Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis
Abstract
:1. Introduction
2. Export Diversification in Saudi Arabia
3. Literature Review
4. Theoretical Framework for Saudi Non-Oil Exports
5. Data and Econometric Methodology
5.1. Data
5.2. Econometric Methodology
6. Empirical Results
6.1. Long-Run Estimation and Testing Results
6.2. Short-Run Estimation Results
7. Discussion
8. Policy Simulation Analysis Using the KGEMM
8.1. Brief Overview of the KGEMM
8.2. Underlying Assumptions for the Simulation Analysis and Their Policy Relevancy
8.3. Results of the Projections
9. Concluding Remarks and Policy Insights
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Theoretical Framework
Appendix A.1. Demand for Saudi Non-Oil Exports
Appendix A.2. Supply of Saudi Non-Oil Exports
Appendix A.3. Market Equilibrium
Appendix B. Econometric Methodology: Unit Root and Cointegration Tests, Long- and Short-Run Estimation Methods
Appendix B.1. Unit Root Test
Appendix B.2. Cointegration Test and Long-Run Estimation Methods
Appendix B.2.1. Johansen Cointegration Method
Appendix B.2.2. Dynamic Ordinary Least Squares
Appendix B.2.3. Autoregressive Distributed Lag (ARDL) Bounds Testing Method
Appendix B.3. Equilibrium Correction Model (ECM) Estimation Using the General-to-Specific Modeling Strategy with Autometrics
Appendix C. Econometric Estimations and Testing Results
Appendix C.1. Unit Root Test Results
ADF Unit Root Test | |||||||
Level | First Difference | ||||||
Variables | t-stat | C | T | k | t-stat | C | T |
−2.838 | x | 0 | −5.389 a | x | |||
−2.543 | x | 1 | −3.500 b | x | |||
−2.347 | x | 0 | −7.204 a | x | |||
−3.099 | x | 1 | −3.156 | x | |||
PP Unit Root Test | |||||||
−2.844 | x | −5.424 a | x | ||||
−2.279 | x | −3.462 b | x | ||||
−2.348 c | x | −7.147 a | x | ||||
−1.286 | x | −3.290 c | x | ||||
SB Unit Root Test | |||||||
−3.613 | −5.606 b |
Appendix C.2. Cointegration Test Results
Panel A: Johansen Cointegration and Vector Autoregression Residual Diagnostic Test Results | |||||
Johansen Cointegration Test Summary | |||||
Test Option: | (a) | (b) | (c) | (d) | (e) |
Data trend: | None | None | Linear | Linear | Quadrati |
Level equation: | None | Only C | Only C | C and T | C and T |
Trace: | 3 | 2 | 1 | 2 | 4 |
Max-Eig: | 3 | 2 | 1 | 0 | 0 |
Test Results for Option (c) | |||||
Null hypothesis: | r = 0 | r ≤ 1 | r ≤ 2 | r ≤ 3 | |
λtrace | 55.4 *** | 27.15 | 11.24 | 1.23 | |
λmax | 28.26 *** | 15.91 | 10.01 | 1.23 | |
Diagnostic Test Results | |||||
Serial Correlation Test: | Test Statistic (p-Value) | Normality Test: | Test Statistic (p-Value) | Heteroskedasticity Test: | Test Statistic (p-Value) |
Lag 1 | 25.9 (0.06) | 7.864 (0.45) | 180.6 (0.13) | ||
Lag 2 | 16.5 (0.42) | ||||
Testing Restrictions on the Long-Run Elasticities: | |||||
Null hypothesis: | Joint | ||||
0.93 | 1.64 | 1.28 | 3.30 | ||
Weak Exogeneity Test Results | |||||
Null hypothesis: | Joint | ||||
χ2 | 5.87 ** | 0.03 | 3.47 | 2.98 | 5.43 |
Panel B: ARDL cointegration and residual diagnostic tests | |||||
F-value from the bounds test for cointegration: 13.776 *** | |||||
Diagnostic Test Results | |||||
Test Statistic (p-Value) | Test Statistic (p-Value) | ||||
Normality Test | 1.437 (0.487) | Serial Correlation Test | 2.096 (0.149) | ||
ARCH Test | 0.531 (0.471) | Heteroskedasticity Test | 0.429 (0.941) | ||
Ramsey RESET | 0.278 (0.784) | ||||
Panel C: Engle–Granger cointegration test results | |||||
Tests | Test Statistic (p-Value) | ||||
Engle–Granger tau-statistic | −4.009 (0.109) | ||||
Engle–Granger z-statistic | −33.361 (0.003) |
Appendix C.3. Final ECM and the Search for Instrumental Variables
Variables | Coefficient | t-Statistic | ||||
---|---|---|---|---|---|---|
−0.626 *** | −10.40 | |||||
0.194 ** | 2.37 | |||||
−1.728 *** | −10.90 | |||||
0.453 ** | 2.25 | |||||
−0.997 *** | −5.47 | |||||
−0.649 ** | −2.32 | |||||
−0.530 ** | −2.33 | |||||
0.563 ** | 2.28 | |||||
2.864 *** | 7.94 | |||||
−1.815 *** | −4.74 | |||||
−0.314 *** | −5.02 | |||||
−0.147 *** | −4.05 | |||||
Post-Estimation Test Results | ||||||
Test | F-statistic | p-value | Test | F-statistic | p-value | |
Serial Correlation LM | 2.3104 | 0.123 | Heteroskedasticity | 1.020 | 0.505 | |
ARCH | 2.903 × 10−5 | 0.996 | Normality | 0.684 A | 0.711 | |
Ramsey RESET | 0.716 | 0.500 |
References
- Krugman, P.R.; Obstfeld, M.; Melitz, M.J. International Economics: Theory & Policy, 10th ed.; Global edition; Pearson Education Limited: New York, NY, USA, 2015. [Google Scholar]
- Suranovic, S. International Trade: Theory and Policy; Saylor Foundation: New York, NY, USA, 2010. [Google Scholar]
- Xu, Z.; Li, Y.; Chau, S.N.; Dietz, T.; Li, C.; Wan, L.; Zhang, J. Impacts of international trade on global sustainable development. Nat. Sustain. 2020, 3, 964–971. [Google Scholar] [CrossRef]
- Giles, J.A.; Williams, C.L. Export-led growth: A survey of the empirical literature and some non-causality results. Part 1. J. Int. Trade Econ. Dev. 2000, 9, 261–337. [Google Scholar] [CrossRef]
- Saudi Arabian Monetary Authority (SAMA). Annual Statistics 2019; Saudi Central Bank: Riyadh, Saudi Arabia, 2020.
