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Abstract: In September 2020, China proposed the achievement of the emission reduction targets
of “carbon peak” and “carbon neutral” by 2030 and 2060, respectively. As an important area of
energy consumption in addition to industry and transportation, the construction industry has great
energy-saving potential and is gradually becoming the key to achieving China’s energy-saving and
emission-reduction goals. Energy data is an important basic support for measuring carbon emissions,
analyzing energy-saving potential, and formulating energy-saving targets. In order to solve the he
lack of data on China’s carbon emissions, this paper uses lamplight remote sensing image data in the
study. Combined with China’s eastern, central, and western regions of building carbon emissions
data and the establishment of a partition of China building carbon emissions calculation model, panel
data found building carbon emissions and smooth lamp brightness values between the balanced
relations. After that, using the building carbon emissions models of the three regions, the building
carbon emissions of 30 provinces, 360 cities, and 2778 counties in China were measured, and the
changing trends and temporal and spatial directions of building carbon emissions at three spatial
scales were analyzed. The results showed that although the total carbon emissions of civil buildings
in China has been increasing year by year, its average annual growth rate is gradually slowing down.
In addition, the temporal and spatial development directions of carbon emissions from buildings of
different spatial scales are basically the same, and they all show a trend of shifting to the east.

Keywords: light remote sensing image; building carbon emission; panel data model; measurement
method; temporal and spatial characteristics

1. Introduction

Building is an important energy consumption field in China, and its carbon emissions
are continuing to rise. Research shows that in 2017, the total civil construction area in
China reached 60.1 billion m2, and the urban civil construction area accounted for 61.9%.
In 2017, China’s total carbon emissions from buildings exceeded 2 billion tons of standard
coal, which was about three times higher than the 668 million tons of carbon emissions
in 2000, with an average annual growth rate of about 6.8% [1]. Statistics show that from
2000 to 2019, China’s urbanization rate rose from 36.2% to 60.6%, which is an increase in
the urbanization rate of approximately 24.4%. By 2050, China’s urbanization rate may
exceed 70%. With the acceleration of urbanization, a large amount of energy will be used in
the building sector, and building energy consumption will continue to grow, which will be
followed by continuous growth in carbon emissions.

In order to effectively solve the problem of carbon emissions, the Chinese government
has implemented a series of policy measures. During the “Eleventh Five-Year Plan” period,
the Chinese government made energy conservation a binding indicator for the first time

Sustainability 2022, 14, 2269. https://doi.org/10.3390/su14042269 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14042269
https://doi.org/10.3390/su14042269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su14042269
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14042269?type=check_update&version=1


Sustainability 2022, 14, 2269 2 of 23

and included it in the national economic and social development plan, and put forward
the requirement that “the intensity of energy consumption in 2010 should be reduced
by 20% compared with 2005.” During the “Twelfth Five-Year Plan” period, the Chinese
government proposed for the first time a legally binding carbon dioxide emissions control
target, that is, “a 17% reduction in the intensity of carbon dioxide emissions per 10,000 yuan
during the period 2010–2015.” After the “Paris Agreement” came into effect, the Chinese
government issued some energy-saving policies: “The carbon emission intensity in 2020
will be reduced by 18% compared to 2015”, and “achieve the emission reduction targets
of carbon peak and carbon neutral by 2030 and 2060”. It can be seen that strengthening
energy conservation and emissions reduction has become the focus of China’s efforts to
achieve green and sustainable development.

In this context, Chinese universities and related scientific research institutions are
vigorously carrying out research on building carbon emissions, and how to obtain basic
data on building energy consumption has become the first problem to be solved in the
research work. At present, China’s basic data sources for building energy consumption
mainly include three methods: government statistical surveys, special surveys, and model
calculations. Among them, the implementation agency of the government statistical survey
method is the National Bureau of Statistics, which divides social and economic activities
into four categories: primary industry, secondary industry, tertiary industry, and living
consumption. It does not separate the construction sector separately, and energy consump-
tion data is difficultly split. The implementation agency of the special survey method is
the Ministry of Housing and Urban-Rural Development. According to the “Civil Building
Energy Consumption Statistical Report System”, the energy consumption information
of urban civil buildings and rural residential buildings is collected. The survey method
adopts a combination of comprehensive survey and sample survey. Its data has not yet
been disclosed to the public. Model calculation methods include the China Building En-
ergy Consumption Model (CBEM) proposed by the Building Energy Consumption Model
(CBEM) of Tsinghua University and the building energy consumption split model based
on the energy balance sheet proposed by the Chinese scholar Professor Qing-Yi Wang.
The two models currently use more calculation methods, but they can only obtain data
on China’s total building energy consumption from a macro level, and cannot measure
building energy consumption data on a detailed scale of cities and counties.

In addition, since there is no uniform method for China’s building carbon emissions
accounting, which method is used to measure carbon emissions needs to be considered
by the actual situation. Therefore, the input–output analysis method, emissions factor
method, and life cycle method are often used in current research to calculate building
carbon emissions.

The input–output method mainly analyzes the relationship between different sectors
and different industries and estimates the direct and indirect carbon emissions of an
industry from top to bottom in the form of an input–output table. Zhi-hui Zhang [2]
used the input–output method to calculate the direct and indirect carbon emissions and
carbon emissions correlation coefficients of buildings, which proved that carbon emissions
have a significant pulling capacity. Xin Ju [3] used the emission factor method and the
input–output method to calculate the carbon emissions of the construction industry and
the consumption coefficient of the construction industry-related industries in China, and
constructed a data calculation model for the construction industry-related carbon emissions.
Jing Liu [4] built a building carbon emission data measurement model from the perspective
of the entire industry chain based on the input–output method combined with energy
statistics. Li-Yin Shen [5] used the input–output method based on the super-efficiency SBM
model to measure and analyze the carbon emissions of residential buildings in China.

The emissions factor method is generally used to measure direct carbon emissions.
This method needs to multiply the consumption of various types of energy with its carbon
emissions factors to obtain the carbon emissions of each energy source, and then add the
carbon emissions of each type of energy. After processing, the total value of energy carbon
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emissions can be obtained by summarizing. Jia Yang [6] calculated the carbon emissions of
civil buildings in China’s provinces and cities using the emissions factor method based on
energy consumption statistics. Fang-Wei Zhu [7] calculated the energy consumption and
carbon emissions during the operation phase of public buildings in Wuhan using the carbon
emissions factor method based on statistics and audit data. Meng-Jie Wang [8] measured
the energy consumption of civil buildings in China’s urban areas based on statistical data
and used the emissions factor method to obtain the total carbon emissions. Li-Chun-Yi
Zhang [9] obtained relevant data of Tianjin Post and Telecommunications Apartment City
through field research and questionnaire surveys and calculated the carbon emissions of
residential buildings using the emissions factor method.

The whole life cycle method is a measurement method based on the whole life cycle
theory, which is mainly used to estimate the carbon emissions of a certain product or a
certain process during the whole life cycle. Xiao-Cun Zhang [10] analyzed the carbon
emissions during the whole process of construction, operation, and demolition of buildings
in China’s provinces based on energy statistics and using the life cycle method. Yi Chen [11]
selected a single building project in Tianjin and analyzed the entire carbon emissions of the
single building based on the building life cycle evaluation method and the emissions factor
method. Xiao-Yun Zheng [12] used a villa project in Chongqing to calculate the total energy
carbon emissions during the construction, operation, demolition, and abandonment phases
of the building project using the whole life cycle method. In addition, Peng-Fei Cui [13]
and Ze-Qiong Xie [14] also respectively measured the carbon emissions of the construction
industry in China by stages based on the full life cycle method.

