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Abstract: Multi-scenario simulation and pattern optimization of land use plays a role in improving
regional functionality and balancing anthropogenic and natural environments. The simulation
of future land use can provide a reference to demark the regional urban development boundary
and identify spaces for ecological protection and agricultural development. Policy makers can
use the simulated dynamic process to identify problems in the current trend of regional land use
change. On the basis of land use data for Xiong’an New Area, China in 2010, 2015, and 2020, this
paper established four scenarios to meet the planning requirements for this region: comprehensive
evolution, protection of basic farmland, control of construction land, and prioritization of ecological
protection. We used an optimized Markov–FLUS coupling model to simulate future land use changes.
We found that the land suitability probability in the four scenarios successfully calculated the effect of
land expansion in Xiong’an New Area. In 2010–2015 and 2015–2020, the overall accuracy was 0.9827
and 0.8805, respectively, and Kappa was 0.9675 and 0.7892, respectively. In 2035, the simulation
results from the four scenarios and the eight land types were significantly different. Construction
land, water area, wetland, and woodland increased by approximately 380%, 178%, 137%, and 3224%,
respectively, while dry land and rural land decreased by approximately 55% and 43%, respectively.
The multi-scenario simulation results were able to couple production, living, and ecological needs to
optimize the spatial pattern and resource allocation in Xiong’an New Area. The scenarios provide
new strategies to control population growth, permanently protect essential farmland, and restrict
urban development.

Keywords: land use; multi-scenario simulation; FLUS model; Markov Chain model; Xiong’an
New Area

1. Introduction

Land use change is caused by global change owing to spatio-temporal interactions
driven by human activities and the natural environment [1]. A range of international scien-
tific research programs have been launched to study land use change, including the Land
Use and Cover Change Project, and the Global Land Project and Land Suitability Analy-
sis [2–4]. The rules that govern the changes and optimization of land use/land space have
always been important scientific issues in geography in the context of China’s construction
of an ecological civilization, new urbanization, and the coordinated development of urban
and rural areas [5–9]. With the publication of the 14th Five-Year Plan for China’s National
Economic and Social Development and its long-term goals for 2035, designing a new land
use and space development pattern to combine ecological protection with socio-economic
development has become the main aim of regional coordinated development [10].
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The current research [11–13] focuses on the technical methods and the rules for land
use evolution over the years. The constructed constraints and optimization criteria mostly
emphasize macroscopic constraints and the microscopic comparison of land use planning
values. However, Xiong’an New Area is a typical developing city following a sudden
change of policy in China, and the rules of past land evolution cannot be used directly
to simulate future land distribution. The simulation results depend more on planning
orientation, transport networks, socio-economic conditions, and other driving factors. In
this study, the research scale of an urban model was extrapolated to the meso level. To
analyze the optimal regional land use structure, the fixed conversion rules of traditional
simulations were abandoned. This allowed an optimal allocation of regional land resources
to be explored.

The scenario simulation results obtained in this paper were consistent with the plan-
ning vision of Xiong’an New Area. Different planning departments will be able to identify
targeted land consolidation strategies using the simulation results. The predicted results
showed that ecological land use and agricultural land use operated in tandem. The increase
in the area of ecological land under the protection of basic farmland scenario was very
obvious. Construction land competed with water areas and wetlands in the process of
expansion, but there was no competition with the expansion of woodland. The results
provide scientific advice for balancing land use competition. The novelty of this paper lies
in the replacement of the numerical planning used in traditional research with a spatial com-
petition mechanism for a dynamic simulation, which can intuitively identify the increase or
decrease in different land uses in the process of evolution, as well as the competition and
integration between land uses. The model parameters and visual outputs can be adjusted
to guide and control the predicted results so that they concur as much as possible with the
objective rules of land use change and the planning vision. This kind of perspective can
provide new ideas for the study of land use evolution.

Xiong’an New Area was established in 2017 to relieve the pressure on Beijing’s non-
capital function and optimize the urban layouts and spatial structure of the Beijing–Tianjin–
Hebei urban agglomeration, which has become a research focus [12,13]. Before the formal
designation of Xiong’an New Area, the region included three typical Chinese county towns.
Economic development was limited by geographical restrictions and policy support, and
the economic growth rate and the GDP were relatively slow and low, respectively. In recent
years, improved transportation in this area has led to an increase in the outflow of the pop-
ulation year by year. Although Xiong’an New Area includes Baiyangdian Lake, the largest
wetland in the North China Plain which has substantial ecological benefits, its ecological
value has diminished year by year owing to its high degree of degradation. On the basis of
this development dilemma and the planning objectives, a multi-scenario simulation of land
use provided the best opportunity to identify the evolution of agricultural, construction,
and ecological land use in the study region, and to guide the formulation of intensive land
use policies by the government within the available development space. In addition, the
simulation results could be compared with the current regional development trends to
provide early warning of problems in land use trends and allow them to be corrected. The
selection and application of model drivers offered detailed alternative options for the input
conditions and improvement measures needed to develop the study area.

We obtained land use data for Xiong’an New Area in 2010, 2015, and 2020. Sixteen
driving factors, including topography, natural factors, socio-economic conditions, and
location were used to predict land use change in 2030 and 2035. Xiong’an New Area will be
developed into a modern, high-level socialist city by 2035, according to the development
goals and requirements for the area. Therefore, 2035 was taken as the time node for the
simulation in this study to analyze the agreement between the planning objectives and the
simulation results. The land transfer within a certain time range was not a simple linear
increase or decrease, but a dynamic process of spatial competition. The model used 2030
as a simulation time node. This was a key step to characterize the dynamic regional land
evolution rules and to compare the simulation results predicted for 2035. Therefore, we



Sustainability 2022, 14, 2425 3 of 20

set the following specific goals. Using the land use data for Xiong’an New Area from 2010
to 2020, four scenarios of land use change (comprehensive evolution, protection of basic
farmland, control of construction land, and prioritization of ecological protection) in the
study area in 2030 and 2035 were simulated with a Markov–FLUS coupling model and
superimposed land conversion conditions. The differences in land use patterns between
different scenarios were compared and analyzed. An optimal allocation was proposed in
accordance with the research results and the actual situation to optimize the allocation of
urban land resources.

