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Abstract: The construction industry is one of the main producers of greenhouse gasses (GHG). With
the looming consequences of climate change, sustainability measures including quantifying the
amount of air pollution during a construction project have become an important project objective in
the construction industry. A major contributor to air pollution during construction projects is the
use of heavy equipment. Therefore, efficient operation and management can substantially reduce a
project’s carbon footprint and other environmental harms. Using unintrusive and indirect methods to
predict on-road vehicle emissions has been a widely researched topic. Nevertheless, the same is not
true in the case of construction equipment. This paper describes the development and deployment of
a framework that uses machine learning (ML) methods to predict the level of emissions from heavy
construction equipment. Data is collected via an Internet of Things (IoT) approach with accelerometer
and gyroscope sensors as data collection nodes. The developed framework was validated using
an excavator performing real-world construction work. A portable emission measurement system
(PEMS) was used along with the inertial sensors to record the amount of CO, NOX, CO2, SO2, and
CH4 pollution emitted by the equipment. Different ML algorithms were developed and compared
to identify the best model to predict emission levels from inertial sensors data. The results show
that Random Forest with the coefficient of determination (R2) of 0.94, 0.91, and 0.94, and normalized
root-mean-square error (NRMSE) of 4.25, 6.42, and 5.17 for CO, NOX, and CO2, respectively, was the
best algorithm among different models evaluated in this study.

Keywords: emission prediction; machine learning; construction equipment; inertial sensor; PEMS

1. Introduction

Climate change is one of the most serious challenges faced by humankind today.
A rise in the concentration of greenhouse gases (GHGs) such as CO2, CH4, NO2, and
water vapor in the atmosphere is responsible for the increase in the average earth surface
temperature, and CO2 plays a key role in contributing to this temperature growth [1,2].
Since the 1970s, human activities have been the main cause of global warming, which in
turn has many negative effects on climate change, agriculture, and human health [3–6].
The construction industry produces 23% of the total CO2 emissions released by human
activities [7]. Construction materials production, transportation of building materials
and modules, and a large amount of construction equipment fuel consumption are all
responsible for the large amounts of GHG emissions [8–10]. Construction equipment
typically consumes a large amount of fuel and contributes significantly to GHG emissions
and global warming. Yan et al. showed that 12–17% of the total GHG emissions in
building construction are from the transportation of building materials and construction
equipment energy consumption [11]. In 2005, there were more than two million pieces
of construction and mining heavy equipment in the United States, consuming more than
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6 billion gallons of diesel fuel annually [12], a figure that most certainly has not decreased
since. Thus, sustainable management and use of construction equipment can have a
great effect on reducing global warming, environmental threats, and earth temperature.
Heavy equipment often uses powerful engines and produces different types of gasses even
during idling. Currently, such accurate measurements are manual, time-consuming, and
labor-intensive [13].

This paper describes the development of a novel framework that uses machine learn-
ing (ML) methods to predict the emissions of heavy construction equipment using data
collected by the accelerometer and gyroscope sensors and the validation of this framework
using an excavator performing real-world construction work. Emissions were measured
using a portable emission measurement system (PEMS) with a probe inserted into the
exhaust pipe of the equipment to record the quantities of CO, NOX, CO2, SO2, and CH4
emission in ppm. The PEMS device allows measuring the emissions of combustion engine
vehicles and equipment while they are being operated instead of those used only on sta-
tionary rollers on a dynamometer that simulates real-world driving [14]. Previous studies
have largely focused on predicting emissions from on-road vehicles, turbines, and diesel
engines, leveraging engine features and direct measurements [15–19]. However, this is the
first research study that enables ML-based emission estimation of construction equipment
using non-intrusive sensing of the equipment movement with no regard to the machine
engine, fuel consumption, and or speed.

The contribution of this study to the body of knowledge and practice is a demonstra-
tion of the fact that activity-based emission estimation can be made more practical, less
tedious, and automated. The proposed process does not rely on direct PEMS-based mea-
surements and can be performed while the equipment is engaged in actual work without
the need to sample from the equipment exhaust pipe. Therefore, the objective of this study
is to verify if the movement of articulated parts of given construction equipment captured
by inertial sensors can be reliable predictors to quantify equipment emission using ML
methods.