At present, many scholars [15–18] have carried out research work in the accounting
method of carbon emissions, the spatial research of carbon emissions, and the relationship
between lighting brightness and energy. Some achievements have been made, but there are
limitations, as follows:

(1) In the study of building carbon emissions accounting methods, domestic and foreign
scholars mostly calculate building carbon emissions from both macro and micro levels.
The basic data used for calculation are mostly split and calculated by using energy
statistical yearbook data, and the spatial scale of calculation is also mostly at the
national, provincial, and regional levels. In addition, the results of building carbon
emissions obtained by different measurement methods also differ greatly. In view of
this, remote sensing image data of lighting were introduced in this paper to extract
lighting brightness values of different regions in Provinces, cities, and counties in
China from 2000 to 2013, and the relationship model between lighting brightness
values and building carbon emissions was established to further enrich the calculation
methods and ideas of building carbon emissions.

(2) In terms of measuring carbon emissions of building construction, the macro level is
dominated by national and provincial scales of architecture, and the micro level is
mainly composed of individual buildings. For the more detailed municipal and county
scales, researching of carbon emissions of building is not perfect, and to some extent,
the research also lacks the national, provincial, municipal, and county multi-level
research of building carbon emission. So, it is unable to provide a more comprehensive
and in-depth understanding of building carbon emissions in the field of construction.
Therefore, based on the multi-regional building carbon emissions calculation model,
this paper calculates the carbon emissions of urban civil buildings at the national,
provincial, municipal, and county scales by using the lighting brightness values of
provinces, cities, and counties.

On the whole, although Chinese scholars are constantly deepening their research on
building carbon emissions, the lack of availability and refinement of basic building energy
data not only provide insights into China’s provinces, cities, counties, and other carbon
emissions at different scales. It also brings greater difficulties and greater limitations to
the promotion of building energy conservation and emissions reduction. It can be seen
that in order to effectively carry out research on building carbon emissions, it is urgent to
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introduce new data sources, broaden the research ideas of building carbon emissions, and
provide data method support for research on building carbon emissions at a fine scale.

Light remote sensing images can characterize the intensity of human activities, and
the data can be used to carry out research on human activities, carbon emissions estimation,
and urban planning expansion. The main source of carbon emissions is human production
and activities, and light brightness data can be used to indicate the strength of human
activities. To a certain extent, there is also a strong correlation between night light data and
carbon emissions.

This paper includes six parts: introduction, data collection, methodology, results,
discussion, and conclusion. This paper aims to combine lighting remote sensing image
data, energy statistics data, and geographic vector data, and to use panel data models
to analyze the correlation between lighting brightness and building carbon emissions,
constructing building carbon emissions data estimation models in eastern, central, and
western regions of China. This model can estimate three spatial scales of carbon emissions
from buildings, including province, city, and county, and analyze the characteristics of
changes in building carbon emissions, providing a reference for formulating reasonable
and sophisticating carbon emissions reduction policies.

2. Data Collection
2.1. Definition and Scope
2.1.1. Research Stage Division

The research object of this paper is the carbon emissions of urban civil buildings,
including the carbon emissions of residential buildings and public buildings. The relevant
concepts involved in the research are as follows:

Urban civil buildings: According to the nature of use, buildings can be divided into
three types: civil buildings, industrial buildings, and agricultural buildings. This article
takes civil buildings as the research object and divides them into two types: residential
buildings, and public buildings.

Building carbon emissions: Carbon emissions in this article refer to carbon dioxide
emissions (Figure 1). Building carbon emissions are derived from carbon emissions. Build-
ing carbon emissions can be divided into broad building carbon emissions and narrow
building carbon emissions. The broad scope of building carbon emissions is defined as
the carbon emissions during the entire life cycle of a building, including the building
material production phase, building operation phase, and building demolition phase; the
narrowly defined scope of building carbon emissions is the carbon emissions during the
building operation phase. The carbon emissions of buildings in this article refer to the
carbon emissions during the operation phase of buildings.

Figure 1. Definition of research indicators.

2.1.2. Research Area Division

The research scope of this article is the sum of the built-up areas of cities, counties,
and organizational towns in 30 provinces and cities (excluding Xizang, Hong Kong, Macao,
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and Taiwan) in mainland China. There are great differences in factors such as social
development and economic level among different regions, so there is a certain imbalance
in the amount of carbon emissions generated between regions. In order to improve the
rationality and accuracy of carbon emissions estimation, it is necessary to conduct regional
analysis and estimation for different characteristics of carbon emissions. According to the
level of social and economic development, this paper divides the selected 30 provinces and
cities into three types of region [8]: eastern, central, and western regions (Table 1).

Table 1. Regional division results.

Type Province Quantity

Eastern region Liaoning; Jilin; Heilongjiang; Beijing; Tianjin; Hebei; Shandong;
Shanghai; Jiangsu; Zhejiang; Fujian; Guangdong; Hainan 13

Central region Shanxi; Henan; Anhui; Jiangxi; Hubei; Hunan 6

Western region Shanaxi; Gansu; Ningxia; Neimenggu; Qinghai; Xinjiang;
Sichuan; Chongqing; Guizhou; Yunan; Guangxi 11

2.2. Data Collection and Calculation Flow
2.2.1. Building Carbon Emissions

The study area in this paper included 30 provinces and cities in mainland China,
and the time series was from 2000 to 2017. The original energy consumption data came
from the energy balance sheets of 30 provinces and municipalities in the “China Energy
Statistical Yearbook” from 2000 to 2017, and the energy balance split model proposed
by Qing-Yi Wang [19] was used to obtain basic building energy data. In this model, the
energy consumption of different departments in the energy statistical yearbook needed to
be split and converted according to a certain proportion and then summarized to obtain the
energy consumption of urban civil buildings in various provinces and cities. Energy types
included primary energy and secondary energy. The calculation method is as follows:

(1) Transportation, warehousing, and postal industry: The energy consumption of this
industry is included in buildings (including railway stations, terminal buildings, and
post offices). The energy consumption is mainly electricity and heat. In addition,
though the use of electric vehicles can generate electricity energy consumption, its
proportion is so small that it can be ignored, and only the energy consumption of
electricity and heat are calculated.

(2) Wholesale, retail, accommodation, and catering: Most of this industry is buildings
energy consumption, but it also includes energy consumption for transportation that
needs to be deducted. Therefore, gasoline and diesel are calculated at the proportions
of 5% and 65%, respectively.

(3) Others: This industry includes the energy consumption of the tertiary industry other
than (1) and (2) above, and it includes the energy consumption of transportation that
needs to be deducted. Therefore, gasoline and diesel are calculated at the proportions
of 5% and 65%, respectively.

(4) Living consumption: This industry includes two parts: urban and rural areas. This
article mainly studies urban living consumption in this industry, which includes
all kinds of living consumption generated by residents, enterprises, institutions,
government agencies, and the energy consumption of private transportation. Thus,
it is not included in the consumption of gasoline in the industry, and the calculation
ratio of diesel is 5%.