2. Literature Review

Much research has focused on optimizing land use change patterns over the past few
decades, including theoretical innovation, policy restrictions, early warning of expansion,
multi-objective coupling, and the application of big data. These have been combined
into an integrated framework. Some studies have used the urbanization process as the
background [14], conducting high-level planning research on urban land use change
using innovation and ecology as the main driving factors [12]. From another perspective,
the reform and diversity of land systems are also important factors affecting land use
competition and change [15]. Other studies have analyzed the driving forces of land
development rules, mainly focusing on ecology, economy, culture, and distance [16]. To
improve on traditional approaches on urban growth phases, researchers have developed
the landscape expansion index [17] and green infrastructure factors [18] to analyze the
geometric characteristics of land patches and patterns. To meet the practical needs of
planners, there has also been also a focus on the mutual feedback mechanism between land
management and land transition [19].

The data sources for land use in the base period have a profound impact on the research
results. Most studies use remote sensing images as the source of land use data [20], but there
can be substantial subjectivity and a lack of consistency in the supervision and classification
process [21]. In exploring the problem of urban spatial cohesion, information flow can be
used to analyze its changes from a social perspective [22], and the application of the night
light index is also an important method for tracking urban sprawl [23]. Some research has
focused on a multifractal spectral analysis of construction land in large regions [24], the
coupling configuration of different factors, such as the economy and ecology [25], and the
bi-fractal structure and evolution of land use morphology [26]. The research on land use
change is not limited to urban areas, but also includes river basins [27] and ecologically
fragile areas [28].

Along with extensive measures for implementing the construction of an ecological
civilization, systematic analysis has been undertaken by various groups, including on
the dominant function of land use and spatial cross-analysis. The micro-mechanisms
and historical spatial dynamics of urbanization have been explored in depth by incor-
porating transportation, socio-economic conditions, the ecological pilot rate, and urban
affective intensity into the Using the Computable General Equilibrium of Land Use Change
(CGELUC) [29]. A special purpose genetic algorithm was used to solve the optimization
problem of direct and indirect targets [30]. Some scholars have focused on analyzing the
trade-off between ecosystem services and land use. Standard quantification and interaction
mechanisms are the main research methods, but they lack a consideration of the spatial
factors affecting land allocation [31]. Calculation of the predicted value during land use
simulation is a key step for the research results to present the shape.

Common spatial analysis methods and models include the System Dynamic (SD)
model [32] and Multi-Agent model [33]. The former is a typical simulation system, which
starts from microstructure modeling, and then generates higher-order, nonlinear, and
time-varying analysis results on the basis of a feedback loop. This model is suitable for
dealing with long-term and periodic problems. The latter can overcome the limitations
of traditional macro models and is well suited for a micro simulation of the population
location selection process. The Markov Chain model can be used to define the evolution or
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transfer of land use variables in the time state; that is, it generates a land transfer matrix and
pixel values [34]. The time-homogeneity of this model makes the purpose of land transfer
more intense. The Computable General Equilibrium of Land Use Change model classifies
land into areas that have or do not have a direct economic value for a macro analysis
of policy [35]. The Cellular Automata (CA) model is a grid dynamics model in which
both the spatial interaction and temporal causality are local [36]. It investigates the whole
system through the local effects of simple and discrete cellular units. The basic idea of the
CA model corresponds to the feature of “local influence on overall pattern” of land use
change. The Conversion of Land Use and its Effects at Sall Region Extent (CLUE–S) model
is used to simulate land use change on the basis of empirical and statistical regression
methods [37]. Most scholars use the non-spatial module of changing the strategy preference
to define the simulation results, and there are few analyses using the spatial module. The
Geographical Simulation and Optimization System–Future Land Use Simulation (GeoSOS–
FLUS) model introduces the Artificial Neural Network (ANN) algorithm on the basis of
the CA model and SD model, which strengthens the analysis of driving factors of land
change research [38]. The CA model has been used in a number of studies because of its
advantages for spatio-temporal integration. The FLUS model proposed by Liu Xiaoping,
which combines a Back Propagation–Artificial Neural Network (BP–ANN) model, CA
model, and other estimation methods, can simulate land use demand under multiple
scenarios [39].

3. Material and Methods
3.1. Study Area

Xiong’an New Area is located in central Hebei, 155 km from Shijiazhuang, 105 km
from Tianjin, and 55 km from Beijing Daxing Airport (Figure 1. Geographical location of
Xiong’an New Area). It includes three counties—Xiongxian, Anxin, and Rongcheng—and
33 townships. There are three rivers—the Daqing, Youyi, and Baigou—and Baiyangdian
Lake, which is the largest freshwater wetland in North China. At the end of 2020, the total
population was 1.29 million, the per capita GDP was USD 2931, and the urbanization rate
was 42.75%.
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3.2. Data and Preprocessing

First, according to the research objectives and model requirements, we reclassified
the original land use data into eight categories: paddy fields, dry land, woodland, water
area, wetland, construction land, rural land, and bare land. Second, we used altitude, slope,
and aspect as topographic factors; soil texture and annual average precipitation as natural
factors; night light intensity as a social factor; and the road network, railway network, water
system, and points of interest (POI, e.g., shopping malls, hotels, schools, banks, and parks)
as location factors in the model. The 16 driving factors were normalized using the Euclidean
distance and fuzzy membership degree tools of ArcGIS Pro (ESRI, Redlands, CA, USA).
The data are detailed in Table 1. Data Information Sources. The current study constructed a
multi-factor, multi-scale, multi-scenario, multi-module, and multi-agent integrated Markov–
FLUS coupling model [40,41]. According to the document “Planning Outline of Xiong’an
New Area, Hebei Province” [42], we established four scenarios: comprehensive evolution,
protection of basic farmland, control of construction land, and prioritization of ecological
protection. These were used to analyze and simulate land use patterns.