- Corden, W.M. Booming sector and Dutch disease economics: Survey and consolidation. Oxf. Econ. Pap. 1984, 36, 359–380. [Google Scholar] [CrossRef]
- Corden, W.M.; Neary, J.P. Booming sector and de-industrialisation in a small open economy. Econ. J. 1986, 92, 825–848. [Google Scholar] [CrossRef] [Green Version]
- Auty, R.M. Sustaining Development in Mineral Economies: The Resource Curse Thesis; Routledge: London, UK, 1993. [Google Scholar]
- Sachs, J.D.; Warner, A.M. The big push, natural resource booms and growth. J. Dev. Econ. 1999, 59, 43–76. [Google Scholar] [CrossRef] [Green Version]
- Sachs, J.D.; Warner, A.M. The curse of natural resources. Eur. Econ. Rev. 2001, 45, 827–838. [Google Scholar] [CrossRef]
- Van der Ploeg, F.; Poelhekke, S. Volatility and the natural resource curse. Oxf. Econ. Pap. 2009, 61, 727–760. [Google Scholar] [CrossRef]
- Albassam, B.A. Economic diversification in Saudi Arabia: Myth or reality? Resour. Policy 2015, 44, 112–117. [Google Scholar] [CrossRef]
- Alhowaish, A.; Al-Shihri, F.S. Economic Trends of Saudi Urban System (1992–2010). Econ. Trends 2010, 42, 216–225. [Google Scholar] [CrossRef]
- Horschig, D. Economic Diversification in Saudi Arabia. J. Polit. Inq. 2016, 5, 1–10. [Google Scholar]
- Mobarak, A.; Karshenasan, A. The Impact of Institutional Quality on Relation between Resource Abundance and Economic Growth. Iran. Econ. Rev. 2012, 16, 95–110. [Google Scholar]
- Fattouh, B.; Sen, A. Economic Diversification by Arab Oil Exporters in the Context of Peak Oil and The Energy Transition. In When Can Oil Economies Be Deemed Sustainable? Luciani, G., Moerenhout, T., Eds.; The Political Economy of the Middle East; Palgrave Macmillan: Singapore, 2021. [Google Scholar]
- Devaux, P. Economic Diversification in the GCC: Dynamic Drive Needs to be Confirmed; Conjonct. BNP-Paribas: Paris, France, 2013; pp. 17–25. [Google Scholar]
- Kayed, R.N.; Hassan, M.K. Saudi Arabia’s Economic Development: Entrepreneurship as a Strategy. Int. J. Islamic Middle East. Financ. Manag. 2011, 4, 52–73. [Google Scholar] [CrossRef]
- Hesse, H. Export Diversification and Economic Growth. In Breaking into New Markets: Emerging Lessons for Export Diversification; Working Paper No. 21; Commission on Growth and Development, The World Bank: Washington, DC, USA, 2009; pp. 55–80. [Google Scholar]
- Agosin, M.R.; Alvarez, R.; Ortega, C.C. Álvaro Determinants of Export Diversification Around the World: 1962–2000. World Econ. 2012, 35, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Feder, G. On Exports and Economic Growth. J. Dev. Econ. 1983, 12, 59–73. [Google Scholar] [CrossRef]
- Grossman, G.M.; Helpman, E. Technology and trade. Handb. Int. Econ. 1995, 3, 1279–1337. [Google Scholar]
- Goldberg, L.S.; Klein, M.W. Foreign Direct Investment, Trade and Real Exchange Rate Linkages in Developing Countries; National Bureau of Economic Research: Cambridge, MA, USA, 1997; p. w6344. [Google Scholar]
- Beenstock, M.; Dalziel, A. The demand for energy in the UK: A general equilibrium analysis. Energy Econ. 1986, 8, 90–99. [Google Scholar] [CrossRef]
- Cusbert, T.; Kendall, E. Meet MARTIN, the RBA’s New Macroeconomic Model; Reserve Bank of Australia: Sydney, Australia, 2018; pp. 31–44.
