Real Options Analysis for Land and Water Solar Deployment in Idle Areas of Agricultural Dam: A Case Study of South Korea
Abstract
:1. Introduction
2. Literature Reviews
3. Methods
3.1. Real Options Analysis
3.1.1. Discounted Cash Flow
3.1.2. ROA Methodology
3.1.3. Binomial Tree Model
3.2. Framework
4. Results
4.1. Case Study
4.2. Step 1
4.3. Step 2
4.4. Step 3
- (a)
- Start with terminal nodes that represent the last time step. At the last node, the expected value is 105.44 million USD (underlaying asset value—investment cost) compared to the abandonment value of 0. As investors want to maximize their returns, they would invest rather than abandon the project. Thus, the option value at this node is 105.44 million USD.
- (b)
- Next, the intermediate nodes were moved one step away from the last node. Starting at the top, we calculated the expected value to keep the option open. This is simply the discounted weighted average of the potential future option values using risk-neutral probability (Equation (6)), 82.55 million USD. As this value is larger than the abandonment value of 0, investors keep the option and continue. If the calculated value is less than zero, investors abandon the project.
- (c)
- We continue to calculate the option valuation using a binomial tree. Finally, we obtain 82.55 million USD of the option value at time = 0.
4.5. Step 4
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Trade Industry and Energy Republic of Korea. The 9th Basic Plan for Long-Term Electricity Supply and Demand. Available online: http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_seq_n=163670&bbs_cd_n=81 (accessed on 25 January 2021).
- Oh, S.; Kong, J.; Lee, W.; Jung, J. Development of Optimal Energy Storage System Sizing Algorithm for Photovoltaic Supplier in South Korea. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Choi, D.G.; Park, S.Y.; Hong, J.C. Quantitatively exploring the future of renewable portfolio standard in the Korean electricity sector via a bottom-up energy model. Renew. Sustain. Energy Rev. 2015, 50, 793–803. [Google Scholar] [CrossRef]
- Renewable Energy Certificate System International. Available online: http://www.recs.org/voluntary-market/market (accessed on 2 July 2021).
- Zerhouni, F.Z.; Zerhouni, M.H.; Zegrar, M.; Benmessaoud, M.T.; Stambouli, A.B.; Midoun, A. Proposed methods to increase the output efficiency of a photovoltaic (PV) system. Acta Polytech. Hung. 2010, 7, 55–70. [Google Scholar]
- Choi, Y.K. A study on power generation analysis of floating PV system considering environmental impact. Int. J. Softw. Eng. Appl. 2014, 8, 75–84. [Google Scholar] [CrossRef]
- Kodukula, P.; Papudesu, C. Project Valuation Using Real Options: A Practitioner’s Guide; J. Ross Publishing: Fort Lauderdale, FL, USA, 2006; ISBN 978-193-215-943-1. [Google Scholar]
- Amram, M.; Kulatilaka, N. Real Options: Managing Strategic Investment in an Uncertain World (Financial Management Association Survey and Synthesis), 1st ed.; Oxford University Press: Oxford, UK, 1998; ISBN 978-087-584-845-7. [Google Scholar]
- Copeland, T.; Antikarov, V. Real Options: A Practitioner’s Guide; Texere Publishing Limited: New York, NY, USA, 2001; ISBN 978-1587991868. [Google Scholar]
- Mun, J. Real Options Analysis: Tools and Techniques for Valuing Strategic Investments and Decisions, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 987-0-471-74748-2. [Google Scholar]
- Trigeorgis, L. Real Options: Managerial Flexibility and Strategy in Resource Allocation; MIT press: Cambridge, MA, USA, 1996; ISBN 978-0262201025. [Google Scholar]
- Agaton, C.B. Application of real options in carbon capture and storage literature: Valuation techniques and research hotspots. Sci. Total Environ. 2021, 795, 1–15. [Google Scholar] [CrossRef]
- Martinez, C.; Eduardo, A.; Brian, A.; Joseph, M. Assessment of domestic photovoltaic systems based on real options theory. Prog. Photovolt. Res. Appl. 2013, 21, 250–262. [Google Scholar] [CrossRef]
- Kim, K. Real Options Analysis for the Investment of Floating Photovoltaic Project in Saemangeum. KSCE J. Civ. Eng. 2021, 22, 90–97. [Google Scholar] [CrossRef]