Table 1. Data Information Sources.

Category Data Year Data Source

Main Dataset land use data of Xiong’an
(30 m)

2010, 2015, and
2020

Resource and Environment Science and Data Center.
Available online: http://www.resdc.cn/ (accessed

on 11 July 2021)

Topography
Altitude

2010, 2015
Geospatial Data Cloud (calculated by DEM through

slope and aspect tools). Available online:
http://www.gscloud.cn/ (accessed on 12 July 2021)

Slope
Aspect

Natural
Environmental Factors

Soil texture 1995 Resource and Environment Science and Data Center.
Available online: http://www.resdc.cn/ (accessed

on 11 July 2021)
Annual average

precipitation 2015

Social Factor Night light intensity 2015
National Centers for Environmental Information.
Available online: https://www.ngdc.noaa.gov/

(accessed on 11 July 2021)

Locational Factors

Road network (provincial
highway, national

highway, expressway)
2018

Resource and Environment Science and Data Center.
Available online: http://www.resdc.cn/ (accessed

on 11 July 2021)
Railway network 2016
River, water area 2015

County, town location
points 2016

POI (e.g., shopping malls,
hotels, schools, banks, and

parks)
2016 Open Street Map. Available online:

http://www.openstreetmap.org/ (accessed on 11
July 2021)high-speed rail stations 2016

3.3. FLUS Model

To identify the key issues between land use change and the natural environment,
Professor Liu Xiaoping from Sun Yat-sen University proposed the FLUS model in 2017 [38].
This model is based on the traditional CA model but includes a Markov model to pre-
dict future land change. To calculate the probability of different kinds of land use pixels,
multi-band imagery is superimposed to generate a suitability probability file through a
BP–ANN module. Then, the land use change simulation is obtained via a roulette com-
petition [43]. Finally, the accuracy is tested using the Kappa coefficient. The investigative
framework is shown in Figure 2. A flow chart depicting the analytical process of the
research methodology.

http://www.resdc.cn/
http://www.gscloud.cn/
http://www.resdc.cn/
https://www.ngdc.noaa.gov/
http://www.resdc.cn/
http://www.openstreetmap.org/
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3.3.1. Scenario Settings

The comprehensive evolution scenario considered the general evolution rules of land
from 2010 to 2020 and included the spatial competition between construction land, prime
farmland, and ecological land. Dry land was regarded as the main output source of
land conversion, and the probability of other land types being converted to dry land was
improved so as to leave sufficient space for the overall regional evolution. The weight of
neighborhood land was set according to the proportion of each land class in 2020 to ensure
that the final scenario results were in line with the actual effect.

The protection of basic farmland scenario mainly focused on the expansion of paddy
fields. Paddy fields have the dual effects of food production and ecological value, which
is of great significance for keeping intensive land use, optimizing supply and demand
allocation, and improving land use efficiency in Xiong’an New Area. Dry land in the study
area was not the main land type in this scenario because it was mostly saline land and had
a low grain yield.

The control of construction land scenario took the original construction land in Xiongx-
ian, Rongcheng, and Anxin counties as the origin of expansion, and this gradually ap-
proached the initial control area of Xiong’an New Area in the form of clusters according
to the planning requirements and its own development characteristics. The expansion
of construction land was restricted by the Baiyangdian Lake, the rivers, and the main
woodland areas. When construction land was transferred to other land types in this paper,
the neighborhood weight was slightly increased and the parameter was set to 1, but the
total amount of construction land was limited to less than 30% in the scenario simulation.

In the prioritization of ecological protection scenario, paddy fields, woodland, water
area, and wetland were taken as the main expansion land types, and the transformation
matrix of the land in the scenario was allocated comprehensively (Table 2. Simulation Cost
Matrix under the Multi-Scenario Space Priority). The transfer cost of blue–green space
was higher than that of other land types. Wetlands within the main protection area had
the same transfer cost as water with less distribution, and the cost was higher than that
of woodland and paddy fields. On the basis of past research experience and the human
and natural characteristics of the study area [44,45], the neighborhood weight relationship
of wetland = woodland = construction land > rural land > water area > dry land > paddy
fields > bare land was set according to the resistance relationship per unit area of land. The
neighborhood weight of ecological land was slightly increased owing to the Xiong’an New
Area Ecological Environment Protection Plan and Baiyangdian wetland restoration work.
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Table 2. Simulation Cost Matrix under the Multi-Scenario Space Priority.

Land Use
Types

Comprehensive Evolution Control of Construction Land

X1 X2 X3 X4 X5 X6 X7 X8 X1 X2 X3 X4 X5 X6 X7 X8

X1 1 0 1 1 1 1 1 0 1 0 1 1 1 0 0 0
X2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X3 1 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0
X4 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0
X5 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
X6 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0
X7 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0
X8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Land Use
Types

Protection of Basic Farmland Prioritization of Ecological Protection

X1 X2 X3 X4 X5 X6 X7 X8 X1 X2 X3 X4 X5 X6 X7 X8

X1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0
X2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X3 1 0 1 1 1 0 0 0 1 0 1 1 1 1 0 0
X4 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0
X5 1 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0
X6 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
X7 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0
X8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Note: X1, X2, X3, X4, X5, X6, X7, X8 are, respectively: paddy fields, dry land, woodland, water area, wetland,
construction land, rural land, and bare land; land between two land types cannot be converted to 0, but they are
allowed to be converted to 1.