2. Literature Review

The literature on transportation emissions generated by combustion engines can be
divided into studies that focused on on-road and those that studied off-road vehicles.
Each category of research is characterized by unique features, processes, standards, and
limitations that deserve a full review to establish the state of the research. In addition, the
use of IoT methods with accelerometer and gyroscope sensors for indirect measurement
of different phenomena or physical properties have recently gained significant research
attention. Therefore, this section provides a comprehensive literature review in each of
these three domains: (a) prediction of the emissions from on-road vehicles; (b) prediction of
the emissions from construction (i.e., off-road) equipment; and (c) the use of accelerometer
and gyroscope data to train ML models for measuring quantities varied by movement or
physical activity.

2.1. On-Road Vehicles

The emission performance of on-road combustion engine vehicles is influenced by the
size and type of the engine, fuel type, and exhaust after-treatment system used [20]. Most
of the studies in this area concentrated on particulate emissions [21] including NOX emis-
sions [22–27]. Some studies used ML methods to predict the emissions, using dynamometer
tests and the parameters to develop these models. Si et al. developed a model to predict
NOX emissions using a neural network (NN) where the actual values were measured by a
Continuous Emissions Monitoring System (CEMS) [28]. PEMS, which is the device used in
the study presented in this paper, was designed to provide an alternative to the drawbacks
of the CEMS [29]. Built upon the findings of their first study, Si et al. incorporated gradient
boosting techniques in subsequent research to improve their results [30]. Other researchers
have shown that the combination of NN and heuristic algorithms would further enhance
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the results [14]. In another study, multiple factors such as road environment, atmospheric,
and after-treatment performance were considered when analyzing NOX concentrations
from Euro 6 diesel engines during real-world driving experiments [31]. Wen et al. consid-
ered data such as vehicle speed, vehicle acceleration, and flow rate as inputs to train an NN
nonlinear autoregressive exogenous model (NARX) [32]. Khurana et al. reviewed different
supervised learning algorithms to predict emissions from automobiles and concluded that
NN had accurate answers in addressing this kind of problem [33]. Fei et al. used a classifi-
cation model based on the CatBoost algorithm to categorize emission levels [34]. Le-Cornec
et al. clustered vehicles with similar emissions performance and modeled instantaneous
emissions [35]. In a more recent study, Yu et al. developed a deep learning algorithm to
predict the instantaneous NOx emissions from diesel engines [36].

Previous studies in this area have focused on on-road vehicles and have demonstrated
promising results. Nevertheless, measuring and predicting on-road vehicles emission pose
fewer challenges compared with off-road equipment. The more diverse set of activities and
operations of off-road vehicles require a variety of engine modes and thus fuel consumption
and emission levels. In addition, the uncertainty of such activities adds another level of
complexity and challenge to developing predictive models of any sort.

2.2. Off-Road Vehicles

Compared with emission estimation research for on-road vehicles, off-road vehicles
have received much less attention. The dearth of research is even more severe with respect
to the adoption of advanced technologies that can result in more simplified and accurate
emission prediction. A number of studies conducted by federal organizations such as the
Environmental Protection Agency (EPA), academic institutions, and private organizations,
used onboard instruments to measure construction equipment emissions [37–40]. While the
insights provided by these studies inspire new research, it has been reported that in none
of these cases were the collected data verified for quality and made available for public
use [41]. Heidari and Marr compared real-time emissions from construction equipment
with model predictions proposed by the EPA [13]. Their findings indicate that although
model predictions agreed with actual emissions in some cases, in others they were up to
100 percent higher. In addition, they obtained very different emission rates during various
operating conditions. Abolhasani et al. assessed the fuel use and emissions of excavators
during field duty cycles and concluded that in non-idle modes, mass per time emission
rates were seven times higher than in idle modes [42]. Data collected on the emissions of
backhoes, motor graders, and wheel loaders using B20 biodiesel and petroleum diesel were
compared by Frey et al. where a robust methodology for designing the study, collecting
field data, screening and ensuring the quality of the data, and analyzing the data was
developed. They showed that using B20 instead of petroleum diesel would lead to a
1.8% decline in NO emissions, as well as significant decreases in opacity, HC, and CO
emissions [43]. A study of selected motor graders fueled by petroleum diesel and B20
biodiesel characterized their field activity, fuel use, and emissions and concluded that using
B20 instead of petroleum diesel results in a negligible decrease in emissions [44]. Lewis et al.
developed recommendations for reducing the emissions from construction equipment and
recommended using field emissions data instead of engine dynamometer data to reduce
emissions [45]. In another study, the development and use of an emissions inventory system
for a fleet of backhoes, front-end loaders, and motor graders were discussed to support
the decision-making process regarding the replacement of older equipment with more
efficient ones [46]. Using engine dynamometer data from nonroad mobile sources such as
construction, farming, and industrial engines, Frey and Bammi developed probabilistic
emission factors for NOX and HC [47]. Frey et al. undertook a sensitivity analysis to predict
fuel consumption and emissions for construction equipment through engine attribute
data including horsepower, displacement, model year, engine tier, and engine load and
showed that in petroleum diesel engines, fuel use and pollutant emission rates increase
with gear ratio, horsepower, and torque and decrease with model year and engine tier [48].
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By analyzing field data, a quantitative model was developed by Barati and Shen (2016)
to more accurately estimate the various emission rates of construction equipment [49].
An operational level emission model has been developed based on ordinary least square
(OLS) and multivariate linear regression (MLR) analysis of field data. The results of that
study verified the high correlation between emission rates, operational parameters, and
engine data.

