
or the occurrence of traffic congestion, which leads to an increased overtaking behavior,
resulting in a higher crash risk. When the average speed is high, heavy vehicles tend to
create traffic collisions due to their own design issues. Such a result is consistent with
previous studies which concluded that crashes related to heavy vehicles happen with a
higher probability under the scenarios with a high operation speed and speed variation.
However, under the scenario of a high within-lane speed variation and average speed,
the crash risk decreases, which may be related to the less occurrence of such traffic flow
condition in the crash sample data used for analysis.

3.4. Study a “Safe” Traffic Flow Threshold in Practise

The elasticity analysis can be used to further quantify the effect of traffic flows on
accidents and reveal t the relationship between traffic flow and accident frequency, which,
in turn, could provide reference for the formulation of traffic safety improvement measures.

The calibrated random effects negative binomial model can be used to identify the
important independent variables used for the collision prediction model. To further identify
the degree of influence of the respective independent variables on the dependent variable,
the elasticity analysis method is used to explain the degree of influence. The indepen-
dent variables in this study are all continuous independent variables, so the formula for
calculating the elasticity coefficient is determined as follows:

Ej = Bjxj (13)

where E; represents the elastic coefficient of the jth independent variable and X; denotes
the average of the jth independent variable

Due to interaction terms presented inside the model, the elastic coefficients of the
respective variables may not have definite values. As shown in Figure 7, the elastic
coefficient of within-lane speed variation is a function inversely proportional to the average
speed. The average speed thresholds that results in positive elasticity coefficients for lane
speed change are 51.09, 50.56, 64.95, 58.13, and 59.62 for overall crashes, rear-end collisions,
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side-impact collisions, heavy vehicle related collisions and light vehicle related collisions.
When the average speed is less than these values, an increase in the in-lane speed variation,
for which may result in more collisions; and as the average speed increases, an increase in
the in-lane speed variation decreases the frequency of accidents. The thresholds for traffic
volume with positive elasticity coefficients for inter-lane speed changes were 69.67, 47.29,
45.76 and 46.33 for overall crashes, rear-end collision accident, side collision accident and
small vehicle collision accident. For heavy vehicle crashes, the average speed threshold
that results in a positive elasticity coefficient for inter-lane speed variation is 62.55. All the
above results provide insights for developing traffic operation policies to improve traffic
safety. In detail, traffic safety can be improved by adjusting traffic volume, traffic vehicle
composition, and vehicle speed distribution.

Overall Crashes Rear-end Collisions
0.6 |~ Side-impact Collisions Heavy-vehicle Related Collisions
\ --------- Light-vehicle Related Collisions

Elastic Coefficient
1=2

Average Speed (km/h)

Figure 7. The elastic coefficient of speed difference within lanes for various collision types at various
speed values.

4. Conclusions and Discussion

This paper introduces a random effect negative binomial model to analyze the im-
pact of traffic flow variables such as average speed, speed variation and traffic volume
on crash risk, based on crash data and concurrent traffic flow data collected by high-
precision microwave traffic flow detectors on urban expressways. In this study, the crashes
are subdivided into rear-end collisions/side-impact collisions and heavy-vehicle-related
collisions/light-vehicle-related collisions. The crash data are aggregated based on the
similarity of traffic flow conditions, the crash scenarios that may reflect all possible types
of traffic flow conditions at the studied area are developed and the mechanism of various
types of crashes is then analyzed.

The results show that the significant influencing factors of each kind of crashes are
different. For rear-end collisions, if there is higher speed variation within lane, the crash
risk is higher. The finding is consistent with other studies [3]. Due to the limited distance
between vehicles, the driver’s response time to the sudden speed change of surrounding
vehicles is reduced, which leads to rear-end collisions. Under high-speed traffic operation
conditions, speed is positively correlated with crash frequency, while under low-speed
conditions a larger speed variation increases the crash risk [33]. The results from this
study are largely in line with the previous study [35], which shows that crashes take
place with a higher probability in the presence of high-speed variations under low-flow
conditions. Frequent lane changes and overtaking on road sections also lead to a higher
risk of collision [1]. The result is consistent with some previous studies, which found that
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crashes related to heavy vehicles occur with a higher frequency in the presence of high
operation speeds and speed variations [7].

By analyzing the relationship between traffic flow measurements and various types
of crashes, this study improves the level of details of the crash modeling and provides
practical guiding values for traffic safety management. Although this study has achieved
its major goal, its limitations have also been identified. First, weather conditions have a
potential impact on the occurrence of crashes, which will be considered in our models
once the detailed weather data are available. Secondly, road geometric characteristics
also have a certain correlation with the occurrence of crashes, as well as traffic delays,
economic and societal costs and others, which have not been considered in our study
yet. Moreover, the traffic flow variables have different safety effects on crash severity,
but more than 90 percentage of crash samples are property damage only, so the crash
severity has not been analyzed in detail as well. Lastly, the current study only used one
section of urban expressway in the city of Wuhan for a case study; therefore, a limited
sample size and road type may also have an impact on the rigor of the contributions of
this study. Moreover, the conclusion of this study has demonstrated that if there are more
heavy vehicles in the traffic flow, the crash risk would be higher. The commercial vehicle
drivers’ performance was believed to be one of the contributing factors; however, only
GPS-based surveillance measurements, speed and position data, were available for this
study. In addition, these two types of data did not support our further investigation of
driving performance. Since the speed data are analyzed already, no further variable was
used in the current paper. When the connected vehicle technology becomes more popular
and more risky driving behavior can be detected, then a new crash prediction modeling
can be established, including consideration of the heavy vehicle driver’s performance.
Therefore, under the premise of obtaining more crash samples through Big Data technology,
it is of interest to study the mechanism of crash severity based on real-time traffic flow
and driving behavior data in future. In addition, such kind of analyses can provide higher
reference value for the formulation of road safety improvement measures.
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