3.3.2. Probability of Land Development

BP–ANN is a multi-layer feed forward neural network, including an input layer, one
or more hidden layers, and an output layer [38]. It was divided into two main stages,
training, and evaluation:

τ(p, k, t) = ∑
j

wj, k × sigmoid
(
netj(p, t)

)
= ∑

j
wj, k ×

1

1 + e−netj(p, t)
(1)

where τ(p, k, t) is the suitability probability of k land type at time t and grid p; wj, k is
the weight between the hidden layer and the output layer; sigmoid ( ) is the excitation
function from the hidden layer to the output layer; netj (p, t) is the signal value received
by the j-th hidden layer grid p at time t. The sum of the suitability probabilities of each
land type output in BP–ANN is always 1, namely:

∑
j
τ(p, k, t) = 1 (2)

3.3.3. Conversion Cost Matrix and Neighborhood Parameters

The land conversion cost matrix indicated the ease of transforming a current land
type into a target type. The conversion probability was subject to neighborhood density,
a conversion weight, spatial resolution, land type competition, and an adaptive inertia
coefficient. The adaptive inertia coefficient was determined by the gap between the actual
land use quantity and the target demand quantity, which was adapted in the iteration to
approach the target trend gradually [44]:

Inertiat
k =


Inertiat−1

k

∣∣∣Dt−2
k

∣∣∣ 0 ∣∣∣Dt−1
k

∣∣∣
Inertiat−1

k × Dt−2
k

Dt−1
k

0 > Dt−2
k > Dt−1

k

Inertiat−1
k × Dt−1

k
Dt−2

k
Dt−1

k > Dt−2
k > 0

(3)
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where Inertiat
k is the inertia coefficient of k land at the t-th iteration time; Dt−1

k , Dt−2
k is the

difference between the practical grids and the target grids at the t− 1, t− 2 time.
Through the above steps, we obtained the probability TProbt

p, k that grid p could be
converted into k land at t time. Each land type could be allocated to the grid through the
CA iteration, and the expression was [39]:

TProbt
p, k = τ(p, k, t)×Ωt

p, k × Inertiat
k × (1− scc→k) (4)

Ωt
p, k =

∑N×N con(c t−1
p = k)

N×N− 1
×wk (5)

where scc→k is the cost of converting the original land use type c into type k, 1− scc→k

represents the difficulty of conversion; Ωt
p, k denotes Moore density; ∑N×N con (c t−1

p = k)
is the quantity of grids of k land at the end of t− 1 time on the N×N Moore window; wk
is the weight of k land types.

3.4. Markov Model

The Markov Chain stochastic model can simulate and predict the development trend
of land through the transition probability matrix, on the basis of the occurrence probability
of multi-period land types [34]. The transition probability of n period pn

ij and the final
percentage matrix A(n) were expressed as:

pn
i j =

m−1

∑
k=0

pn−1
k j =

m−1

∑
k=0

pn−1
i k × pk j (6)

A(n) = A(n− 1)× p1
i j = A(0)× pn

i j (7)

where m is the row number and column number of the transition probability matrix; and
A(0) is the initial land area percentage matrix.

First, BP–ANN was used to calculate the probability of land conversion in 2010. Then,
on the basis of the land use data in 2010 and combined with the land probability calculation
results, the Markov Chain model was introduced to predict the land use in 2030 and 2035,
respectively. The land use scales of 2015 and 2020 were extracted from the above predicted
results and spatially expressed by CA. Finally, the actual land use in 2015 and 2020 was
compared with the predicted results to obtain the accuracy of the Markov Chain model
in predicting future land use. The accuracy test results also represented the accuracy of
land use in 2030 and 2035 that was predicted using the land use data in 2020, following the
same process as indicated previously. The number of pixels of each land use type is shown
in Table 3. Present and Future Number of Pixels in Different Land Use Types.

Table 3. Present and Future Number of Pixels in Different Land Use Types.

Land Use Types 2010 Actual 2015 Actual 2020 Actual 2030 Target 2030 Target

Paddy field 60,202 59,647 59,647 198,465 198,465
Dry land 1,325,054 1,313,734 1,250,785 99,233 39,693

Woodland 10,725 10,559 11,771 793,861 793,861
Water area 70,180 71,953 100,651 99,233 195,396

Wetland 168,367 167,442 188,558 400,000 400,000
Construction land 34,685 35,721 37,686 595,396 595,396

Rural land 290,408 295,549 313,677 59,540 55,556
Bare land 25,032 30,048 21,878 19,847 39,693

3.5. Kappa and Overall Accuracy Precision Inspection

The Kappa coefficient is a scale that represents the proportion of categorization to
the reduction in errors produced by completely random categorization. The calculation of
kappa coefficients is based on a confusion matrix and is between −1 and 1, usually greater
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than 0. However, in the classification problem of this study, the number of samples in each
category was not balanced. Without adjustments on such imbalanced data sets, models
can easily favor large categories over small ones. Therefore, the kappa accuracy can better
express the quantitative accuracy and spatial distribution accuracy of the predicted results.
The expression was [44]:

K = (Pa − Pb)/(1− Pb) (8)

where Pa represents the same proportion of the simulation results, and Pb represents the
correct proportion of the simulation results of targets chosen at random.

Overall accuracy is the ratio between what the model predicted correctly on all test
sets and the overall number. The model shows a high accuracy with Kappa ≤ 0.75 and an
overall accuracy (OA) < 1, a moderate accuracy with Kappa ≤ 0.5 and an OA < 0.75, and a
poor accuracy with Kappa ≤ 0 and OA < 0.5.