- Hasanov, F. Theoretical Framework for Industrial Electricity Consumption Revisited: Empirical Analysis and Projections for Saudi Arabia; KAPSARC Discussion Paper; KAPSARC: Riyadh, Saudi Arabia, 2019. [Google Scholar]
- Ballantyne, A.; Cusbert, T.; Evans, R.; Guttmann, R.; Hambur, J.; Hamilton, A.; Kendall, E.; McCririck, R.; Nodari, G.; Rees, D.M. MARTIN Has Its Place: A Macroeconometric Model of the Australian Economy. Econ. Rec. 2020, 96, 225–251. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.; Ericsson, N.R.; Hendry, D.F. General-to-specific Modeling: An Overview and Selected Bibliography. FRB Int. Finance Discuss. Pap. 2005, 838. [Google Scholar]
- Doornik, J.A. Autometrics. In The Methodology and Practice of Econometrics: A Festschrift in Honour of David F. Hendry; Castle, J.L., Shephard, N., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 88–121. [Google Scholar]
- Hendry, D.F.; Doornik, J.A. Empirical Model Discovery and Theory Evaluation: Automatic Selection Methods in Econometrics; MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Al Moneef, H.D.M.; Hasanov, F. Fiscal Multipliers for Saudi Arabia Revisited; King Abdullah Petroleum Studies and Research Center: Riyadh, Saudi Arabia, 2020. [Google Scholar] [CrossRef]
- Hasanov, F.J.; AlKathiri, N.; Alshahrani, S.; Alyamani, R. The Impact of Fiscal Policy on Non-Oil GDP in Saudi Arabia. Appl. Econ. 2022, 54, 793–806. [Google Scholar] [CrossRef]
- Dargay, J.M.; Gately, D. World oil demand’s shift toward faster growing and less price-responsive products and regions. Energy Policy 2010, 38, 6261–6277. [Google Scholar] [CrossRef]
- Alkhathlan, K.; Gately, D.; Javid, M. Analysis of Saudi Arabia’s behavior within OPEC and the world oil market. Energy Policy 2014, 64, 209–225. [Google Scholar] [CrossRef]
- Cappelen, Å.; Choudhury, R. The Future of the Saudi Arabian Economy: Possible Effects on the World Oil Market; Statistisk Sentralbyrå: Oslo, Norway, 2000.
- Fattouh, B.; Sen, A. Saudi Arabia Oil Policy: More than Meets the Eye? OIES Paper: MEP 13; The Oxford Institute for Energy Studies, University of Oxford: Oxford, UK, 2015. [Google Scholar]
- Rosenstein-Rodan, P.N. Problems of Industrialization of Eastern and South-eastern Europe. Econ. J. 1943, 53, 202–211. [Google Scholar] [CrossRef]
- Naudé, W.; Rossouw, R. Export Diversification and Specialization in South Africa: Extent and Impact; WIDER Research Paper No. 2008/93; World Institute for Development Economics Research: Helsinki, Finland, 2008. [Google Scholar]
- Ruffin, R.J. Comparative Advantage under Uncertainty. J. Int. Econ. 1974, 4, 261–273. [Google Scholar] [CrossRef]
- DeRosa, D.A. Protection and the Own-Funds Window in Tanzania: An Analytical Framework and Estimates of the Effects of Trade Liberalization. J. Afr. Econ. 1991, 2, 24–48. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, R.; Dani, R. Economic Development as Self-discovery. J. Dev. Econ. 2003, 72, 603–633. [Google Scholar] [CrossRef] [Green Version]
- Hausmann, R.; Hwang, J.; Rodrik, D. What you Export Matters. J. Econ. Growth 2007, 12, 1–25. [Google Scholar] [CrossRef]
- Hausmann, R.; Klinger, B. Structural Transformation and Patterns of Comparative Advantage in the Product Space; CID Working Paper Series 2006.128; Harvard University: Cambridge, MA, USA, 2006. [Google Scholar]
- Herzer, D.; Nowak-Lehmann Danziger, F. What Does Export Diversification Do for Growth? An Econometric Analysis. Appl. Econ. 2006, 38, 1825–1838. [Google Scholar] [CrossRef]
- Lederman, D.; Maloney, W.F. Trade Structure and Growth; Natural Resources: Neither Curse nor Destiny; The World Bank: Washington, DC, USA, 2007; pp. 15–39. [Google Scholar]
- Imbs, J.; Wacziarg, R. Stages of Diversification. Am. Econ. Rev. 2003, 93, 63–86. [Google Scholar] [CrossRef] [Green Version]
- Cadot, O.; Céline, C.; Strauss-Kahn, V. Export Diversification: What’s Behind the Hump? Rev. Econ. Stat. 2011, 93, 590–605. [Google Scholar] [CrossRef] [Green Version]
- Euchi, J.; Omri, A.; Al-Tit, A. The Pillars of Economic Diversification in Saudi Arabia. World Rev. Sci. Technol. Sustain. Dev. 2018, 14, 330–343. [Google Scholar] [CrossRef]
- Bokhari, A.A. Economic Diversification in Saudi Arabia: Looking beyond Oil. Int. J. Sci. Commer. Humanit. 2017, 5, 1–12. [Google Scholar]
- Cherif, R.; Hasanov, F. Soaring of the Gulf Falcons: Diversification in the GCC Oil Exporters in Seven Propositions; IMF Working. Pap/14/177; International Monetary Fund: Washington, DC, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Gouider, A.; Haddad, H.B. Manufactured Goods’ Export Diversification in Saudi Arabia: A Spatial Panel Approach. Cogent Econ. Financ. 2020, 8, 1741309. [Google Scholar] [CrossRef]