As stated earlier, there is a general scarcity of research in the area of off-road vehicle
emission estimation. Of the limited studies in this area, a small subset focused on con-
struction equipment. This is while the understanding of construction heavy machinery
emissions is critical to prevent GHG emissions as well as to support the decision-making
process in bidding and other project phases [50]. Standards such as those suggested by the
EPA and other academic research do not represent an adequate level of prediction accuracy
and they do not consider different operating states. In addition, none of the previous
studies in this area leveraged the potential of movement-based methods such as using
accelerometer and gyroscope sensors in conjunction with advanced ML methods.

2.3. Training ML Models with Inertial Data

There are generally two types of inertial measurement systems that are pervasively
used and commonly found in daily lives (such as in smartphones): a sensor that measures
acceleration called an accelerometer, and a sensor that measures the velocity of rotation
about a circular axis (i.e., angular velocity) called a gyroscope [51]. A magnetometer
could be added to the two sensors in which case they are collectively called an inertial
measurement unit (IMU). Researchers have used wearable devices equipped with one or
two of these sensors or a complete IMU to report instantaneous and sudden vibrations of the
human body since the 1990s [52–55]. Micro-Electro-Mechanical Systems (MEMS) inertial
sensors have proved extremely useful, accurate, and computationally efficient for activity
recognition with applications in health care, sports, and engineering [56–58]. For instance,
researchers analyzed soccer players’ movement patterns using wireless accelerometers to
gain insight into pattern recognition [59]. With the advancement of smartphones, mobile
accelerometer sensors were later used to identify human activity [60]. Motoi et al. proposed
taking measurements of the speed at which subjects walk and monitoring their posture
and movement [61]. Combined with a body-worn microphone, accelerometers were used
in a wood workshop to segment and recognize typical user gestures [62]. Similar research
has recently gained significant traction in engineering applications [63,64]. For example,
Johnson and Trivedi used accelerometers to detect, recognize, and record driving styles
for a driving safety application [65]. Using different types of sensors, researchers have
also explored simulation-based heavy equipment emission estimation [66]. The use of ML
models trained by accelerometer and gyroscope data has been explored in construction
research as well. Akhavian and Behzadan (2015) developed an ML-based methodology
to use smartphone sensors as ubiquitous, multi-modal data collection and transmission
nodes to detect detailed construction workers [67] and equipment [68] activities. More
recently, and with the advancement of deep learning, Salton et al. (2021) developed a
framework for recognizing heavy construction equipment activity via accelerometers based
on convolutional and recurrent neural network architectures [69].

As shown in this section, the concentration of previous studies using inertial sensors
has focused on activity recognition in humans and equipment. Previous studies have
often developed a classification model to differentiate between several defined activities.
Frameworks that use ML models trained with inertial sensors have never been adopted
before to seamlessly predict emissions from heavy equipment. Currently, there is no
simple and integrated framework of data collection, analysis, and communication capable
of unobtrusively detecting heavy equipment emissions involved in real-world activities.
Thus, a new approach that does not rely on sophisticated installation and maintenance can
streamline the quantification of emissions. A suitable framework for this purpose should
be simple and cost-effective for implementation. This study introduces a framework that
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predicts the amount of emissions produced by construction equipment during each activity
using two inertial sensors and a computer. Since these sensors are commonly available in
smartphones, the proposed methodology also has the potential to be ubiquitous where a
smartphone can replace both the data collection (i.e., sensors) and analysis (i.e., computer)
nodes. Nevertheless, using smartphones for this purpose is beyond the scope of this study,
wherein it is only the performance of ML models to predict emissions using inertial data
that is evaluated.