- Assereto, M.; Byrne, J. No real option for solar in Ireland: A real option valuation of utility scale solar investment in Ireland. Renew. Sustain. Energy Rev. 2021, 143, 1–9. [Google Scholar] [CrossRef]
- Cuervo, F.I.; Arredondo-Orozco, C.A.; Marenco-Maldonado, G.C. Photovoltaic power purchase agreement valuation under real options approach. Renew. Energy Focus 2021, 36, 96–107. [Google Scholar] [CrossRef]
- Kozlova, M. Real option valuation in renewable energy literature: Research focus, trends and design. Renew. Sustain. Energy Rev. 2017, 80, 180–196. [Google Scholar] [CrossRef]
- Martín-Barrera, G.; Zamora-Ramírez, C.; González-González, J.M. Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company’s perspective. Renew. Sustain. Energy Rev. 2016, 63, 292–301. [Google Scholar] [CrossRef]
- Zhang, M.M.; Zhou, P.; Zhou, D.Q. A real options model for renewable energy investment with application to solar photovoltaic power generation in China. Energy Econ. 2016, 59, 213–226. [Google Scholar] [CrossRef]
- Jeon, C.; Lee, J.; Shin, J. Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case. Appl. Energy 2015, 142, 33–43. [Google Scholar] [CrossRef]
- Kim, K.; Kim, S.; Kim, H. Real options analysis for photovoltaic project under climate uncertainty. In Proceedings of the 2016 International Conference on New Energy and Future Energy System (NEFES 2016), Beijing, China, 19–22 August 2016; pp. 1–8. [Google Scholar]
- Kim, B.; Kim, K.; Kim, C. Determining the optimal installation timing of building integrated photovoltaic systems. J. Clean. Prod. 2017, 140, 1322–1329. [Google Scholar] [CrossRef]
- Kim, E.M.; Kim, M.S. Evaluating Economic Feasibility of Solar Power Generation Under the RPS System Using the Real Option Pricing Method: Comparison between Regulated and Non-regulated Power Providers. J. Korean Inst. Electr. Electron. Mater. Eng. 2013, 26, 690–700. [Google Scholar] [CrossRef] [Green Version]
- Dixit, A.K.; Pindyck, R.S. Investment under Uncertainty; Princeton University Press: Princeton, NJ, USA, 1994; ISBN 9781400830176. [Google Scholar]
- Awerbuch, S.; Dillard, J.; Mouck, T.; Preston, A. Capital Budgeting, Technological Innovation and the Emerging Competitive Environment of the Electric Power Industry. Energy Policy 1996, 24, 195–202. [Google Scholar] [CrossRef]
- Santos, L.; Soares, I.; Mendes, C.; Ferreira, P. Real Options versus Traditional Methods to assess Renewable Energy Projects. Renew. Energy 2014, 68, 588–594. [Google Scholar] [CrossRef]
- Cox, J.C.; Ross, S.A.; Rubinstein, M. Option pricing: A simplified Approach. J. Financ. Econ. 1979, 7, 229–263. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.S. Economic Assessment of Flood Control Facilities under Climate Uncertainty: A Case of Nakdong River, South Korea. Sustainability 2018, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Ha, S.; Kim, H. Using real options for urban infrastructure adaptation under climate change. J. Clean. Prod. 2017, 143, 40–50. [Google Scholar] [CrossRef]
- Kim, K.; Jeong, H.; Ha, S.; Bang, S.; Bae, D.H.; Kim, H. Investment timing decisions in hydropower adaptation projects using climate scenarios: A case study of South Korea. J. Clean. Prod. 2017, 142, 1827–1836. [Google Scholar] [CrossRef]
- Oh, S.; Kim, K.; Kim, H. Investment decision for coastal urban development projects considering the impact of climate change: Case study of the Great Garuda Project in Indonesia. J. Clean. Prod. 2018, 178, 507–514. [Google Scholar] [CrossRef]
- Kim, K.; Park, T.; Bang, S.; Kim, H. Real Options-Based Framework for Hydropower Plant Adaptation to Climate Change. Eng. Manag. J. 2017, 33, 4016049. [Google Scholar] [CrossRef]
- Cho, S.; Lee, S. Calculation of Photovoltaic Market Potential and Analysis of Implementation Cost Considering Regional Economics; Korea Energy Economics Institute (KEEI): Ulsan, Korea, 2018; Available online: http://www.keei.re.kr/web_keei/en_publish.nsf/by_report_types/A6B912B73F56B429492584E7002E9DDD/$file/BAS1810e.pdf (accessed on 2 July 2021).