- Matallah, S. Economic Diversification in MENA Oil Exporters: Understanding the Role of Governance. Resources Policy 2020, 66, 101602. [Google Scholar] [CrossRef]
- Lukonga, I. Nigeria’s Non-Oil Exports: Determinants of Supply and Demand, 1970–1990; No. 94/49; IMF Working. Pap/94/59; International Monetary Fund: Washington, DC, USA, 1994. [Google Scholar]
- Hasanov, F.; Samadova, I. The Impact of Real Exchange Rate on Non-oil Exports: The Case of Azerbaijan; MPRA Paper No. 29556; University Library of Munich: Munich, Germany, 2010; pp. 1–19. [Google Scholar]
- Hasanov, F. Dutch disease and the Azerbaijan economy. Communist Post-Communist Stud. 2013, 46, 463–480. [Google Scholar]
- Papageorgiou, C.; Spatafora, N. Economic Diversification in LICs: Stylized Facts and Macroeconomic Implications; No. 12-13; International Monetary Fund: Washington, DC, USA, 2012. [Google Scholar]
- Leamer, E.E.; Stern, R.M. Quantitative International Economics; Allyn and Bacon: Boston, MA, USA, 1970. [Google Scholar]
- Goldstein, M.; Khan, M.S. Income and Price Effects in Foreign Trade. In Handbook of International Economics; Jones, R.W., Kenen, P.B., Eds.; Elsevier Science Publications: New York, NY, USA, 1985; Volume II, pp. 1041–1105. [Google Scholar]
- Rose, A.K.; Yellen, J.L. Is There a J-curve? J. Monet. Econ. 1989, 24, 53–68. [Google Scholar] [CrossRef]
- Rose, A.K. Exchange Rates and the Trade Balance: Some Evidence from Developing Countries. Econ. Lett. 1990, 34, 271–275. [Google Scholar] [CrossRef]
- Arize, A. An econometric investigation of export behaviour in seven asian developing countries. Appl. Econ. 1990, 22, 891–904. [Google Scholar] [CrossRef]
- Chinn, M.D. Supply Capacity, Vertical Specialization and Tariff Rates: The Implications for Aggregate US Trade Flow Equations; No. w11719; National Bureau of Economic Research: Cambridge, MA, USA, 2005. [Google Scholar]
- Dayal-Gulati, A.; Valerie, C. China’s Trade Flows: Changing Price Sensitivities and the Reform Process; IMF Working. Pap/99/1; International Monetary Fund: Washington, DC, USA, 1999. [Google Scholar]
- Jongwanich, J. Determinants of Export Performance in East and Southeast Asia. World Econ. 2010, 33, 20–41. [Google Scholar] [CrossRef]
- Yue, C.; Hua, P. Does Comparative Advantage Explains Export Patterns in China? China Econ. Rev. 2002, 13, 276–296. [Google Scholar] [CrossRef]
- Goldstein, M.; Khan, M.S. The Supply and Demand for Exports: A Simultaneous Approach. Rev. Econ. Stat. 1978, 60, 275–286. [Google Scholar] [CrossRef]
- Bushe, D.M.; Kravis, I.B.; Lipsey, R.E. Prices, activity, and machinery exports: An analysis based on new price data. Rev. Econ. Stat. 1986, 68, 248–255. [Google Scholar] [CrossRef]
- Johansen, S. Statistical Analysis of Cointegration Vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Johansen, S.; Juselius, K. Maximum Likelihood Estimation and Inference on Cointegration—With Applications to the Demand for Money. Oxf. Bull. Econ. Stat. 1990, 52, 169–210. [Google Scholar] [CrossRef]
- Johansen, S.; Juselius, K. Testing structural hypotheses in a multivariate cointegration analysis of the PPP and the UIP for UK. J. Econom. 1992, 53, 211–244. [Google Scholar] [CrossRef]
- Dibooglu, S.; Enders, W. Multiple Cointegrating Vectors and Structural Economic Models: An Application to the French Franc/US Dollar ER. South Econ. J. 1995, 6, 1098–1116. [Google Scholar] [CrossRef]
- Badinger, H. Austria’s demand for international reserves and monetary disequilibrium: The case of a small open economy with a fixed exchange rate regime. Economica 2004, 71, 39–55. [Google Scholar] [CrossRef]
- Enders, W. Applied Econometric Time Series, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; pp. 7–70. [Google Scholar]
- Pesaran, M.H.; Shin, Y. An Autoregressive Distributed-Lag Modelling Approach to Cointegration Analysis. Econom. Soc. Monogr. 1998, 31, 371–413. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds Testing Approaches to the Analysis of Level Relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Engle, R.F.; Granger, C.W.J. Co-integration and Error Correction: Representation, Estimation, and Testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Hendry, D.F.; Doornik, J.A. Empirical Econometric Modelling using PcGive: Volume I; Timberlake Consultants Press: London, UK, 2009. [Google Scholar]
- Hendry, D.F. First In, First Out: Econometric Modelling of UK Annual CO2 Emissions: 1860–2017; Nuffield College, University of Oxford: Oxford, UK, 2020. [Google Scholar]