After obtaining basic building energy data, the carbon emission factor method [8]
was used to calculate the carbon emissions of urban civil buildings in 30 provinces and
municipalities in China. The calculation equation is as follows:

C = ∑ Ci = ∑ δi × ei (1)
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where C is the total carbon emissions of urban civil buildings in a province, e is the original
energy consumption, δ is the carbon emissions factor, and i represents the type of energy.

The carbon emissions factors of various energy data were divided into the carbon
emissions factors of primary energy (coal, gas, oil) and the comprehensive carbon emissions
factors of secondary energy (electricity, heat). The carbon emissions factor of primary energy
adopted national official data, and the carbon emissions factor of secondary energy was
calculated according to the calculation formula of the energy balance sheet data.

2.2.2. Light Remote Sensing Image

The light remote sensing image data used in this paper came from the DMSP-OLS
series of remote sensing satellites of the National Geophysical Data Center of the United
States. The research time series was from 1992 to 2013, and 34 periods of light image data
were obtained. Each image includes three types, specifically as follows: raw-avg-vis data,
cloud-free coverages data, and the-cleaned-up-avg-vis data [20].

Light remote sensing image data include data indicators such as light brightness,
light area, number of lights, and number of non-lights. The lighting attributes reflected
by different lighting indicators are different. The light area index focuses on describing
its distribution characteristics, and the light brightness index can simultaneously reflect
the spatial distribution and three-dimensional characteristics of night lights. This paper
selected the annual average light brightness value in the image data and constructed a
panel data model of the building carbon emission.

After the light remote sensing image data were obtained, because the data of different
years may come from different types of sensors, there were some problems in the stable
light image obtained, as follows:

(a) The DN value of the stable light image ranges from 0 to 63, so there may be saturated
pixels with a DN value of 63, and it is most likely to exist in the central area of the city.

(b) In the same year, there may be a certain difference between the total light DN value
obtained by different sensors and the average light DN value.

(c) In different years, abnormal changes may occur between the total light DN value
obtained by the same sensor and the average light DN value.

Therefore, this article used ArcGIS 10.5 software to correct the original light data. The
nighttime light image of China after correction is shown in Figure 2. The correction method
is as follows:

Image reprojection, resampling, and cropping. Since the original extracted image
data adopts the projection coordinate system of WGS84, in order to avoid the distortion
of the pixel area of the light image, the original light image grid needed to be reprojected
and converted to the Asia–Lambert–Conformal–Conic, using the NEAREST method to
resample the lighting data into 1 km × 1 km and 0.5 km × 0.5 km grid sizes, and using
the Chinese administrative division data as a mask, cropping and extracting the nighttime
stable lighting image data in China.

Image mutual correction processing. In order to reduce the error of the DN value
of the night light data of different sensors and different years, Elvidge [21] and others
proposed a method for mutual correction of global night light data. After that, Liu [22],
Zi-Yang Cao [23], and Yong-Xian Su [24] proposed a data correction method suitable for
the constant target area of the Chinese regional lighting data under consideration of the
actual situation in China. The specific processing methods are summarized as follows:

(a) Since the economic development of Jixi City was relatively stable from 1992 to 2013, the
city was selected as the target reference area based on the research of related scholars,
and the light image of the F16 satellite in 2006 was used as the reference dataset.

(b) The DN value of the F16 satellite in Jixi City in 2006 was extracted, and the quadratic
regression model was used to regress it with the light DN value of other years. Correction
parameters of a, b, and c were obtained. The calculation method is as follows:

DN16 = a× DN2
15 + b× DN15 + c (2)
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(c) Then the obtained mutual correction parameters a, b, and c were used to correct the
acquired time series data. The calculation method is as follows:

DN′ = a× DN2
0 + b× DN0 + c (3)

Based on the above, the correction regression model of the time series lighting data in
China in this paper refers to the calculation parameters of Xing-Yong Zhou [25] to perform
mutual correction on the image data in China.

The images will be fused during the year. In the same year, the light image data
obtained may be obtained by multiple sensors. Since the detection performance of different
sensors may be quite different, there are many differences in the DN value of the light
brightness even in the image data obtained in the same year. Therefore, for remote sensing
image data acquired from different sensors at the same time, correction processing for
fusion within the year is required.

The light remote sensing image data obtained by different sensors in the same year
are compared. If brightness information appears in only one image dataset at the same
location, the pixel is defined as an unstable pixel. In addition, the DN value of the unstable
pixel needs to be set to 0, and the DN value of the stable pixel in the image is set to the
average value of the two images [26]; the calculation method is as follows:

DN(n,i) = 0 (4)

DN(n,i) =
(

DNa
(n,i) + DNb

(n,i)

)
/2 (5)

where DN(n,i) represents the DN value of the pixel i in the n-th year after fusion within the
year; DNa

(n,i), DNb
(n,i) respectively represent the original DN value of the pixel i in the n-th

year of satellite a and satellite b.
Image continuity correction between years. After performing the afore-mentioned

three processing steps of mutual correction and intra-year fusion on the light image data,
there may still be some inter-annual unstable pixels (the pixels have brightness information
in the early images, but disappear in the later images), so it is necessary to perform inter-
annual multi-sensor and multi-year continuity correction processing on the light image
data. The calculation method is as follows:

DN
(n,i)=

{ DN(n−1,i), DN(n−1,i)>DN(n,i)

DN(n,i), DN(n−1,i)≤DN(n,i)

(6)

where DN(n−1,i) and DN(n,i) are the DN value of the i-th pixel in the n−1-th and n-th year
of the light image.

2.2.3. Availability of Light Remote Sensing Image

In recent years, the application of remote sensing image data has become more and
more extensive, which has provided key basic support for many researches. Among all
kinds of data obtained from remote sensing satellites, light remote sensing image data,
as a good data source for inverting regional economic development and describing the
impact of human production and activities, has many advantages that have been gradually
highlighted. After the 1980s, the nightlight images have been widely used in the research
of detection of human activities. For example, the nightlight images have been used to
extend the monitoring of the spatial estimation of the regional economic development
level, population, ecological environment, electric energy consumption, and other fields of
human behaviors, providing strong support for the related studies.
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Figure 2. Correction of light images at night in China: (a) 2002, (b) 2004, (c) 2006.

Secondly, the nighttime light image not only has a larger monitoring range, but also
a higher spatial and temporal resolution, which can detect the high intensity and low
intensity nighttime light generated in a certain area. Many studies have verified that the
main cause of carbon emissions is human production and activities, and nighttime light
data can effectively reflect the intensity of human activities, and there is a strong correlation
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between light intensity and carbon emissions. Therefore, on the basis of the above research,
this paper used lighting image data to build a relationship model between lighting image
data and building carbon emissions, providing a new data source and a more detailed
measurement method for carbon emissions data in the field of buildings.

In addition, the light remote sensing image data contain three different forms of
light image data. The nighttime stable light image data can include areas with long-term
light sources such as residential land in urban areas and residential land in towns. After
removing the influence of background noise and other factors, such as the influence of light
sources such as fire, moonlight, etc., the data is relatively accurate and highly usable.

3. Methodology
3.1. Research Premise and Hypothesis

In this paper, the premise of building a carbon emission estimation model using the
brightness value of night lights was that the area with the greater brightness of light has the
higher carbon emissions; that is, the area with the greater DN value of the light image data
has the greater carbon emission value [27,28]. At the same time, it was assumed that there
is a correlation between building carbon emissions and light brightness values as follows:

NC = aDN + b (7)

where NC represents the estimated carbon emissions value, DN represents the light bright-
ness value, and a and b represent the regression equation parameters.