3. Methodology

In this section, first the data collection method is outlined and then a description of
the feature extraction process is provided. Next, the learning algorithms employed as well
as metrics to evaluate their performance are discussed. Figure 1 provides an overview of
the developed methodology, indicating the input and output of the ML models for training
and implementation.
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(2) illustrates the implementation.

As shown in Figure 1, the accelerometer and gyroscope inertial sensors capture the
motions of the excavator’s body and arm and transmit them to the computer in real-time.
Data obtained by sensors is divided into segments for feature extraction. The extracted
features were used as the input of ML models while data collected using the PEMS device
served as the output for training. ML models trained with this data will then be ready to
predict the amount of emissions given inertial data fed into them. The data used at this
stage (i.e., the test dataset) has not been seen by the ML model in the training stage to
enable assessing the generalizability power in their prediction.

3.1. Data Collection

To generate high-fidelity outputs, the data collection process was performed in an
uncontrolled environment where the construction equipment was involved in routine daily
activities without any interruptions from the researchers. Data were collected from a Cater-
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pillar 305D CR excavator which was working to expand a trench around an underground
pipeline as shown in Figure 2. Two Noraxon MyoMotion integrated accelerometer and
gyroscope sensors [70] were used to collect the equipment body acceleration (i.e., vibration)
data. One sensor (Sensor 1) was attached inside the excavator cabin and another one was
affixed to its stick (Sensor 2), near the bucket. In addition, data describing engine emissions
generated by the equipment were logged by an E-Instruments E9000 Plus Gas Analyzer
PEMS [71]. Table 1 shows the sensors’ specifications [70].
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Table 1. Specifications of the accelerometer and gyroscope sensors used in the experiment.

Channel Up to 16 Sensors

Static accuracy ±0.4°

Dynamic accuracy ±1.2°

Sampling frequency 100 Hz

Data output Joint angles, acceleration, rotation quaternions

Maximum output rate 400 Hz

Orientation angel frequency 0.25 degree (pitch/roll); 1.25 degrees (heading)

Anatomical angel frequency +/− 1.0 degree (static); +/− 2.0 degrees (dynamic)

Angular velocity (Gyroscope) +/− 7000 degrees/sec; Internal Sampling Rate 1600 Hz

Acceleration (Accelerometer) +/− 200 g; Internal Sampling Rate 1600 Hz

Motion sensor dimensions 1.75′′ L × 1.3′′ W × 0.48′′ H (4.45 cm L × 3.3 cm W × 1.22 cm H)

Weight Less than 0.67 oz (19 g)

The accelerometer data were logged using the sensors’ Noraxon myoRESEARCH
software and stored in a laptop secured inside the equipment cabin during data collection
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to maintain wireless connectivity. A camera was also attached inside the cabin to record the
entire data collection session. The laptop was plugged into a porTable 200-Watt Caterpillar
power station to ensure it was powered on throughout data collection. The sampling
frequency was set at 100 Hz. This frequency ensured that no noteworthy movement was
neglected and at the same time, the volume of recorded data was not restrictively expansive.
Data were stored in comma-separated value (CSV) format for further pre-processing. As
shown in Table 2, the PEMS recorded NO, NO2, CO2, CO, O2, SO2, CH4, and H2S as well
as pressure and temperature [71]. PEMS uses electrochemical sensors for most gasses.
Electrochemical sensors detect interactions between the sensing surface and the analytes
and convert them into quantitative and qualitative evidence by using electrodes [72]. The
other sensor is nondispersive infrared (NDIR) and carbon dioxide is typically measured
with this type of sensor. In these sensors, light waves are emitted from an infrared (IR)
lamp through a tube filled with air toward an optical filter in front of an IR light detector.
Then, infrared detectors measure the light that is not absorbed by CO2 molecules or the
optical filter. Gas emission units are measured in parts per million (ppm) and are based on
the volume fraction (m3/m3) [73]. In Table 2, Tair and Tgas are the temperatures of the air
and gas respectively. During the operation, the ambient temperature was 16 to 18 ◦C, the
pressure was 1017 to 1020 mbar, the humidity was 63% to 90%, and the maximum wind
speed was 17 km/h. This study focuses on NO, NO2, CO2, and CO emissions as major
diesel engine pollutants [13]. Furthermore, the sum of NO and NO2 measured emissions
will be used as NOx to enable comparison between the results of this study and previous
work that measured this pollutant.

Table 2. PEMS specifications.