- Castle, J.L.; Doornik, J.A.; Hendry, D.F. Robust Discovery of Regression Models. Econ. Stat. 2021. [Google Scholar] [CrossRef]
- Castle, J.; Doornik, J.; Hendry, D. Selecting a Model for Forecasting. Econometrics 2021, 9, 26. [Google Scholar] [CrossRef]
- Balassa, B. The Purchasing-Power Parity Doctrine: A Reappraisal. J. Politi-Econ. 1964, 72, 584–596. [Google Scholar] [CrossRef]
- Di Bella, C.G.; Lewis, M.J.; Martin, A. Assessing Competitiveness and Real Exchange Rate Misalignment in Low-income Countries; IMF Working. Pap/07/201; International Monetary Fund: Washington, DC, USA, 2007; pp. 1–46. [Google Scholar]
- Lipschitz, L.; McDonald, D. Real Exchange Rates and Competitiveness. Empirica 1992, 19, 37–69. [Google Scholar] [CrossRef]
- Samuelson, P.A. Theoretical Notes on Trade Problems. Rev. Econ. Stat. 1964, 46, 145–154. [Google Scholar] [CrossRef]
- Samuelson, P.A. Facets of Balassa-Samuelson Thirty Years Later. Rev. Int. Econ. 1994, 2, 201–226. [Google Scholar] [CrossRef]
- Ahmad, N.A.B.; Jaini, A.B.; Zamzamir, Z.B. The Impact of Infrastructure on Trade in Malaysia. J. Entrep. Bus. 2015, 3, 42–49. [Google Scholar] [CrossRef]
- Clark, X.; Dollar, D.; Micco, A. Port efficiency, maritime transport costs, and bilateral trade. J. Dev. Econ. 2004, 75, 417–450. [Google Scholar] [CrossRef] [Green Version]
- Donaubauer, J.; Glas, A.; Meyer, B.; Nunnenkamp, P. Disentangling the Impact of Infrastructure on Trade Using a New Index of Infrastructure. Rev. World Econ. 2018, 154, 745–784. [Google Scholar] [CrossRef]
- Duval, Y.; Utoktham, C. Behind-the-Border Trade Facilitation in Asia-Pacific: Cost of Trade, Credit Information, Contract Enforcement and Regulatory Coherence; No. 2 (09); United Nations Economic and Social Commission for Asia and the Pacific: Bangkok, Thailand, 2009. [Google Scholar]
- Estache, A.; Wren-Lewis, L. Toward a Theory of Regulation for Developing Countries: Following Jean Jacques Lafont’s Lead. J. Econ. Lit. 2011, 47, 730–771. [Google Scholar] [CrossRef]
- Limao, N.; Venables, A.J. Infrastructure, Geographical Disadvantage, Transport Costs and Trade. World Bank Econ. Rev. 2001, 15, 451–479. [Google Scholar] [CrossRef]
- Rehman, F.U.; Noman, A.A.; Ding, Y. Does Infrastructure Increase Exports and Reduce Trade Deficit? Evidence from Selected South Asian Countries Using a New Global Infrastructure Index. J. Econ. Struct. 2020, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Yeaple, S.R.; Golub, S.S. International Productivity Differences, Infrastructure and Comparative Advantage. Rev. Int. Econ. 2007, 15, 223–242. [Google Scholar] [CrossRef]
- Davis, G.A. Learning to love the Dutch disease: Evidence from the mineral economies. World Dev. 1995, 23, 1765–1779. [Google Scholar] [CrossRef]
- Arezki, R.; Ismail, K. Boom–bust cycle, asymmetrical fiscal response and the Dutch disease. J. Dev. Econ. 2013, 101, 256–267. [Google Scholar] [CrossRef] [Green Version]
- Oomes, N.; Kalcheva, K.N. Diagnosing Dutch Disease; Does Russia Have the Symptoms; International Monetary Fund: Washington, DC, USA, 2007; Volume 7. [Google Scholar]
- Balassa, B. Exports and economic growth: Further evidence. J. Dev. Econ. 1978, 5, 181–189. [Google Scholar] [CrossRef]
- Ram, R. Exports and economic growth: Some additional evidence. Econ. Dev. Cult. Chang. 1985, 33, 415–425. [Google Scholar] [CrossRef]
- Ram, R. Exports and economic growth in developing countries: Evidence from time-series and cross-section data. Econ. Dev. Cult. Chang. 1987, 36, 51–72. [Google Scholar] [CrossRef]
- Hasanov, F.; Joutz, F.L.; Mikayilov, J.I.; Javid, M. KGEMM: A Macroeconometric Model for Saudi Arabia; KAPSARC Discussion Paper. No. ks--2020-dp04; KAPSARC: Riyadh, Saudi Arabia, 2020. [Google Scholar]
- Hendry, D.F. Deciding between Alternative Approaches in Macroeconomics. Int. J. Forecast. 2018, 34, 119–135. [Google Scholar] [CrossRef]
- Gervais, O.; Marc-André, G. Analyzing and Forecasting the Canadian Economy through the LENS Model; Technical Report No. 102; Bank of Canada: Ottawa, ON, Canada, 2014. [Google Scholar]
- Jelić, O.N.; Ravnik, R. Introducing Policy Analysis Croatian MAcroecoNometric Model (PACMAN); Croatian National Bank, Publishing Department: Zagreb, Croatia, 2021. [Google Scholar]
- Fair, R.C. An Analysis of the Accuracy of Four Macroeconometric Models. J. Polit. Econ. 1979, 87, 701–718. [Google Scholar] [CrossRef] [Green Version]
- Fair, R.C. Testing Macroeconometric Models. Am. Econ. Rev. 1993, 83, 287–293. [Google Scholar]
- Buenafe, S.W.; Reyes, C.M. Alternative Estimation Methodologies for Macro Model: ECM vs. OLS; PIDS Discussion Paper Series No. 2001-22; Philippine Institute for Development Studies (PIDS): Makati City, Philippines, 2001.