4. Results

The quantity of each land type in Xiong’an New Area in 2030 and 2035 that was
predicted by the Markov–FLUS coupling model in the four scenarios—comprehensive
evolution, protection of basic farmland, control of construction land, and prioritization of
ecological protection—is shown in Table 4. Land Area and Proportion in the four Scenario
Simulations. More detail about the rate and range of change in land use under different
restrictions from 2010 to 2035 is shown in Table 5. Annual Degree and Amplitude of Change
in Land Use from 2010 to 2035 (%). The two-phase simulation Kappa was 0.9675 and 0.7892,
while the OA was 0.9827 and 0.8805. The simulated prediction had a high level of accuracy.

Table 4. Land Area and Proportion in the four Scenario Simulations.

Situation Year
Permanent Basic Farmland Construction Land Blue–Green Space

X Y X Y X Y

Primitive Spatial Classification
2010 54.18 3.03 31.21 1.75 278.52 15.59
2015 53.68 3.01 32.14 1.80 278.64 15.60
2020 53.68 3.01 33.91 1.90 324.56 18.17

Comprehensive Evolution 2030 59.90 3.35 114.00 6.38 775.25 43.40
2035 60.44 3.38 150.13 8.41 917.16 51.35

Protection of Basic Farmland
2030 121.91 6.83 113.31 6.34 808.30 45.25
2035 177.94 9.96 148.61 8.32 1024.63 57.36

Control of Construction Land
2030 59.38 3.32 116.37 6.52 776.18 43.45
2035 60.11 3.37 156.79 8.78 913.24 51.13

Prioritization of Ecological
Protection

2030 72.07 4.04 104.08 5.83 818.11 45.80
2035 83.67 4.68 144.80 8.11 935.95 52.40

X: Area (km2); Y: Proportion (%).

In the simulations of the four scenarios, the annual dynamics and amplitude changes
in the land use in the comprehensive evolution scenario were less extreme compared with
the other three scenarios. In the protection of basic farmland scenario, the increase in
the area of paddy fields far exceeded that of other scenarios in the same period, with
an increase of 228.42% from 2010 to 2035. The final area of paddy fields accounted for
9.96% of the total land area. In the control of construction land scenario, the expansion of
construction land into blue–green space (paddy fields, woodland, water area, wetland) was
substantial. In 2035, the proportion of blue–green space was the lowest in the same period.
In the prioritization of ecological protection scenario, the blue–green space accounted for
52.40% in 2035, with an area of 93.59 km2. The simulations showed that the different land
uses maintained a balanced state in multiple scenarios and coordinated development of
the production–living–ecological space continued, which improved the sustainability of
land use.
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Table 5. Annual Degree and Amplitude of Change in Land Use from 2010 to 2035 (%).

Land Use Types

2010–2035

Comprehensive
Evolution

Protection of Basic
Farmland

Control of
Construction Land

Prioritization of
Ecological Protection

X Y X Y X Y X Y

Paddy field 0.44 11.56 8.79 228.42 0.42 10.95 2.09 54.43
Dry land −2.12 −55.04 −2.41 −62.79 −2.13 −55.30 −2.16 −56.19

Woodland 124.01 3224.19 120.01 3120.30 122.57 3186.90 122.24 3178.15
Water area 6.86 178.42 6.86 178.42 6.86 178.42 6.86 178.42

Wetland 5.29 137.58 5.29 137.58 5.29 137.58 5.29 137.58
Construction land 14.65 380.94 14.46 376.07 15.47 402.27 14.00 363.89

Rural land −1.68 −43.74 −1.88 −48.96 −1.68 −43.61 −1.68 −43.68
Bare land 2.25 58.57 2.25 58.57 2.25 58.57 2.25 58.57

X: Annual dynamics; Y: Amplitude change.

4.1. Comprehensive Evolution Scenario

The comprehensive evolution scenario simulation showed that the spatial pattern of
the land in this area maintained a balance of blue–green land uses (Figure 3. Comparison
of land use over time in the comprehensive evolution scenario). By 2035, a planned urban–
rural spatial structure with comprehensive functions had formed, along with a clustered
urban spatial pattern integrated with water areas.
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Dry land showed a significant decrease, with an annual change rate of−2.12% (Table 4.
Land Area and Proportion in the four Scenario Simulations). From 2010 to 2035, there was a
steady increase in paddy fields, mostly converted from dry land. Construction land steadily
expanded from 2010 to 2035, with an annual change rate of 14.6%, which was second
only to woodland. In addition to expanding the urban extent in the original counties and
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townships, new construction land mainly extended to the northwest of the Baiyangdian
Lake. In 2035, wetlands accounted for 20.1% (Table 6. Land Use Area and Percentage in
the Comprehensive Evolution Scenario), and the core area of lake wetlands occurred in the
southwest of the study area. In Northeast China, the area of woodland patches increased
significantly. In the study area, from 2010 to 2035, the annual change rate of woodland
reached 124.01%, and the coverage increased from 0.54% to 17.9%. In 2035, the main water
area reached 175 km2, forming a landscape-level corridor and node system.

Table 6. Land Use Area and Percentage in the Comprehensive Evolution Scenario.