Parameter Sensor Range Resolution Accuracy

NO Electrochemical 0–5000 ppm 1 ppm ±5 ppm < 100 ppm
±5% rdg for >100 ppm

NO2 Electrochemical 0–1000 ppm 1 ppm ±5 ppm < 100 ppm
±5% rdg for >100 ppm

CO2 NDIR 0–50.0% 0.1% ±3% rdg < 8%
±5% rdg < 50%

O2 Electrochemical 0–25% 0.1% ±0.2% vol

SO2 Electrochemical 0–5000 ppm 1 ppm ±5 ppm < 100 ppm
±5% rdg for >100 ppm

CH4 NDIR 0–50,000 ppm 1 ppm ±50 ppm < 2500 ppm
±2% >2500 ppm

H2S Electrochemical 0–500.0 ppm 0.1 ppm ±5 ppm <125 ppm
±4% rdg for <500 ppm

Tair Pt100 −4 to 248 ◦F
−20 to 120 ◦C

0.1 ◦F
0.1 ◦C

±1 ◦F
±1 ◦C

Tgas Tc K −4 to 2280 ◦F
−20 to 1250 ◦C

0.1 ◦F
0.1 ◦C

±2 ◦F
±2 ◦C

3.2. Feature Extraction

In supervised ML algorithms, training the models with raw data as opposed to
descriptive features may increase the computational cost (particularly in the case of high-
dimensional, high-volume data). Also in some cases, it may lead to an accuracy drop due to
overfitting [74]. Therefore, extracting certain features serves as an important pre-processing
step before model training. These features often include statistically derived values such
as mean, variance, peak, interquartile range (IQR), correlation, and root mean square
(RMS). Training ML models with accelerometer and gyroscope data has been subject to
a great deal of previous research as stated in the literature review section. According to
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a comprehensive survey study of research papers focusing on online activity recognition
using mobile phone sensors (e.g., accelerometers and gyroscopes), features such as mean,
maximum, minimum, correlation between axes, and IQR are among the most frequently
used for activity recognition [75]. However, those studies target human activity recognition
and not machines or heavy equipment. A recent, similar study conducted by a previous
author examining activity recognition of construction equipment leveraged ReliefF and
correlation-based feature selection (CFS) to select distinguishing features among several
features extracted from accelerometer and gyroscope data [68]. Given the similar nature of
the presented work and the aforementioned previous research, the same subset of features
was extracted. These features include (1) the mean value of gyroscope sensor data in z
direction, (2) the mean value of gyroscope sensor data in x direction, (3) the mean value
of accelerometer sensor data in x direction, (4) mean value of accelerometer sensor data
in y direction, (5) mean value of accelerometer sensor data in z direction, (6) the IQR of
accelerometer sensor data in the z direction, and (7) the maximum of accelerometer sensor
data in x direction. These seven features were extracted from each data segment created by
breaking down the dataset into windows of equal size. Typically, a 50% overlap between
the segments is considered to ensure continuity in capturing all patterns in the data based
on previous studies [58]. A window size of 0.25 s (25 data points per segment) at a sampling
frequency of 100 Hz was used based on the research conducted by Akhavian and Behzadan
(2015) where the researchers concluded that this is the optimal size for the segments in
the accelerometer and the gyroscope data for construction equipment activity recognition.
Cycles of activities such as traveling, scooping, dropping, and rotating can be adequately
captured with this window size [68].

3.3. Learning Algorithms and Performance Metrics

This study aims to develop different types of ML models and evaluate their perfor-
mance in predicting the level of emissions of certain pollutants produced by construction
equipment. Data extracted from accelerometers and gyroscopes are used as inputs to the
model and the outputs are the amount of each pollutant’s emission. The outcome of this
supervised learning approach is a model that can best describe the relationship between
inertial sensor data and the level of emission of the given construction equipment. In a
supervised learning method, inputs and associated outputs (i.e., ground truth) are provided
to the model during the training phase. Learning algorithms use training data to produce
inferred functions, which are then used to map new examples using a test dataset that has
not been seen by the model during training [76]. In this research, the training portions
constituted 70% of the dataset selected randomly, and the rest was kept out for testing.

In order to identify the best model, classic ML algorithms have been used to see if
they are capable of predicting emission levels directly from accelerometer and gyroscope
sensor data. Four different learning algorithms were applied to develop the models for this
study using MATLAB 2020a: Neural Network (NN), Regression Trees (RT), Random Forest
(RF), and Linear Regression (LR). In the case of LR, a MATLAB built-in fit linear regression
function is employed. However, for other algorithms, the researchers developed the code
in MATLAB from scratch. Each algorithm is described briefly in the following subsections.