- Welfe, W. Macroeconometric Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 47. [Google Scholar]
- Alkhareif, R.M.; John, H.Q. Saudi Arabia’s Exchange Rate Policy: Its Impact on Historical Economic Performance; Saudi Arabia Monetary Agency: Riyadh, Saudi Arabia, 2016. [Google Scholar]
- Edwards, S. Openness, Trade Liberalization, and Growth in Developing Countries. J. Econ. Lit. 1993, 31, 1358–1393. [Google Scholar]
- Faisal, F.; Tursoy, T.; Resatoglu, N.G. Is Export-Led Growth Hypothesis Exist in Saudi Arabia? Evidence from an ARDL Bounds Testing Approach. Asian J. Econ. Model. 2017, 5, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Kalaitzi, A.S.; Chamberlain, T.W. The Validity of the Export-led Growth Hypothesis: Some Evidence from the GCC. J. Int. Trade Econ. Dev. 2020, 30, 1–22. [Google Scholar] [CrossRef]
- Saeed, S.; Hatem, H. Export and economic growth nexus in the GCC countries: A panel data approach. Int. J. Bus. Soc. Res. 2017, 7, 1–9. [Google Scholar]
- Arif, U.; Muhammad, J.; Fazana, N.K. Productivity impacts of infrastructure development in Asia. Econ. Syst. 2021, 45, 100851. [Google Scholar] [CrossRef]
- Donaubauer, J.; Meyer, B.E.; Nunnenkamp, P. A New Global Index of Infrastructure: Construction, Rankings and Applications. World Econ. 2015, 39, 236–259. [Google Scholar] [CrossRef]
- Hasanov, F.J.; Shannak, S. Electricity incentives for agriculture in Saudi Arabia. Is that relevant to remove them? Energy Policy 2020, 144, 111589. [Google Scholar] [CrossRef]
- Al-Hamidy, A. Aspects of Fiscal/Debt Management and Monetary Policy Interaction: The Recent Experience of Saudi Arabia. In Fiscal Policy, Public Debt and Monetary Policy in Emerging Market Economies; Bank for International Settlements, Ed.; BIS Paper 67v; Bank of International Settlements: Basel, Switzerland, 2012; Volume 67, pp. 301–307. [Google Scholar]
- Al-Yousif, Y.K. Do Government Expenditures Inhibit or Promote Economic Growth: Some Empirical Evidence from Saudi Arabia. Indian Econ. J. 2000, 48, 92. [Google Scholar]
- Fasano-Filho, U.; Wang, Q. Fiscal Expenditure Policy and Non-Oil Economic Growth: Evidence from GCC Countries; Working pap. No. 01/195; International Monetary Fund: Washington, DC, USA, 2001. [Google Scholar]
- Looney, R.E. Saudi Arabia’s Development Strategy: Comparative Advantage vs. Sustainable Growth; Naval Postgraduate School: Monterey, CA, USA, 1989. [Google Scholar]
- Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057–1072. [Google Scholar] [CrossRef]
- Dolado, J.J.; Tim, J.; Sosvilla-Rivero, S. Cointegration and Unit Roots. J. Econ. Surv. 1990, 4, 249–273. [Google Scholar] [CrossRef] [Green Version]
- Saikkonen, P. Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation. Econom. Theory 1992, 8, 1–27. [Google Scholar] [CrossRef]
- Stock, J.H.; Watson, M.W. A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems. Econometrica 1993, 61, 783–820. [Google Scholar] [CrossRef]
- Epprecht, C.; Guegan, D.; Veiga, Á.; da Rosa, J.C. Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics. Commun. Stat.-Simul. Comput. 2021, 50, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Desboulets, L.D.D. A Review on Variable Selection in Regression Analysis. Econometrics 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Freijeiro-González, L.; Febrero-Bande, M.; González-Manteiga, W. A critical review of LASSO and its derivatives for variable selection under dependence among covariates. Int. Stat. Rev. 2021. online. [Google Scholar] [CrossRef]
- Castle, J.L.; Doornik, J.A.; Hendry, D.F. Evaluating Automatic Model Selection. J. Time Ser. Econ. 2011, 3, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Breaux, H.J. On Stepwise Multiple Linear Regression; Report Mo. 1369; Army Ballistic Research Lab Aberdeen Proving Ground MD, Department of Statistics and Computer Science, The University of Delaware: Newark, NJ, USA, 1967. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Zou, H. The adaptive lasso and its oracle properties. J. Am. Stat. Assoc. 2006, 101, 1418–1429. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.H.; Lu, W. Adaptive Lasso for Cox’s proportional hazards model. Biometrika 2007, 94, 691–703. [Google Scholar] [CrossRef]
- Doornik, J.A.; Hendry, D.F. Empirical Econometric Modelling Using PcGive; Timberlake Consultants Ltd.: London, UK, 2018. [Google Scholar]
- Wang, H. Forward regression for ultra-high dimensional variable screening. J. Am. Stat. Assoc. 2009, 104, 1512–1524. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B 2005, 67, 301–320. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Bogdan, M.; Candes, E. False discoveries occur early on the lasso path. Ann. Stat. 2017, 45, 2133–2150. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, L.; Roeder, K. High dimensional variable selection. Ann. Stat. 2009, 37, 2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castle, J.L.; Doornik, J.A.; Hendry, D.F. Model selection when there are multiple breaks. J. Econ. 2012, 169, 239–246. [Google Scholar] [CrossRef] [Green Version]
- de Gordon, B.; Ericsson, N.R. Modeling in Inflation in Australia; International Finance Discussion Papers 530; Board of Governors of the Federal Reserve System: Washington, DC, USA, 1995.