- Korea Environment Institute (KEI). Available online: https://www.kei.re.kr/eng/ (accessed on 5 July 2021).
- International Energy Agency (IEA). Electricity Information 2015; International Energy Agency (IEA): Paris, France, 2015; ISSN 20783442. [Google Scholar]
- Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates—An Analytical Review. Prog. Photovolt. Res. Appl. 2013, 21, 12–29. [Google Scholar] [CrossRef] [Green Version]
- The World Bank. Available online: https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG (accessed on 10 July 2021).
- Organization for Economic Cooperation and Development. Projected Costs of Generating Electricity; Renouf Publishing Co Ltd.: Ogdensburg, NY, USA, 2010; ISBN 978-92-64-08430-8. [Google Scholar]
- Bank of Korea Economic Statics System. Available online: https://ecos.bok.or.kr/mobile/100KeyStatCtl.jsp?actionType=statSub&pGubunCode=K02000 (accessed on 12 July 2021).
- Electric Power Statistics Information System. Available online: http://epsis.kpx.or.kr/epsisnew/selectMain.do (accessed on 12 July 2021).
- Park, J.H.; Lee, H.D.; Tae, D.H.; Marito, F.; Rho, D.S. A Study on Disposal Diagnosis Algorithm of PV Modules Considering Performance Degradation Rate. J. Korea Acad.-Ind. Coop. Soc. 2019, 20, 493–502. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Climate Scenarios of Korea; Korea Meteorological Administration: Seoul, Korea, 2020; ISBN 978-89-93652-60-4.
- Ko, D.H.; Chung, J.; Lee, K.S.; Park, J.S.; Yi, J.H. Current policy and technology for tidal current energy in Korea. Energies 2019, 12, 1807. [Google Scholar] [CrossRef] [Green Version]
- Renewable Energy Center in the Korea Energy Management Corporation. Available online: https://www.knrec.or.kr/main/main.aspx (accessed on 20 July 2021).
- Campisi, D.; Simone, G.; Donato, M. Economic feasibility of energy efficiency improvements in street lighting systems in Rome. J. Clean. Prod. 2018, 175, 190–198. [Google Scholar] [CrossRef]
Items | Value | Method | Sources and References | |
---|---|---|---|---|
Project Data | Generation capacity | 1 MW for land 35 MW for water | - | - |
Construction cost (million USD) | 66.89 | Estimation based on experts | Korean regulation for installing solar power | |
O&M cost (million USD) | 1.5% | Assumed to be 1.5% of annual sales | [35] | |
Generation hours (hour) | 4.33 | Sunshine hours, Mechanical efficiency | [36] | |
Mechanical efficiency | 0.75 | Assumed to be 0.75 | [36] | |
Market Data | Inflation | 3.4% | Average inflation data of South Korea for the past 30 years | [37] |
Discount rate | 10% | Recommended by IEA | [38] | |
Risk-free interest rate | 5% | Average value of the three-year treasury bonds of the South Korea from 1997 to 2020 | [39] | |
SMP (USD/kWh) REC (USD/kWh) | 0.10 0.10 | Average SMP data for the last 8 years Average REC data for the last 8 years | [40] |
Year | SMP (USD/kWh) | REC (USD/kWh) |
---|---|---|
2019 | 0.08 | 0.05 |
2018 | 0.08 | 0.08 |
2017 | 0.07 | 0.11 |
2016 | 0.07 | 0.11 |
2015 | 0.09 | 0.08 |
2014 | 0.12 | 0.09 |
2013 | 0.13 | 0.15 |
2012 | 0.14 | 0.15 |
Average | 0.10 | 0.10 |