3.3.1. Linear Regression (LR)

LR is the simplest among the algorithms tested in this research. Nevertheless, its
simplicity sometimes results in acceptable results calculated in a fast computation process.
Regression analysis is a technique for estimating relationships between dependent and
independent variables. In LR, the model assumes that input variables (x) and output
variables (y) are linearly related. Precisely, the LR model calculates y from a linear com-
bination of the input variables x’s [77]. The literature from statistics often refers to LR as
multiple linear regression when there are multiple input variables such as the case in this
research. This method of modeling corresponds explanatory variables to a scalar response
with a linear approach. LR, similar to all regression analysis methods, targets conditional
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probability distributions of response, rather than their joint probability distributions as
is in the case with multivariate analysis (i.e., where there is more than one dependent
variable). Due to the nature of the data and the complexity of relationships between the
variables in this study, it is not expected that the LR model leads to an acceptable result.
However, LR models have been developed in this research for all three pollutants to verify
this hypothesis.

3.3.2. Neural Network (NN)

NN is commonly used to solve a wide variety of scientific and engineering problems.
A two-layer NN includes only one input layer, one hidden layer, and one output layer.
A standard multilayer perceptron NN comprises an input layer, a hidden layer, and an
output layer, and each layer consists of nodes. The number of layers and nodes (i.e., NN
architecture) are important factors in determining the performance of the model. In this
research, Gradient Descent was used as the optimization algorithm. Gradient Descent
is one of the most commonly used optimization algorithms for NN models and is used
heavily in both linear regression and classification problems. Gradient Descent depends
on the first-order derivative of the loss function. The function calculates how the weights
should be altered to reach the minimum loss. By backpropagation, the loss is passed from
one layer to another in the model and its parameters, or weights, are modified based on the
loss for the best result. At the start of the network, the weights are set to arbitrary small
values which is equivalent to choosing a random point on the error surface. By calculating
the local gradient of the error surface, backpropagation changes the weights to point in
the direction of the steepest local gradient. Assuming a reasonably smooth error surface,
weights should eventually converge to the global minimum [78]. The proposed model
in this research uses the learning rate of 0.01 which is a hyperparameter that affects the
speed of learning by changing the model to a degree each time its weights are updated. In
addition, the Sigmoid function was used as an activation function to set all values in the
input data to a value between 0 and 1.

3.3.3. Regression Trees (RT)

RT is an ML method commonly used to predict continuous values in regression
problems. RTs are based on tree structures, which build regression models. RT builds a
tree from numeric data. RTs are a variant of decision trees in which each leaf represents
a numeric value. The predictor compares the input at each node and selects the most
relevant node. The RT structure consists of two or more nodes with a number of branches
at each node. An internal node has outgoing edges and leaves are other nodes. There is
an internal node that divides the regression instance into two or more groups based on a
specific function. A particular function in the training stage is considered in the values of
the input variables [79]. RTs are generated by algorithms that generate decision trees based
on instances. In the performed algorithm, the fitness function is minimized to determine
the optimal RT. RT is developed incrementally as a dataset is broken down into ever-
smaller subsets. As a result, a tree is created with decision nodes and leaf nodes. For each
independent variable, the dataset is split at several split points. The performed algorithm
calculates the difference between the expected value and the actual value regarding the
pre-defined fitness function at every split point. Taking the variable with the lowest fitness
function value as the split point, the split point errors are compared across the variables.
Although an RT creates an accurate tree for input data, it is vulnerable to overfitting [80]. RT
has different variables that affect the results. Different values have been assigned to these
variables in this research to enable finding the best answer. Finding the best answer among
all the tested models with different values for these variables is discussed in Section 4.

3.3.4. Random Forest (RF)

RF is a combination of several decision trees. For regression problems, the mean or
average prediction of the individual trees is calculated as the answer. As such, RF usually
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outperforms the decision tree. RF begins by creating a bootstrap dataset, which consists of
randomly selected samples from the original dataset in which repeated data are allowed.
Then, it uses a random subset of variables and attributes to make a decision tree based on
the bootstrap dataset. In other words, the kinds and number of nodes and the roots are
chosen by chance. This process is repeated and new bootstrapped datasets and a large
number of trees are built considering a subset of variables at each step. Random selection
produces a wide variety of trees that makes RF more effective than RT. The value that has
been repeated the most will be selected as the output after running the data through all of
the trees in an RF. The data that are not selected in the bootstrap dataset are known together
as the out-of-bag dataset, which can be used to test the model. As a result, overfitting can
be prevented. Although RF increases bias in a single tree, it generally reduces the variance.
This results in a higher accuracy because a more complex or flexible model will typically
have a higher variance and bias due to overfitting. The model, however, predicts the target
variable more accurately when averaged over several predictions. While an underfit or
oversimplified model has a lower variance, it will likely be more biased since it lacks the
tools to capture trends in the data [81]. Thus, the number of trees is an important variable
in RF. RF is used in this study with a different number of trees for each gas to obtain the
best answer. The other parameters are set according to the results for RT.