Land Use Types
2010 Actual 2015 Actual 2020 Actual 2030 Simulation 2035 Simulation

X Y X Y X Y X Y X Y

Paddy field 54.18 3.03 53.68 3.01 53.68 3.01 59.90 3.35 60.44 3.38
Dry land 1192.5 66.7 1182.3 66.1 1125.7 63.0 688.9 38.5 536.1 30.0

Woodland 9.65 0.54 9.50 0.53 10.59 0.59 275.2 15.4 320.8 17.9
Water area 63.16 3.54 64.76 3.63 90.59 5.07 175.8 9.85 175.8 9.85

Wetland 151.53 8.48 150.70 8.44 169.70 9.50 264.2 14.7 360.0 20.1
Construction land 31.22 1.75 32.15 1.80 33.92 1.90 114.0 6.38 150.1 8.41

Rural land 261.37 14.6 265.99 14.8 282.31 15.8 172.2 9.65 147.0 8.23
Bare land 22.53 1.26 27.04 1.51 19.69 1.10 35.72 2.00 35.72 2.00

X: Area (km2); Y: Proportion (%).

In the comprehensive evolution scenario, the area growth of paddy fields was signifi-
cantly lower than that of other scenarios. In 2035, the area of basic farmland in this scenario
was 60.44 km2, only just higher than 60.11 km2 in the scenario of control of construction
land in the same period. In this scenario, the construction land expansion results were
substantial, and the construction land area in 2035 was 150.13 km2, accounting for 8.41%,
which was higher than that in the protection of basic farmland scenario and prioritization
of ecological protection scenario in the same period. The proportion of blue–green space
in the comprehensive evolution scenario was low, and the area proportion in 2030 and
2035 was 43.4% and 51.35%, respectively, which was lower than that in the prioritization of
ecological protection scenario.

4.2. Protection of Basic Farmland Scenario

In the protection of basic farmland scenario, on the basis of land use change in 2010 to
2020 and considering the multiple requirements for basic farmland protection, the model
decreased the conversion ratio of other land types to paddy fields, with the highest transfer
matrix rank and an expanded land suitability probability. Xiong’an New Area’s plan
requires 18% of cultivated land and 10% of permanent basic farmland.

The protection of basic farmland scenario simulation showed that the area of paddy
fields increased from 54.18 km2 to 53.68 km2 from 2010 to 2020, and the growth trend
accelerated from 2010 to 2035 (Table 4. Land Area and Proportion in the four Scenario
Simulations), with an annual change rate of 8.79%. By 2035, the proportion of paddy
fields was 9.96%, with an area of 178 km2 (Table 7. Land Use Area and Percentage in the
Protection of Basic Farmland Scenario). Because the paddy fields were adjacent to key
ecological areas, there was some cross-integration in the expansion process of the two land
use types, according to the neighborhood impact theory (Figure 4. Comparison of land use
differences in the protection of basic farmland scenario). The overall weight of farmland
transfer was greater than that of wetlands, resulting in the conversion of some wetlands to
paddy fields southwest of the Baiyangdian Lake.

In the protection of basic farmland scenario, the annual dynamic and amplitude
change in the paddy fields from 2010 to 2035 were much higher than those of the other
three scenarios, amounting to 8.79% and 228.42% (Table 5. Annual Degree and Amplitude
of Change in Land Use from 2010 to 2035 (%)), respectively, which were the maximum
year-on-year values. The development of woodland in this scenario was more limited,
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and the 2010–2035 annual dynamic was 120.01%, which was lower than that in the other
three scenarios. However, it had a positive effect on the overall blue–green space area. In
2035, the blue–green space occupied 57.36% and the area was 1024.63 km2, which was the
maximum in that period.

Table 7. Land Use Area and Percentage in the Protection of Basic Farmland Scenario.

Area and Proportion
Land Use Types

Paddy
Field

Dry
Land Woodland Water

Area Wetland Construction
Land

Rural
Land

Bare
Land

2030 simulation
X 121.91 655.92 275.17 175.86 235.37 113.32 172.92 35.72
Y 6.83 36.72 15.41 9.85 13.18 6.34 9.68 2.00

2035 simulation
X 177.94 443.81 310.84 175.86 360.00 148.61 133.41 35.72
Y 9.96 24.85 17.40 9.85 20.15 8.32 7.47 2.00

X: Area (km2); Y: Proportion (%).
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4.3. Control of Construction Land Scenario

In the control of construction land scenario, the transfer probability for construction
land was greater than that of other land types. In line with the planning requirements, the
predicted demand for construction land was limited to 30%, with an area of approximately
530 km2. The target threshold for rural land areas was limited to 50 km2, accounting for
3%, as well as a proportion of bare land within the control range.

The simulation results for the control of construction land scenario showed that the
proportion of construction land in 2030 and 2035 was 6.52% and 8.78%, respectively (Table 8.
Land Use Area and Percentage for the Control of Construction Land Scenario). The area
was 116.37 km2 and 156.79 km2, respectively, and the change rate from 2010 to 2035 was
15.47% (Table 4. Land Area and Proportion in the four Scenario Simulations). The rural
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land that used to be concentrated in the northwest decreased by 43.61% from 2010 to 2035
(Figure 5. Comparison of land use differences in the control of construction land scenario),
and the occupied area approached the target value of 50 km2. In the process of change, the
stable proportion of bare land was 2%, and the area was 35 km2.

Table 8. Land Use Area and Percentage for the Control of Construction Land Scenario.

Area and Proportion
Land Use Types

Paddy
field

Dry
Land Woodland Water

Area Wetland Construction
Land

Rural
Land

Bare
Land

2030 simulation
X 59.39 678.71 274.60 175.86 266.34 116.38 179.19 35.72
Y 3.32 38.00 15.37 9.85 14.91 6.52 10.03 2.00

2035 simulation
X 60.12 533.05 317.27 175.86 360.00 156.79 147.38 35.72
Y 3.37 29.84 17.76 9.85 20.15 8.78 8.25 2.00

X: Area (km2); Y: Proportion (%).
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Compared with the other scenarios, the proportion of construction land increased
significantly. It was approximately 0.5% higher than that of the other scenarios, and a small
amount of ecological land was encroached upon. In 2035, the proportion of blue–green
space was 51.13%, with an area of 913 km2, which was the lowest at the same date among
all scenarios. The water area and wetland in the control of construction land scenario were
not affected in the expansion process, and the annual dynamic and amplitude changes
from 2010 to 2035 were the same as those in the other three scenarios.