3.2. Data Stationarity Test

Before constructing the panel data model, in order to avoid the phenomenon of false
regression in the fitting of the established model, the stationarity test of the constructed
panel dataset must be carried out to prove the validity of the model estimation. The station-
arity test mainly includes two test methods: unit root test, and cointegration test. Among
them, the unit root test is mainly used to test whether there is a unit root in the data; the co-
integration test is mainly used to analyze whether there is a stable equilibrium relationship
between factors. In addition, in order to eliminate the instability and heteroscedasticity
that may exist in the time series during the inspection process, this paper processed the
data in logarithm.

The unit root test methods include the same root unit test method (Levin–Lin–Chu
(LLC)) and the different root unit root test method (Fisher-ADF). The first step of the
unit root test is to start with the level sequence. If unit roots are found after the test, the
first-order difference is performed, and the unit root test is continued; if the unit roots still
exist after the test, the second or even higher order is performed After the difference, it is
verified that the series is in a stationary state. If the null Hypothesis that there is a unit root
is rejected in both tests, the series is considered to be a stationary series [28]. If the unit root
test is a single integer of the same order, the co-integration test can be used to analyze the
stationarity of the data in the next step.

The co-integration test method adopts the co-integration test method based on the
two-step method of Engel and Granger. Among them, the cointegration relationship used
to test homogeneous panel data includes four statistics, namely the Panel V-Statistic, Panel
rho-Statistic, Panel PP-Statistic, and Panel ADF-Statistic; and the cointegration relationship
used to test heterogeneous panel data includes Group rho-Statistic, Group PP-Statistic, and
Group ADF-Statistic [28,29]. If the data pass the cointegration test, the equation can be
regressed, and more accurate results can be obtained.

3.3. Research Model Selection and Setting

Compared with the general regression model, the panel data model can not only
solve the problem of sample size, but also can accommodate more information, allow
large differences in data, eliminate the effect of multicollinearity, and improve the accuracy
of estimation. Therefore, this paper builds a panel data model of night light brightness
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and carbon emissions and establishes an estimation model of urban civil building carbon
emissions on the provincial scale of the eastern, central, and western regions. The specific
steps of model establishment are as follows.

3.3.1. Panel Data Model Settings

Panel data models mainly include three types: constant coefficient models without
individual influence (mixed regression model), constant coefficient models with individ-
ual influence (variable intercept model), and variable coefficient models with individual
influence.

Mixed regression model. The mixed regression model has no individual influence
and structural changes on the cross-section (ai = aj = a, bi = bj = b), so the model can
be regarded as a simple accumulation of cross-sectional data. The regression form of the
equation is as follows:

Yit = a + bxitY + µit i = 1, 2, 3 . . . N; t = 1, 2, 3 . . . T (8)

Variable intercept model. The variable intercept model has only individual influences
on the data cross-section, without structural changes (ai 6= aj, bi = bj = b). In this model,
the structural parameters of the variables on different cross sections are the same, but their
intercept terms are different. Therefore, the difference in influence between individuals
in the model can be represented by the difference in the intercept term ai (i = 1,2,3 . . . N).
If the individual influence of the model is constant, it is a fixed-effect variable-intercept
model; if the individual influence of the model is a random variable, it is a random-effect
variable-intercept model. The regression form of the equation is as follows:

YIT = ai + bxit + µit i = 1, 2, 3 . . . N; t = 1, 2, 3 . . . T (9)

Variable coefficient model. The variable coefficient model has individual influences
and structural changes on the cross-section of the data. In this model, the change of
individual influence is mainly represented by the intercept term ai (i = 1,2,3 . . . N),
and the structural change between individuals is represented by the coefficient vector
bi (i = 1,2,3 . . . N). The regression form of the equation is as follows:

Yit = ai + bixit + µi i = 1, 2, 3 . . . N; t = 1, 2, 3 . . . T (10)

3.3.2. Choice of Panel Data Model

The first step of building a panel data model is to verify that the parameters ai and bi
of the explained variable Yit are constant for all sample points and times in the model, and
to further determine which estimation model should be selected for the selected sample
data. In order to avoid large deviations in the selection of the model, it is usually necessary
to use the F test for parameter testing, that is, the analysis of covariance method (analysis
of covariance), and the test hypotheses are as follows:

Hypothesis 1 (H1). b1 = b2 = · · · = bN .

Hypothesis 2 (H2). a1 = a2 = · · · = aN , b1 = b2 = · · · = bN .

Before starting the specific calculation steps of the model, it is necessary to calculate
the residual sum of squares of the three models, namely, the residual sum of squares of the
variable coefficient model (S1), the residual sum of squares of the variable intercept model
(S2), and the mixed regression residual sum of squares model (S3). The specific calculation
steps are as follows:

(1) Under Hypothesis 2, it is necessary to test whether the F2 statistic obeys the F distri-
bution of the corresponding degree of freedom. If the obtained F2 statistic value is
less than the critical value under a certain level of significance (F2 < Fα), indicating
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that the tested sample meets the requirements of the mixed regression model, then
accept Hypothesis 2; if F2 > Fα, continue to test the Hypothesis 1.

F2 =
(S3 − S1)/[(N − 1)(k + 1)]

S1/[NT − N(k + 1)]
∼ F[(N − 1)(k + 1)], N(T − k− 1) (11)

(2) Under Hypothesis 1, it is necessary to test whether the F1 statistic also obeys the F dis-
tribution under the corresponding degree of freedom. If the obtained F1 statistic value
is less than the critical value under a certain significance level (F1< Fα), indicating that
the sample meets the requirements of the variable intercept model, then Hypothesis 1
is accepted; if F1 > Fα, it indicates that the sample meets the requirements of the
variable coefficient model.

F1 =
(S2 − S1)/[(N − 1)(k + 1)]

S1/[NT − N(k + 1)]
∼ F[(N − 1)(k + 1)], N(T − k− 1) (12)

where N represents the number of sections, T represents the number of time series,
and k represents the number of independent variables.

Generally, model effects are divided into fixed effects and random effects, and the
choice of model effects can be determined using Hausmann’s test method. As related
research has proved that the fixed-effect model can obtain relatively ideal results in most
cases, this paper selected the fixed-effect model for estimation.

3.3.3. Construction of Carbon Emission Estimation Model

According to the model assumptions, after selecting and setting the panel data model,
the relationship model between building carbon emissions and light brightness values
at various scales in China can be established, and the parameter values a and b of the
regression equations of 30 provinces in China can be calculated at the same time.

If there is a negative value when using the constructed panel data model to measure
building carbon emissions, because the regional building carbon emissions cannot be
negative, it needs to be set to zero to obtain a preliminary estimate of building carbon
emissions [28]. At the same time, in order to improve the estimation accuracy of building
carbon emissions at different scales, when using the panel data model for downscaling to
analyze the building carbon emissions at the city and county level, it is necessary to use
provincial carbon emissions data to obtain corrected city-level building carbon emissions
data. The calculation method is as follows:

C = NCct ×
SC

NCnt
(13)

where c means a certain city; n means a province; t means a certain year; CC means the
corrected building carbon emissions; NCct means the building carbon emissions estimated by
the model; NCnt means the provincial level estimated by the model Building carbon emissions;
and SC represents the provincial building carbon emissions derived from statistical data.