3.3.5. Performance Metrics

ML models can be used for classification or regression problems. In classification, the
goal is to separate the data into multiple categorical groups through the discovery of a
model or function. In regression, a function or model is developed to assist in separating
the data into continuous real values, rather than using discrete classes or values [82]. Due
to the continuous space of the problem in this research, regression models are used to
predict the amount of each pollutant released. The accuracy of the models is determined by
performance metrics that show how well a model can predict the results. For regression
models, there are four most commonly used performance metrics: coefficient of determi-
nation (R2), root-mean-square error (RMSE), mean absolute error (MAE), and normalized
root-mean-square error (NRMSE) as shown in Equations (1)–(4).

R2 = 1− ∑ (y− ŷ)2

∑ (y− y)2 (1)

RMSE =

√
1
n ∑(y− y)2 (2)

MAE =
1
n ∑|y− ŷ| (3)

NRMSE =
RMSE

ymax − ymin
∗ 100 (4)

In these equations, y is the actual value or ground truth, ŷ is the predicted value, y is
the mean, n is the number of examples used to determine the accuracy, and ymin and ymax
are the minimum and maximum actual values in the set.

4. Results

Each learning algorithm includes several variables such as hyperparameters and
model architecture, the choices of which have a great effect on the performance of the
model. Therefore, in this section, the results of adjusting various variables are described
and the performance of the models are compared for each algorithm to determine the best
algorithm and architecture.
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4.1. LR

As indicated before, LR is not expected to produce acceptable results and is tested
to ensure a simple algorithm is not overlooked. To explain this poor performance, it is
worth noting that all other learning methods that are tested in this study use nonlinear
functions that better suit the nature of the data and relationships between the independent
and dependent variables used in this research. Table 3 shows the subpar performance of
LR according to all four performance measures.

Table 3. The performance metrics were analyzed by linear regression.

Emitted Gas R2 RMSE MAE NRMSE

CO 0.06 45.12 32.12 16.40

NO 0.19 84.42 71.39 20.84

NO2 0.33 4.92 3.65 9.85

NOX 0.18 85.35 72.26 19.44

CO2 0.22 113.98 92.25 18.65

4.2. NN

The results of the different NN architectures are shown in Table 4. In this table, the
number of nodes in each hidden layer for each model are shown in the layer architecture
column in square brackets (the number of nodes in the input layer is equal to the number
of features used and the output layer has only one node). On average, the R2 value for the
NN models to estimate the CO gas produced by the excavator is 0.805. In other words, the
NN model indicates that 80.5% of the variation in the CO emission for this equipment can
be explained by the data captured by the accelerometer and gyroscope sensors attached to
the equipment. Table 1 also shows the other performance metrics identified in the previous
section. Results indicate that more layers and more nodes did not improve the performance
of the model by a significant margin. Therefore, model architecture with three hidden
layers of 100, 90, and 80 nodes, which resulted in a slightly better performance than the
others, was selected as the NN model to compare with the other learning algorithms.

Table 4. Performance metrics related to NN analysis for CO emission.

Layer Architecture R2 RMSE MAE NRMSE

[40 30] 0.81 20.72 12.41 7.55

[40 30 20] 0.80 20.77 12.43 7.56

[100 90 80] 0.82 19.85 11.79 7.22

[200 190 180] 0.79 20.88 12.36 7.59

The two other emission types investigated in this study are NOx and CO2. A similar
process was adopted to examine the effect of model architecture on the prediction output.
Results are presented in Tables 5 and 6. As an example, for CO2 a visualized representation
of the models is also provided in Figure 3.

As shown in Table 6 for the NOx, there is not much difference in the results of the
models with 200 and 100 nodes in the first hidden layer and the metric factors converge
after 100 neurons (the R2 of 0.65 is considered for further comparison). For the CO2 the best
architecture is the same as the CO and the R2 is 0.78. The performance of the best model for
all the pollutants is presented in Table 7 where the results of the NO and NO2 are included
for comparison.
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Table 5. Performance metrics related to NN analysis for NOx emission.