4.4. Prioritization of Ecological Protection Scenario

In the prioritization of ecological protection scenario, the target threshold for woodland
coverage rate was set to 40%. Full play was given to the ecological regulation function of
paddy fields and their transfer cost probability could be expanded within a certain range.
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The simulation results for the prioritization of ecological protection scenario showed
that by 2035, Xiong’an New Area will have a blue–green spatial pattern with large wood-
land patches in the northeast and Baiyangdian Lake wetland and the water system will
be connected in the southwest (Figure 6. Comparison of land use differences in the pri-
oritization of ecological protection scenario). The wetland area increased significantly. In
2035, wetlands accounted for 20.15% (360 km2) (Table 9. Land Use Area and Percentage
in the Prioritization of Ecological Protection Scenario), with an overall increase of 137.58%
(Table 4. Land Area and Proportion in the four Scenario Simulations). The water area
increased from 63.16 km2 in 2010 to 175.86 km2 in 2035. In 2035, woodland accounted for
17.72%, or 316.42 km2, and the change rate from 2010 to 2035 was up to 122.24%, which
was the highest in the same period among all scenarios.
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Table 9. Land Use Area and Percentage in the Prioritization of Ecological Protection Scenario.

Area and Proportion
Land Use Types

Paddy
Field

Dry
Land Woodland Water

Area Wetland Construction
Land

Rural
Land

Bare
Land

2030 simulation
X 72.08 661.19 274.34 169.48 302.23 104.08 167.07 35.72
Y 4.04 37.02 15.36 9.49 16.92 5.83 9.35 2.00

2035 simulation
X 83.67 522.50 316.42 175.86 360.00 144.81 147.20 35.72
Y 4.68 29.25 17.72 9.85 20.15 8.11 8.24 2.00

X: Area (km2); Y: Proportion (%).

In the prioritization of ecological protection scenario, blue–green space accounted for
52.4%, which was higher than two of the other scenarios, but still lower than that in the
protection of basic farmland scenario. It can be seen that the environmental development
of Xiong’an New Area should not only consider simple ecological factors, but land uses
should complement each other with ecological and production space. In 2035, the area of
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construction land will be 144.8 km2, the lowest in the same period. The area of woodland
expansion in this scenario was smaller than that in the comprehensive evolution scenario,
and the annual dynamic was 122.24%.

5. Discussion
5.1. Study Compared

Compared with other articles on the same topic, this study has some unique and
innovative characteristics in terms of the selection of the study area, the setting of scenario
types, and the purposes of the simulation. We chose Xiong’an New Area as the research
area because before its establishment by the government, this area was not on the path
to becoming a high-quality city. Most previous studies (Table 10. Land Use Area and
Percentage in the Protection of Basic Farmland Scenario) have focused only on study areas
with good infrastructure and significant expansion. Therefore, the problem addressed in
this paper was to simulate and optimize the future land pattern in the absence of a mature
development foundation and clear land development trends in the region.

Table 10. Land Use Area and Percentage in the Protection of Basic Farmland Scenario.

Comparison of the
Contents

Literature
Reviews Literature Characteristics Novel Approaches

Selection of study area [16,17,25,43]
The city of Beijing, Dongguan;

Beijing–Tianjin–Hebei urban agglomeration;
Pearl River Delta

Emerging region: Xiong’an New
Area

Setting of scenario
types [29,33,46,47] Urbanization development rate; Interactions of

jobs–housing; Baseline scenario

Integrated patterns of other
scenarios: comprehensive

evolution scenario

Purposes of simulation [13,48–50]
Ecological regulation; Ecological response

prediction; Ecosystem service value; Ecological
security pattern

Study on the distribution pattern
of various land and space in the

region

In setting the scenarios, we concentrated on independent land expansion scenarios
of production, living, and ecology, and added a comprehensive evolution scenario. This
method can consider the competition between different land types and present the future
vision of the study area that best conforms to the regulation of land evolution. When the
land types included in the four scenarios were initially classified, the cross-attribution
method was adopted for the land types with multi-layer values. For example, paddy fields
existed in both basic farmland and blue–green space. This division is consistent with the
actual situation of land use values and improves the contribution of land values.

Compared with similar studies [48], we used a Markov Chain model to predict future
land use. Compared with the SD model, we paid more attention to the change of land
quantity in the future prediction mechanism, rather than the rational change of driving
factors using mathematical statistics in linear analysis. This difference will lead to differ-
ences in land demand in the study, and the final simulation results will also be different.
Second, among the four scenario parameter settings, the “Production–Life–Ecology” space
was used in our study to distinguish the results, rather than as the setting condition of a
scenario. Instead of using population, GDP, and scientific and technological innovation as
scenario parameters for analysis, we adopted the key development of the dominant land
category in the scenario. For example, we set the transfer probability and neighborhood
weight of woodland in the ecological protection scenario far higher than other scenarios.
There were also fundamental differences in the division of situations. Finally, the research
purpose of this paper was the overall land use pattern of Xiong’an New Area, and the
analysis showed how the integrated development of various spaces could be achieved for
land use consolidation or optimal development. Ecological environmental factors were
an important part of the research and analysis but were not the main research purpose of
this paper.
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5.2. Simulation Results