- De Brouwer, G.; Ericsson, N.R. Modeling Inflation in Australia. J. Bus. Econ. Stat. 1998, 16, 433. [Google Scholar] [CrossRef]
- Enders, W.; Im, K.S.; Lee, J.; Strazicich, M.C. IV Threshold Cointegration Tests and the Taylor Rule. Econ. Model. 2010, 27, 1463–1472. [Google Scholar] [CrossRef] [Green Version]
- Enders, W.; Im, K.S.; Lee, J. Cointegration Tests Using Instrumental Variables with an Example of the UK Demand for Money. Unpublished Working Paper. 2010. Available online: http://wenders.people.ua.edu/time-seriesmethods.html (accessed on 15 August 2021).
- Hartley, P.R.; Medlock, K.B., III; Rosthal, J.E. The Relationship of Natural Gas to Oil Prices. Energy J. 2008, 29, 47–66. [Google Scholar] [CrossRef]
- Kim, J.; Ogaki, M.; Yang, M. Structural Error Correction Models: A System Method for Linear Rational Expectations Models and an Application to an Exchange Rate Model. J. Money Credit. Bank. 2007, 39, 2057–2075. [Google Scholar] [CrossRef]
- Marmol, F.; Escribano, A.; Aparicio, F.M. Instrumental Variable Interpretation of Cointegration with Inference Results for Fractional Cointegration. Econom. Theory 2002, 18, 646–672. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, J.G. Numerical distribution functions for unit root and cointegration tests. J. Appl. Econom. 1996, 11, 601–618. [Google Scholar] [CrossRef] [Green Version]
- Perron, P.; Vogelsang, T.J. A note on the asymptotic distributions of unit root tests in the additive outlier model with breaks. Braz. Rev. Econom. 1993, 13, 181–201. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, J.G.; Haug, A.A.; Michelis, L. Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration. J. Appl. Econom. 1999, 14, 563–577. [Google Scholar] [CrossRef]
- Narayan, P.K. The Saving and Investment Nexus for China: Evidence from Cointegration Tests. Appl. Econ. 2005, 37, 1979–1990. [Google Scholar] [CrossRef]
- Juselius, K. The Cointegrated VAR Model: Methodology and Applications; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
Variable Notation | Variable Definition | Data Source |
---|---|---|
XGNOIL | Non-oil merchandise exports, in millions of 2010 SAR | The data on non-oil merchandise exports in nominal values are from [5]. The values are converted into real values using a non-oil GDP deflator that equals 100 in the base year of 2010. |
REER | Real effective exchange rate | The REER is based on the consumer price index, which equals 100 in the base year of 2010. The International Monetary Fund defines the REER as the weighted average value of the local currency relative to several foreign currencies, divided by a price deflator. The data are from the International Financial Statistics of the International Monetary Fund. An increase in REER means an appreciation of the SAR. |
GDP_MENA | The GDP of the Middle East and North Africa, in millions of 2010 USD | The values in USD are from from the World Bank’s World Development Indicators. They are multiplied by the bilateral exchange rate between the SAR and the USD and divided by 106 so that all variables, except for REER, are in same units. |
GVANOIL | Gross value added of the non-oil sector, in millions of 2010 SAR | This is the Saudi GDP excluding the value added in the mining and quarrying, oil refinery sectors and net taxes. Non-oil GDP values are obtained from [5]. |
Variables | VECM | ARDL (2,3,1,3) | DOLS |
---|---|---|---|
−1.44 *** (−5.992) | −1.17 *** (−5.025) | −1.20 *** (−5.157) | |
0.64 (1.527) | 0.82 ** (2.227) | 0.85 ** (2.271) | |
1.07 *** (3.726) | 1.08 *** (4.563) | 1.00 *** (5.312) | |
Constant | 6.26 | −10.33 *** (−2.872) | −9.55 ** (−2.205) |
Adj. R2 | 0.99 | 0.99 | 0.98 |
SER | 0.12 | 0.06 | 0.11 |
SC | −0.84 | −1.89 | −1.65 |
Variables | Coefficient | t-Statistic | ||||
---|---|---|---|---|---|---|
−0.626 *** | −10.31 | |||||
0.194 ** | 2.37 | |||||
−1.730 *** | −10.77 | |||||
0.454 ** | 2.25 | |||||
−0.996 *** | −5.46 | |||||
−0.652 ** | −2.31 | |||||
−0.532 ** | −2.33 | |||||
0.563 ** | 2.28 | |||||
2.876 *** | 7.10 | |||||
−1.823 *** | −4.54 | |||||
−0.314 *** | −5.01 | |||||
−0.147 *** | −4.05 | |||||
Post-Estimation Test Results | ||||||
Test | F-statistic | p-value | Test | F-statistic | p-value | |