4. Results
4.1. Zoning Calculation Model of Building Carbon Emissions
4.1.1. Results of Stationarity Test

The unit root test results of the panel dataset of building carbon emissions and light
brightness values are shown in Table 2. From the test results, in the Level value of the
LLC test method, the building carbon emissions, light brightness, and urban population
of the three regions rejected the null Hypothesis at a significance level of 1%. However,
the ADF-Fisher test method rejected the null hypothesis. According to the test results
on the Level value, the building carbon emissions and light brightness both accepted the
null hypothesis.
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Table 2. Panel data unit root test results.

Type Levin–Lin–Chu
Level p First-Order Difference p

Carbon emissions
East −2.633 0.0042 −10.842 0.0000
Middle −3.103 0.0010 −8.1116 0.0000
West −4.373 0.0000 −8.3894 0.0000

Light brightness
East −4.780 0.0000 −10.976 0.0000
Middle −2.701 0.0035 −6.9191 0.0000
West −5.015 0.0000 −8.8653 0.0000

Type ADF-Fisher
Level p First-Order Difference p

Carbon emissions
East 37.888 0.0620 94.456 0.0000
Middle 17.236 0.1409 36.319 0.0003
West 37.321 0.0218 71.799 0.0000

Light brightness
East 18.553 0.8547 65.060 0.0000
Middle 8.5937 0.7372 28.710 0.0043
West 20.892 0.5274 50.040 0.0006

In order to further test the stationarity of the panel data, it was necessary to carry
out the first-order difference unit root test on the panel data of the three regions. The
final test results showed that in the LLC test and the ADF-Fisher test, the building carbon
emissions and light brightness factors in the three regions rejected the null Hypothesis at
a significance level of 1%, indicating that the dataset is a first-order single integer stable
Sequence data.

After the unit root test is performed on the established panel dataset, the result
showed that the panel dataset is a first-order single integer. Therefore, the co-integration
test analysis could be performed on the established panel dataset, and the test results are
shown in Table 3.

Table 3. Panel data cointegration test results.

Type East Middle West

Panel v-Statistic 1.403870 *** 4.438098 * 8.158571 *
Panel rho-Statistic −1.890903 ** −0.367141 −1.209176 ***
Panel PP-Statistic −21.00025 * −7.492220 * −6.935144 *

Panel ADF-Statistic −5.149652 * −2.679403 * −1.874798 **
Group rho-Statistic 1.457221 1.435633 0.616810
Group PP-Statistic −8.418278 * −6.049093 * −8.374856 *

Group ADF-Statistic −2.089975 ** −2.076064 ** −4.026155 *
Note: *, ** and *** represent the rejection of the null Hypothesis at the significance level of 1%, 5% and 10% respectively.

In the case of homogeneous panel data, in the eastern region, Panel v-Statistic rejected
the null Hypothesis that there is no cointegration relationship at a significance level of
10%. Similarly, Panel rho-Statistic was also at a significance level of 5% and rejected the
null hypothesis. In addition, Panel PP-Statistic and Panel ADF-Statistic both rejected
the null Hypothesis at the 1% significance level. In the central region, Panel v-Statistic,
Panel PP-Statistic, and Panel ADF-Statistic all rejected the null Hypothesis that there is
no cointegration relationship at the 1% significance level, while the Panel rho-Statistic
test accepted the null hypothesis. In the western region, Panel v-Statistic and Panel PP-
Statistic both rejected the null Hypothesis at the 1% significance level, Panel ADF-Statistic
rejected the null Hypothesis at the 5% significance level, and Panel rho-Statistic accepted the
null hypothesis.

In the case of heterogeneous panel data, the test results of the eastern region and
the central region were similar, and Group PP-Statistic and Group ADF-Statistic of the
two regions were rejected at the significance level of 1% and 5%, respectively. So, there
is no cointegration relationship. Group rho-Statistic accepted the null hypothesis; Group
PP-Statistic and Group ADF-Statistic in the western region rejected the null Hypothesis that



Sustainability 2022, 14, 2269 13 of 23

there is no cointegration relationship at the 1% significance level, and Group rho-Statistic
accepted the null hypothesis.

In general, the panel data of building carbon emissions and light brightness values in
the eastern, central, and western regions passed the cointegration test at a certain level of
significance, indicating that no matter which region, there is a long-term stable equilibrium
relationship between the variables.

4.1.2. Results of Model Selection and Setting

In this paper, the method of covariance analysis was used to select the model form
by calculating the F statistic. From the calculation results (Table 4), it can be seen that the
statistics of the eastern region, F2 = 15.883 > F0.05 (24,156), rejected Hypothesis 2, and the
statistics F1 = 0.397 < F0.05 (24,156) can be considered to accept Hypothesis 1. Therefore, the
model form in the eastern region was chosen as the variable intercept model. Similarly, the
statistics of the western region, F2 = 12.034 > F0.05 (20,132), rejected Hypothesis 2, and the
statistics F1 = 0.542 < F0.05 (20,132) accepted Hypothesis 1. Therefore, the model form in the
western region was also selected as the variable intercept model. For the central region, its
statistics, F2 = 0.486 < F0.05 (10,72), accepted Hypothesis 2, so the model form of the central
region was selected as a mixed regression model.

Table 4. Model form selection results.

Type Sum of Squares of Residuals F
ResultF1 F2

East
Mixed regression model S3 = 96.390

0.397 15.883 Variable intercept modelVariable intercept model S2 = 29.703
Variable coefficient model S1 = 27.991

Middle
Mixed regression model S3 = 14.426

0.181 0.486 Mixed regression modelVariable intercept model S2 = 13.853
Variable coefficient model S1 = 13.513

West
Mixed regression model S3 = 70.003

0.542 12.034 Variable intercept modelVariable intercept model S2 = 26.830
Variable coefficient model S1 = 24.795

Based on the above selection results of model effects and model forms, this article
used the generalized least squares method (GLS) to establish regression models under fixed
effects for the three regions. The calculation results are as follows:

(1) Eastern region: fixed-effect variable intercept model

The results of the fixed-effect variable-intercept model in the eastern region are shown
in Table 5. From the test results, the model explanatory variable parameter was 1.0484
(0.0000), and the sample determination coefficient AR2 after model adjustment was 0.9973,
indicating that the model had a high goodness of fit; the F statistic was 4886.83 (0.0000),
passing the 1% significance level test and showing that the light data had significant
explanatory power to the building carbon emission data; the DW statistic was 2.1526,
indicating that the model did not have first-order autocorrelation. It can be seen that the
fixed-effect variable-intercept model could better explain the relationship between night
lights and building carbon emissions in the eastern region.

nNCit = 1.0484LnDNit + bit = 1.0484LnDNit + (vit − 6.1871)
i = 1, 2, 3 . . . 13 t = 1, 2, 3 . . . 14

(14)

where NC represents the estimated carbon emission value of the i-th province in year t; DN
represents the light brightness value of the i-th province in year t; Ln represents the log of a
variable; b and v respectively represent the model intercept term and the fixed impact value.
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Table 5. Results of variable intercept model in eastern region.