With reference to the previous spatial analysis of land use in the same study area [48,49], the
simulation results of the Markov–FLUS coupling model integrated multiple impacts, such
as natural conditions, social policies, human activities, and ecological protection. In the
future plan, Xiong’an New Area is dominated by blue–green space. In the final simulation,
the area of blue–green land reached 51.35%, accounting for an increase of 36.81%. The
model accurately calculated the demands of land use change for the ecological environment
and met the planning vision to some extent. The simulation and prediction results are
related to the land development and protection pattern and ecosystem service value of
Xiong’an New Area. The expansion of construction land based on the three counties and
districts formed a good connection with the development of urban clusters. In previous
research on land use change in Xiong’an New Area, the simulation results seldom included
production and living spaces. The current study included a detailed systematic analysis
of the main development land types for multiple scenarios. For example, to consider the
impact of the conflict between the expansion of construction land and the expansion of
adjacent wetlands [51], the number of iterations was increased to 300, and the coordinated
coupling of the three living spaces was realized through a multi-change simulation process.
This addresses the limitation of single-goal development and is more in line with the
practical significance and spatial value of Xiong’an New Area [50,52].

5.3. Application of Research Results

First, the research results included most of the land considered in the planning of
Xiong’an New Area, covering an area of 1786 km2. The blue–green space was in a state
of sustained and rapid growth, but it was well below the 70% proportion required by
the plan. Therefore, relying solely on ecological restoration and management measures,
such as afforestation, returning farmland to lakes, and dredging water systems in the
region is unlikely to achieve the planning objectives. Cross-regional and high-intensity
multi-source water replenishment measures are needed, such as diverting the Yellow River
into Hebei to replenish lakes and supply upstream reservoirs. The detailed simulation
results at a resolution of 30 m can assist with a precise delineation of the urban development
boundary, the permanent basic farmland protection red line, and the ecological protection
red line in Xiong’an New Area [51]. The negative effects of land development can be
avoided through an early warning of conflicts between adjacent spaces, planning control,
and prevention [46,53]. Second, among the simulation results from the four scenarios,
the comprehensive evolution scenario can provide a background blueprint conforming to
the planned development direction. The simulations for the protection of basic farmland
and the control of construction land can provide support for building a scientific urban
and rural spatial structure by visualizing the future development of the anthropogenic
environment from the perspective of production and living spaces [54]. The results from
the ecological prioritization scenario, coupled with other scenarios, not only provide a
global perspective for the ecological restoration and management of Baiyangdian Lake
but they also provide options for protecting ecological sources, constructing ecological
corridors, and creating new blue–green spaces [12,55]. Finally, Xiong’an New Area needs
to undertake the transfer of Beijing’s non-capital functions. The research results of this
paper demonstrate how the spatial allocation and optimization of the land use pattern can
be used to create an innovative geographical space [47,56].

5.4. Limitations and Prospects

The Markov–FLUS coupling model was used to simulate the land use and spatial
pattern in multiple scenarios, considering human and natural factors. However, owing to
the complexity of the research objective, the driving factors used in the model were selected
through theoretical analysis and references to previous studies, which had a degree of
subjectivity. If a linear analysis of driving factors was carried out, the influence of each
driving factor on the simulation could be analyzed, and the driving factors that met the
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characteristics of the study could selected for subsequent research. This would improve
the simulation results. The impact of policy on land use change in the FLUS model can
only be expressed in the setting of parameters, which has its own limitations. The policy
index system can be transformed into geospatial elements and coupled with the simulation
model, which will be a breakthrough in future research [57]. In addition, the land use
classification in this paper was mainly based on the study of suitability, and no evaluation
system was constructed to calculate the division of land types. The land use classification
had insufficient detail and there was a lack of further systematic division of the internal
green space of urban areas [52,58]. Subsequently, more detailed scale simulation analysis
and comparisons could be carried out for different regions to solve the lack of control
standards, find a more reasonable evaluation system for land expansion indicators, make
the land use pattern results closer to reality, and better simulate the process of land use
change and development.

6. Conclusions

In this paper, the analysis of dynamic change in land use and the optimization ap-
plication of multi-scenario simulation results achieved excellent results. The probabilistic
calculation of land suitability constructed by social, economic, demographic, and natural
factors can provide scientific advice on the maximum probability of various land use
changes for cities with minor past land changes or for newly established cities. The detail
contained in the classification system of land use limits whether there is convergence or
exclusion of different spatial distribution boundaries. Research proved that the simulation
result was able to realize the optimal planning intervention measures of sustainable devel-
opment of an inland city, because it could predict areas of rapid expansion (especially in
large or emerging cities) and tailor those on a regional basis toward the specified scope of
sustainable land planning to control urban sprawl and urban growth. The four scenarios
could all provide suggestions for corresponding spatial patterns.

(i) According to the comprehensive evolution scenario, the wetland continued to expand
in the southwest of the region, which did not meet the construction needs of the
ecological corridor in the middle and north of the region. In Anxin County, the
construction land for human settlements and industry should be controlled in a timely
fashion, and sufficient development space should be reserved for wetland or other
ecological land.

(ii) Basic farmland will be eroded by dry land and infrastructure construction. Relevant
departments should strengthen the construction of high-quality farmland to ensure
that the total amount of permanent basic farmland does not decrease, the use of
permanent basic farmland does not change, and the quality of permanent basic
farmland is improved.

(iii) The peripheral cluster mode of construction land will be basically completed in
2035, but the distribution pattern of bare land is chaotic. It would be a reasonable
governance measure to strictly control the boundaries of urban development and the
size of the urban population, and to leave strategic space blank for national major
development strategies and sustainable urban development.

(iv) The scale of blue–green space improved greatly, but there was still a gap with the
planning target threshold. As a community that sustains life, the wetland and wood-
land should be protected and restored in a unified manner to ensure the integrity of
the new ecological system.
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