REC Weight | Installation Type | Capacity(kW) |
---|---|---|
1.2 | Installation on the ground | Below 100 |
1.0 | 100~3000 | |
0.7 | Over 3000 | |
1.5 | Installation on the roof of buildings and facilities | Below 3000 |
1.0 | Over 3000 | |
1.5 | Installation on water | - |
1.0 | For self-consumption | - |
Year | Annual Average Energy Production (kWh) | Electricity Selling Price (USD/kWh) | Annual Sales (Million USD) | O&M Cost (Million USD) | Investment Costs (Million USD) | Annual Expense (Million USD) | Annual Cash Flow (Million USD) |
---|---|---|---|---|---|---|---|
2020 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 13.38 | −13.38 |
2021 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 13.38 | −13.38 |
2022 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 13.38 | −13.38 |
2023 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 13.38 | −13.38 |
2024 | 0.00 | 0.00 | 0.00 | 0.00 | 13.38 | 13.38 | −13.38 |
2025 | 42.67 | 0.25 | 10.69 | 0.19 | 0.00 | 0.19 | 10.50 |
2026 | 42.45 | 0.25 | 10.64 | 0.19 | 0.00 | 0.19 | 10.45 |
2027 | 42.23 | 0.25 | 10.58 | 0.19 | 0.00 | 0.20 | 10.38 |
2028 | 42.02 | 0.25 | 10.53 | 0.21 | 0.00 | 0.21 | 10.32 |
2029 | 41.81 | 0.25 | 10.48 | 0.22 | 0.00 | 0.22 | 10.26 |
2030 | 41.52 | 0.25 | 10.42 | 0.22 | 0.00 | 0.22 | 10.20 |
2031 | 41.39 | 0.25 | 10.37 | 0.22 | 0.00 | 0.22 | 10.14 |
2032 | 41.18 | 0.25 | 10.32 | 0.23 | 0.00 | 0.23 | 10.09 |
2033 | 41.00 | 0.25 | 10.26 | 0.24 | 0.00 | 0.24 | 10.03 |
2034 | 40.76 | 0.25 | 10.21 | 0.24 | 0.00 | 0.24 | 9.97 |
2035 | 40.55 | 0.10 | 3.88 | 0.10 | 0.00 | 0.10 | 3.78 |
2036 | 40.35 | 0.10 | 3.86 | 0.10 | 0.00 | 0.10 | 3.76 |
2037 | 40.14 | 0.10 | 3.85 | 0.11 | 0.00 | 0.11 | 3.74 |
2038 | 39.94 | 0.10 | 3.82 | 0.10 | 0.00 | 0.10 | 3.72 |
2039 | 39.74 | 0.10 | 3.80 | 0.11 | 0.00 | 0.11 | 3.69 |
2040 | 39.53 | 0.10 | 3.78 | 0.11 | 0.00 | 0.11 | 3.67 |
2041 | 39.33 | 0.10 | 3.76 | 0.11 | 0.00 | 0.11 | 3.65 |
2042 | 39.13 | 0.10 | 3.74 | 0.12 | 0.00 | 0.12 | 3.63 |
2043 | 38.93 | 0.10 | 3.73 | 0.12 | 0.00 | 0.12 | 3.61 |
2044 | 38.74 | 0.10 | 3.71 | 0.12 | 0.00 | 0.12 | 3.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Na, S.; Kim, K.; Jang, W.; Lee, C. Real Options Analysis for Land and Water Solar Deployment in Idle Areas of Agricultural Dam: A Case Study of South Korea. Sustainability 2022, 14, 2297. https://doi.org/10.3390/su14042297
Na S, Kim K, Jang W, Lee C. Real Options Analysis for Land and Water Solar Deployment in Idle Areas of Agricultural Dam: A Case Study of South Korea. Sustainability. 2022; 14(4):2297. https://doi.org/10.3390/su14042297
Chicago/Turabian StyleNa, Seoungbeom, Kyeongseok Kim, Woosik Jang, and Changgeun Lee. 2022. "Real Options Analysis for Land and Water Solar Deployment in Idle Areas of Agricultural Dam: A Case Study of South Korea" Sustainability 14, no. 4: 2297. https://doi.org/10.3390/su14042297
APA StyleNa, S., Kim, K., Jang, W., & Lee, C. (2022). Real Options Analysis for Land and Water Solar Deployment in Idle Areas of Agricultural Dam: A Case Study of South Korea. Sustainability, 14(4), 2297. https://doi.org/10.3390/su14042297