Province vit bit

Beijing 1.2970 −4.8901
Tianjin 0.7509 −5.4362
Hebei −0.2134 −6.4004

Liaoning 0.3497 −5.8374
Jilin 0.3153 −5.8718

Heilongjiang −0.2909 −6.4780
Shanghai 1.0254 −5.1617
Jiangsu −0.6130 −6.8001

Zhejiang −0.4030 −6.5901
Fujian −0.5609 −6.7480

Shandong −0.3830 −6.5701
Guangdong −0.3285 −6.5156

Hainan −0.9456 −7.1327

Result

AR2 0.9973
F 4886.83 (p = 0.0000)

DW 2.1526

(2) Middle region: mixed regression model

The results of the mixed regression model in the central region are shown in Table 6.
From the model test results, the model explanatory variable parameters were 0.8773 (0.0000),
the intercept term was −4.2414, and the sample determination coefficient AR2 after model
adjustment was 0.9377, indicating that the mixed regression model had a better fit; the F
statistic value was 1250.350 (0.0000), passing the 1% significance level test, indicating that
the light data in the central region had a significant explanatory power for building carbon
emissions; the DW statistic was 1.3403, indicating that the model did not have first-order
autocorrelation. It can be seen that the hybrid regression model could better explain the
relationship between night lights and building carbon emissions in the central region.

LnNCit = 0.8773LnDNit + b = 0.8773LnDNit − 4.2414
i = 1, 2, 3 . . . 6 t = 1, 2, 3 . . . 14

(15)

where NC represents the estimated carbon emission value of the i-th province in year t, DN
represents the light brightness value of the i-th province in year t, Ln represents the log of a
variable, and b represents the intercept term of the hybrid regression model.

Table 6. Mixed regression model result in middle region.

Result
Test-Statistic Test-Value p-Value

AR2 0.9377 -
F 1250.35 0.0000

DW 1.3403 -

(3) Western region: fixed-effect variable-intercept model

The results of the fixed-effect variable-intercept model in the western region are shown
in Table 7. From the model test results, the model explanatory variable parameter was
0.3645 (0.0000), and the sample determination coefficient AR2 after model adjustment was
0.9977, indicating that the goodness of fit of the model was relatively high; the F statistic
was 6056.08 (0.0000), passing the 1% significance level test, showing that the light data
had significant explanatory power to the building carbon emission data; the value of the
DW statistic was 2.0199, indicating that the model did not have first-order autocorrelation.
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It can be seen that the fixed-effect variable-intercept model (16) could better explain the
relationship between the brightness of the lights at night and the carbon emissions of
buildings in the western region.

LnNCit = 0.3645LnDNit + bit = 0.3645LnDNit + (vit + 2.2189)
i = 1, 2, 3 . . . 11 t = 1, 2, 3 . . . 14

(16)

where NC represents the estimated carbon emission value of the i-th province in year t, DN
represents the light brightness value of the i-th province in year t, Ln represents the log of a
variable, b and v respectively represent the model intercept term and the fixed impact value.

Table 7. Results of variable intercept model in western region.

Province vit bit

Neimenggu 0.7380 2.9569
Guangxi −0.3159 1.9030

Chongqing −0.0131 2.2058
Sichuan 0.4006 2.6195
Guizhou 0.7661 2.9850
Yunnan −0.5446 1.6743
Shaanxi 0.5783 2.7972
Gansu −0.2613 1.9576

Qinghai −0.9982 1.2207
Ningxia −0.4763 1.7426
Xinjiang 0.1265 2.3454

Result

AR2 0.9977
F 6056.08 (p = 0.0000)

DW 2.0199

4.1.3. Result of Accuracy Test

There are two main ways to evaluate the accuracy of carbon emissions estimation:
one is to examine the correlation between the building carbon emission statistics and the
building carbon emission simulation value, and to use the determination coefficient AR2

for testing; the second is to examine the building carbon emission statistics and the building
carbon emission statistics. The error method of the emission simulation value is judged by
using the root mean square error (RMSE) [29,30].

Taking account into the availability of building carbon emission statistics, this pa-
per selected the building carbon emissions model estimation data and carbon emissions
statistics data in 2000, 2005, 2008, and 2012 for accuracy evaluation. As can be seen from
Figure 3, the coefficients of determination AR2 of the simulated and statistical values of
the building carbon emission models in 2000, 2005, 2008, and 2012 were 0.7975, 0.9082,
0.9584, and 0.7636, respectively, and the RMSE values of the root mean square error were
14642, 467.10, 974.26, and 1981.68 (ten thousand tons), respectively. It can be seen that the
degree of fit between the carbon emissions of urban civil buildings and the building carbon
emissions statistics obtained by using the panel data model was good, and the panel data
model had good accuracy. Therefore, it can be used to estimate the carbon emissions of
buildings at different scales.

4.2. Temporal and Spatial Evolution Characteristics of Building Carbon Emissions

According to the overall calculation results (Figure 4), the growth trend of domes-
tic urban civil building carbon emissions from 2000 to 2017 could be roughly divided
into four stages: the average annual growth rate of civil building carbon emissions from
2000 to 2003 was about 9.61%. From 2003 to 2012, the growth rate of carbon emissions from
urban civil buildings gradually increased; from 2003 to 2007, the average annual growth rate
was about 11.82%; from 2007 to 2012, the average annual growth rate was 10.09%. The total
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amount of carbon emissions from buildings produced in 2003 was about 467,934,700 tons.
By 2012, carbon emissions from urban civil buildings had increased to 1255936 million
tons. After 2012, the growth rate of carbon emissions gradually slowed down. By 2017, the
total carbon emissions from buildings were approximately 1142.8715 million tons, with an
average annual growth rate of approximately 2.88%.

Figure 3. Diagram of carbon emission accuracy evaluation: (a) 2000, (b) 2005, (c) 2008, (d) 2012.

Figure 4. Carbon emissions trend of urban buildings.

4.2.1. Changes in Building Carbon Emissions at Multiple Scales

Changes in carbon emissions from provincial and municipal buildings were examined.
It can be seen that the areas with higher carbon emissions from civil buildings in provincial
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cities and towns were mainly located in the northern and eastern regions, and there was
a trend of gradual expansion inland, such as Inner Mongolia. The total building carbon
emissions of the autonomous region from 2000 to 2015 gradually changed from a medium
level to a high level. Areas with low carbon emissions from urban civil buildings were
mainly distributed in the northwest and southwest regions with low economic levels,
including Qinghai, Gansu, Xinjiang Uygur Autonomous Region, Yunnan, and Guangxi
Zhuang Autonomous Region.

Changes in carbon emissions from county-level buildings were also examined. Accord-
ing to the building carbon emission calculation model, this paper estimated the growth rate
of carbon emissions from civil buildings in county-level cities and towns from 2000 to 2013,
and it divided the growth trend of building carbon emissions in 2778 county-level regions
across the country into slow growth, slower growth, medium-speed growth, relatively fast
growth, and fast growth five types.

The results showed that there were a total of 1054 county-level regions in the country
that were of slow growth and slower growth, and they were concentrated in the northwest
and southwest regions of economically underdeveloped areas, accounting for about 37.91%;
in terms of the number of medium-speed growth regions, there were 1467, and they were
mainly distributed in inland areas and developed coastal areas, accounting for about
52.81%. In addition, the number of regions with faster growth rates and the number of
regions with rapid growth rates were 248 and 9, respectively, accounting for 8.93% and
0.32%, respectively. The distribution was relatively loose, showing the characteristics of
sporadic distribution in the southeast coastal and northern regions. Preliminary findings
indicate that there is a close relationship between the growth rate of domestic urban civil
construction carbon emissions and the regional economic level.