Serial correlation LM A | 1.646 | 0.200 | Heteroskedasticity | 0.762 | 0.681 | |
ARCH | 5.91 × 10−5 | 0.994 | Normality B | 0.016 | 0.992 | |
Ramsey RESET | 0.7159 | 0.500 | J-statistic | 2.973 | 0.812 |
Change in the Industrial Electricity Price | ||
---|---|---|
Reference case | BaU | The REER is projected to change from 111.09 in 2021 to 72.76 in 2030. GVAAGR is projected to grow from 58,724.00 million 2010 SAR in 2021 to 65,483.00 million 2010 SAR in 2030. GVAMANNO is projected to grow from 213,180.00 million 2010 SAR in 2021 to 294,070.00 million 2010 SAR in 2030. GVAU is projected to grow from 32,719.00 million 2010 SAR in 2021 to 40,268.00 million 2010 SAR in 2030. GVATRACOM is projected to grow from 157,640.00 million 2010 SAR in 2021 to 235,230.00 million 2010 SAR in 2030. GVAFIBU is projected to grow from 269,600.00 million 2010 SAR in 2021 to 396,940.00 million 2010 SAR in 2030. |
Scenario 1 | S1 | The REER is projected to be 10% higher than in the BaU scenario in each year of the simulation period. |
Scenario 2 | S2 | The REER is projected to be 10% lower than in the BaU scenario in each year of the simulation period. |
Scenario 3 | S3 | GVAAGR is projected to be 10% higher than in the BaU scenario in each year of the simulation period. |
Scenario 4 | S4 | GVAMANNO is projected to be 10% higher than in the BaU scenario in each year of the simulation period. |
Scenario 5 | S5 | GVAU is projected to be 10% higher than in the BaU scenario in each year of the simulation period. |
Scenario 6 | S6 | GVATRACOM is projected to be 10% higher than in the BaU scenario in each year of the simulation period. |
Scenario 7 | S7 | GVAFIBU is projected to be 10% higher than in the BaU scenario in each year of the simulation period. |
Year | REER_S1 | XGNOIL_S1 | REER_S2 | XGNOIL_S2 | GVAAGR_S3 | XGNOIL_S3 | GVAMANNO_S4 | XGNOIL_S4 |
---|---|---|---|---|---|---|---|---|
2021 | 10.00 | −10.93 | −10.00 | 13.72 | 10.00 | 1.13 | 10.00 | 3.31 |
2022 | 10.00 | −11.03 | −10.00 | 13.88 | 10.00 | 1.12 | 10.00 | 3.14 |
2023 | 10.00 | −11.07 | −10.00 | 13.95 | 10.00 | 1.12 | 10.00 | 3.21 |
2024 | 10.00 | −11.11 | −10.00 | 14.00 | 10.00 | 1.11 | 10.00 | 3.25 |
2025 | 10.00 | −11.13 | −10.00 | 14.02 | 10.00 | 1.08 | 10.00 | 3.24 |
2026 | 10.00 | −11.15 | −10.00 | 14.06 | 10.00 | 1.07 | 10.00 | 3.27 |
2027 | 10.00 | −11.16 | −10.00 | 14.09 | 10.00 | 1.06 | 10.00 | 3.29 |
2028 | 10.00 | −11.18 | −10.00 | 14.12 | 10.00 | 1.05 | 10.00 | 3.32 |
2029 | 10.00 | −11.20 | −10.00 | 14.14 | 10.00 | 1.04 | 10.00 | 3.34 |
2030 | 10.00 | −11.22 | −10.00 | 14.17 | 10.00 | 1.03 | 10.00 | 3.36 |
Average | 10.00 | −11.12 | −10.00 | 14.01 | 10.00 | 1.08 | 10.00 | 3.27 |
Derived elasticity | −1.11 | −1.40 | 0.11 | 0.33 |
Year | GVAU_S5 | XGNOIL_S5 | GVATRACOM_S6 | XGNOIL_S6 | GVAFIBU_S7 | XGNOIL_S7 |
---|---|---|---|---|---|---|
2021 | 10.00 | 0.61 | 10.00 | 2.49 | 10.00 | 3.89 |
2022 | 10.00 | 0.60 | 10.00 | 2.54 | 10.00 | 4.00 |
2023 | 10.00 | 0.62 | 10.00 | 2.60 | 10.00 | 4.11 |
2024 | 10.00 | 0.62 | 10.00 | 2.63 | 10.00 | 4.18 |
2025 | 10.00 | 0.61 | 10.00 | 2.63 | 10.00 | 4.20 |
2026 | 10.00 | 0.61 | 10.00 | 2.66 | 10.00 | 4.26 |
2027 | 10.00 | 0.61 | 10.00 | 2.67 | 10.00 | 4.31 |
2028 | 10.00 | 0.61 | 10.00 | 2.69 | 10.00 | 4.36 |
2029 | 10.00 | 0.61 | 10.00 | 2.70 | 10.00 | 4.42 |
2030 | 10.00 | 0.61 | 10.00 | 2.72 | 10.00 | 4.47 |
Average | 10.00 | 0.61 | 10.00 | 2.63 | 10.00 | 4.22 |
Derived elasticity | 0.06 | 0.26 | 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasanov, F.J.; Javid, M.; Joutz, F.L. Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis. Sustainability 2022, 14, 2379. https://doi.org/10.3390/su14042379
Hasanov FJ, Javid M, Joutz FL. Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis. Sustainability. 2022; 14(4):2379. https://doi.org/10.3390/su14042379
Chicago/Turabian StyleHasanov, Fakhri J., Muhammad Javid, and Frederick L. Joutz. 2022. "Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis" Sustainability 14, no. 4: 2379. https://doi.org/10.3390/su14042379
APA StyleHasanov, F. J., Javid, M., & Joutz, F. L. (2022). Saudi Non-Oil Exports before and after COVID-19: Historical Impacts of Determinants and Scenario Analysis. Sustainability, 14(4), 2379. https://doi.org/10.3390/su14042379