4.2.2. The Spatiotemporal Direction of Building Carbon Emissions at Multiple Scales

Distribution directionality refers to the outline and dominant direction of the spatial
distribution of a certain attribute given to a region. Standard Deviational Ellipse (SDE) is a
statistical method in the discipline of geography. It can analyze the directional characteris-
tics of the spatial distribution of a certain attribute in a region, and at the same time, it can
quantitatively explain the center and directional characteristics of its spatial distribution
from a global perspective [31–35].

This paper introduces the directional analysis method in geography into the study
of building carbon emissions and uses ArcGIS to analyze the directional changes in the
spatial distribution of carbon emissions from urban civil buildings at different scales in
China. By comparing the difference in the area covered by the standard deviation ellipse in
different years, and the changes in the X-axis and Y-axis, we further analyze and describe
the temporal changes and direction trends of carbon emissions from urban civil buildings
in the time series.

The temporal and spatial directions of carbon emissions from provincial buildings
were examined. From 2000 to 2017, the ellipse generation area of the carbon emissions of
civil buildings in provincial cities and towns gradually increased, indicating that the scope
of influence of the carbon emissions of urban civil buildings was gradually expanding. The
oblateness of an ellipse can be used to express the clarity of the direction and the degree of
centripetal force. From the results of the oblateness of the generated ellipse, the oblateness
of the ellipse at the provincial scale gradually decreased from 2001 to 2017, indicating that
the direction of carbon emissions in 2017 was clearer than that in 2016 and other years.

From the perspective of the change of the spatial direction angle, the direction angle
decreased from 72.1216 to 71.1995, and the direction of the ellipse gradually shifted to the
east and north. Looking at the changes in the X-axis and Y-axis of the ellipse, the long axis
dropped from 12.8873 in 2011 to 12.8116 in 2017, a small decrease, and the short axis rose from
9.1856 in 2011 to 9.2691. The fluctuation of the long and short axes of the ellipse was smaller.
It can be seen that the total amount of carbon emissions from buildings at the provincial level



Sustainability 2022, 14, 2269 18 of 23

was increasing year by year, but its spatial distribution pattern was relatively stable, and the
east–west direction had a greater influence than the north–south direction.

The temporal and spatial directions of carbon emissions from municipal buildings
were examined. From 2001 to 2013, the elliptical area of carbon emissions from civil
buildings at the municipal level showed a wave-shaped change trend. The overall elliptical
area did not change much, and the area of elliptical were between 463 and 464. From the
perspective of the oblateness of the generated ellipse, the oblateness of the ellipse from
2001 to 2013 showed a gradual decrease. The specific manifestation was that the oblateness
of the ellipse was about 0.3127 in 2001, and the oblateness of 2013 was gradually reduced to
0.3053, indicating the direction of carbon emission and the degree of centripetal force were
increasing year by year. From the perspective of the change of the spatial direction angle,
the direction angle gradually decreased from 88.3454 to 87.5334, and the ellipse direction
still reflected the shift to the east and north direction, which was consistent with the results
of the provincial-level direction angle change.

From the change of the long axis of the ellipse X and Y, the lengths of the long axis
and the short axis in 2001 were 14.6714 and 10.0861, respectively, and the lengths of the
long axis and the short axis were 14.5675 and 10.1207, respectively in 2013. The specific
manifestation is that the length of the long axis was present. There was a slight downward
trend; the length of the short axis showed a slight increase, and the change trend of the
long and short axis of the ellipse was consistent with the provincial change, which shows
that the results of changes in building carbon emissions at the municipal and provincial
levels were consistent, and the spatial distribution direction also showed a gradual shift to
the northeast.

The spatial and temporal directions of county-level building carbon emissions were
examined. From 2001 to 2013, the change trend of the elliptical area of carbon emissions
from civil buildings at the county level was similar to that of the municipal ellipse, showing
a wave-shaped change trend as a whole. From the perspective of the flattening rate of the
generated ellipse, the flattening rate of the ellipse from 2001 to 2013 showed a gradual
decrease. The specific manifestation is that the carbon emission elliptical flattening rate
of county-level buildings in 2001 was 0.3097, and the elliptical flattening rate increased
to 0.3103 in 2005. Since then, the ellipse flatness showed a decreasing trend, and by 2013
its ellipse flatness was about 0.3083. Judging from the changes in the elliptical oblateness
of carbon emissions from county-level buildings, the directionality and centripetal force
were still showing an increasing trend, which was consistent with the analysis results at
the provincial and municipal levels. From the perspective of the change of the spatial
direction angle, from 2001 to 2013, the spatial direction angle gradually increased from
81.3830 to 81.5170 in 2007, and then gradually decreased to 80.0517 in 2013. The change in
the direction angle of the ellipse was consistent with the provincial and municipal level.
The analysis results were consistent, gradually shifting to the east and north.

On the whole, the standard deviation ellipse area of building carbon emissions at
the provincial, municipal, and county levels in China was not much different, and the
performance results on different scales were relatively consistent, indicating that the spatial
distribution pattern of building carbon emissions at each scale was relatively stable. The
elliptical distribution direction also showed a trend of changing to the northeast.

5. Discussion

In view of the insufficient availability and low level of refinement of the basic data
sources of China’s building carbon emissions, this article explores a method for measuring
carbon emissions from buildings in China at multiple scales. This study used Chinese civil
buildings as the object and combined building carbon emissions data with light remote
sensing image data to construct a building carbon emissions measurement model for three
regions in eastern, central, and western China; after that, based on the model, the provinces,
cities and counties of China were calculated. Building carbon emissions at three scales of
province, city, and county were determined using the SDE method to explore the temporal
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and spatial evolution characteristics of building carbon emissions at the provincial, city,
and county scales, and suggestions were put forward for the implementation of building
carbon emission reduction.

5.1. Sources of Basic Data on Building Carbon Emissions

As an information product of urban development, energy data represent an important
basis for measuring carbon emissions, analyzing energy-saving potential, and formulating
energy-saving goals, and provide key information support for the effective development
of energy-saving work. However, at present, there are still some problems that need to be
solved in the basic data of carbon emissions in the Chinese construction sector.

The availability of basic building carbon emissions data needs to be improved. China’s
existing basic data sources for building carbon emissions estimation are mainly two sta-
tistical systems, namely the National Bureau of Statistics, and the Ministry of Housing
and Urban–Rural Development. The first is the statistics source of the National Bureau of
Statistics. In the energy balance sheet of the “China Energy Statistical Yearbook”, although
various energy consumption data cover the seven major industries including the construc-
tion industry, they do not directly cover the energy consumption data during the operation
phase of the building. The availability and use of data are limited due to insufficient
performance, and most existing studies still calculate building energy consumption and
carbon emissions by splitting the energy balance sheet. The second is the statistics source
of the Ministry of Housing and Urban–Rural Development. The statistical system mainly
uses the civil building energy resource data monitoring platform constructed in the early
stage to obtain the consumption data of different types of energy produced by various
buildings. Although the data obtained by this method are more authoritative, they have
not been disclosed to the outside world, and the data sharing is insufficient.

The level of refinement of basic building carbon emissions data urgently needs to be
deepened. At present, the measurement method used in most studies is to obtain building
energy consumption by splitting the energy balance sheet and then using the carbon emis-
sions factor method to calculate the carbon emissions of the building. However, the spatial
granularity of the building carbon emissions data obtained by this method is relatively large,
and only national- and provincial-level building carbon emissions data can be obtained. The
more detailed spatial-scale data such as municipal and county levels cannot be obtained.
In addition, China’s construction sector still lacks basic and detailed data, such as carbon
emissions data for different building types, carbon emissions data for different energy types,
and carbon emissions data for different end uses (heating, lighting, etc.).

At present, China does not have direct access to building energy consumption data
in the construction sector. It can only obtain building carbon emissions data by using
statistical data based on model predictions, split calculations, etc., and in terms of data
availability and granularity as well as accuracy, there are certain problems, and it is urgent
to introduce new research ideas and methods.

5.2. Limitations of this Research

This work has some limitations which need to be solved.

(1) The data used in this study can be divided into two types: one is the official data
source that has a greater impact on the results of this paper, such as light remote
sensing image data and geographic vector data. This type of data is obtained through
official channels and large-scale survey statistics. It is currently the most reliable type
of data and can also support the development of this research. The second type of
data is also a key data source in the research, but there is no official data acquisition
channel, such as building carbon emissions data. For this type of data, we conducted
a large-scale literature survey and research in the early stage, and obtained relevant
data from many studies. However, it is undeniable that China currently lacks official
data on carbon emissions in the construction sector, especially data on more detailed
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spatial scale types. In the future, more attention should be paid to the research of this
aspect of data.

(2) This article mainly analyzes the correlation between building carbon emissions and
lighting values and builds a panel data model for building carbon emissions data and
lighting values. Since the analysis is mainly carried out on the provincial scale in this
study, although the corrective calculation formula has been proposed in the previous
article, there will still be some errors when using this model to calculate the carbon
emissions of buildings at the city and county levels. In the future, with the gradual
establishment of related big data platforms such as building energy conservation in
various provinces and cities in China, building carbon emission data can be used to
carry out more refined research work. In addition, other types of data can also be
introduced to construct building carbon emission estimation models under different
spatial scales.

6. Conclusions
6.1. Key Findings

Based on the results and discussion above, the key findings of this article are presented
as follows:

(1) There is a balanced and stable relationship between building carbon emissions and
lighting values. After the stability test of the panel dataset of building carbon emis-
sions and lighting brightness, the panel data of the eastern, central and western
regions all passed the significance test, and they are all stable sequences of order
1 single integer, indicating that in terms of building carbon, there is a long-term bal-
anced and stable relationship between emissions and light brightness. In addition,
after the accuracy test of the constructed building carbon emissions zoning measure-
ment model, the results of the determination coefficient AR2 between the statistical
value and the simulated value and the root mean square error RMSE all passed the test,
indicating that the building obtained using the panel data model. Carbon emissions
and carbon emissions statistics have a good fit, and the model has good accuracy,
which can be used to estimate building carbon emissions at different scales.

(2) Although the total carbon emissions of civil buildings in China are showing an in-
creasing trend, their average annual growth rate is gradually slowing down. From
2000 to 2003, the average annual growth rate of carbon emissions from buildings in
China was about 9.61%. After 2003, the growth rate of building carbon emissions
gradually accelerated. The average annual growth rate from 2003 to 2007 was approx-
imately 11.82%, and the average annual growth rate from 2007 to 2012 was 10.09%.
After 2012, the growth rate of carbon emissions gradually slowed down. By 2017, the
total carbon emissions of civil buildings in China were about 1412.8715 million tons,
with an average annual growth rate of only 2.88%.

(3) The spatial and temporal development directions of building carbon emissions at
the three scales of provinces, cities, and counties in China are basically the same, all
showing a trend of shifting to the east. From the results of the spatial and temporal
direction analysis of building carbon emissions, the standard deviation ellipse area of
building carbon emissions at the provincial, municipal, and county levels in China
is not much different, and the performance results on different scales are relatively
consistent, indicating that in terms of the building carbon on all scales, the spatial
distribution pattern of emissions is relatively stable, and the elliptical distribution
direction as a whole shows a trend of change toward the east.

6.2. Policy Recommendation

In view of the results, the following recommendations are presented:
The industrial structure of eastern and central provinces in China is mainly labor-

intensive and light industry. Factors such as building area, electrical appliances ownership,
and consumption level have a greater impact on the carbon emissions of buildings in the
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region. Therefore, the emissions reduction strategy in this region can focus on promoting
the application of energy-saving technologies and improving the efficiency of building end-
use energy. Building energy-saving technology directly affects the energy-saving effects of
buildings. The government should establish a sound building technology research policy,
incorporate relevant research projects into the management of building technology plans,
and do a good job in the research and development of key energy-saving technologies in
the field of construction, focusing on key points such as urban planning, urban construction,
building structure, building energy efficiency, and building information construction. Spe-
cial issues could be included diversified investment in construction technology innovation.
Second, we should speed up the transformation and promotion of building energy-saving
scientific and technological achievements, and make full use of energy-saving product
identification and scientific and technological certificate certification promotion to promote
the application of energy-saving materials and products in the construction field, and
further enhance the effect of building energy-saving. In addition, the government should
also pay attention to the energy efficiency of end-use energy products, and meet the energy
needs of residential users of buildings with low energy consumption. For example, in the
field of building refrigeration, clean energy can be used to replace harmful refrigerants
such as fluorine. At the same time, new technologies such as indirect evaporative refrig-
eration, absorption refrigeration, and liquid desiccants can be applied to avoid problems
such as refrigerant leakage. At the same time, attention should be paid to the recovery
of refrigerants to promote the market for building equipment and appliances such as air
conditioners and refrigerators is shifting to more efficient production technologies, which
promotes the market development of high-efficiency products and equipment.

The industrial structure of the provinces in the western and northern regions of China
is mostly heavy industry, and central heating is mostly used in buildings. The energy use
structure and energy efficiency have a greater impact on the carbon emissions of buildings in
the region. Therefore, emission reduction strategies in this region can focus on introducing
clean energy-saving technologies and improving energy efficiency. The government can
start from the heating end in the short term to improve the heating efficiency of buildings.
One is to improve the insulation and airtightness of buildings, improve the performance
of building envelopes (such as the insulation value of windows) and building energy
performance standards and building heating energy requirements, and rationally design
building indoor heating and ventilation structures. The second is the use of efficient and
concise heating systems, the design of urban underground comprehensive pipe corridors,
and the use of high-temperature circulation and straight-line laying methods to reduce the
heat loss rate of the heating transmission and distribution network and improve the energy
efficiency of central heating. Although the region consumes a lot of resources such as coal,
it is rich in clean resources such as solar energy, geothermal energy, and wind energy. From
the perspective of medium-term development, the region can use its resource advantages
to introduce high-efficiency and clean energy in building heating and cooling and increase
the use of clean energy such as natural gas and electricity; reduce boiler use and increase
use of solar energy equipment; and promote combined heat and power mode, recovering
the waste heat of power generation and applying it to heating, gradually optimizing the
energy structure.
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Abbreviations
Abbreviation Full Name
CBEM China Building Energy Consumption Model
DMSP Defense Meteorological Satellite Program
OLS Operational Linescan System
DN Digital Number
LLC Levin–Lin–Chu
ADF Augmented Dickey Fuller
PP Phillips and Perron
Rho Spearman’s Rank Correlation
GLS Generalized Least Squares Method
DW Durbin Watson
RMSE The Root Mean Square Error
SDE Standard Deviational Ellipse
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