Layer Architecture R2 RMSE MAE NRMSE

[40 30] 0.62 58.97 43.17 13.73

[40 30 20] 0.64 56.48 39.80 12.86

[100 90 80] 0.65 55.92 39.47 12.74

[200 190 180] 0.65 55.82 38.67 12.71

Table 6. Performance metrics related to NN analysis for CO2 emission.

Layer Architecture R2 RMSE MAE NRMSE

[40 30] 0.71 69.94 45.78 11.45

[40 30 20] 0.71 69.94 45.78 11.45

[100 90 80] 0.78 60.51 37.32 9.90

[200 190 180] 0.77 60.61 36.46 9.92
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Table 7. The best performance factors for all gasses.

Emitted Gas R2 RMSE MAE NRMSE

CO 0.82 19.85 11.79 7.22

NO 0.66 54.71 38.02 13.51

NO2 0.78 2.85 1.65 5.70

NOx 0.65 55.82 38.67 12.71

CO2 0.78 60.51 37.32 9.90

4.3. RT

In the RT, there are variables such as the maximum number of decision splits, the
minimum number of leaf node observations (minLeafSize), and the minimum number
of branch node observations (minParentSize) that control the depth of the tree and thus
affect its performance. The maximum number of decision splits determines the maximum
number of the nodes in each branch and the optimum result is obtained when this variable
is equal to the number of training data minus one. The two variables that determine the
accuracy of the model are minLeafSize and minParentSize.

Figure 4 shows the regression lines developed by adjusting these variables in the
RT model. In Figure 4a minLeafSize (the minimum number of leaf node observations) is
equal to 1 and minParentSize (the minimum number of branch node observations) is 5.
With a fixed minParentSize, the increase in minLeafSize results in a lower R2 and a higher
value of different errors (i.e., RMSE, MAE, and NRMSE) after minLeafSize is equal to
two. Therefore, the optimum number for minLeafSize is two. No significant growth in
accuracy was observed as the minParentSize was gradually increased to 10. Consequently,
the optimum state for the decision tree is represented in Figure 4d with performance factors:
R2 = 0.85, RMSE = 17.69, MAE = 6.78, NRMSE = 6.43. Also, the performance metrics for
NOx and CO2 are presented in Tables 8 and 9. Table 10 shows the best results obtained
using RT by changing its configuration. The optimum setting for NO and NO2 is assumed
to be the same as NOX.

Table 8. Performance metrics related to Decision Tree analysis for NOx emission.

[MinLeafSize MinParentSize] R2 RMSE MAE NRMSE

[1 5] 0.77 44.46 19.63 10.12

[1 10] 0.78 43.98 20.42 10.02

[2 5] 0.76 45.82 20.92 10.43

[2 10] 0.77 45.08 21.16 10.26

[3 5] 0.76 45.22 21.30 10.30

[3 10] 0.77 44.87 21.47 10.22

Table 9. Performance metrics related to Decision Tree analysis for CO2 emission.

[MinLeafSize MinParentSize] R2 RMSE MAE NRMSE

[1 5] 0.86 47.52 18.00 7.77

[1 10] 0.86 47.28 18.53 7.73

[2 5] 0.87 46.97 18.17 7.67

[2 10] 0.86 47.45 19.05 7.76

[3 5] 0.86 48.02 19.46 7.86

[3 10 0.86 47.79 19.77 7.82
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Table 10. Performance metrics related to RT.

Gas [MinLeafSize MinParentSize] R2 RMSE MAE NRMSE

CO [2 10] 0.85 117.69 6.78 6.43

NO [1 10] 0.79 42.39 19.66 10.47

NO2 [1 10] 0.87 2.15 0.74 4.31

NOx [1 10] 0.78 43.98 20.42 10.02

CO2 [2 5] 0.87 46.97 18.17 7.67Sustainability 2022, 14, x FOR PEER REVIEW 14 of 23 
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Figure 4. The CO regression lines analyzed by decision tree algorithm. (a) MinLeafSize=1, Min-
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(d) MinLeafSize = 2, MinParentSize = 10. (e) MinLeafSize = 5, MinParentSize = 5. (f) MinLeafSize = 3,
MinParentSize = 10.
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4.4. RF

The most important feature in RF is the minimum samples at each leaf (minLeafSize)
and the number of trees. In this study, minLeafSize was set according to the best answer in
the decision tree for each pollutant. The accuracy is expected to increase as the number of
trees goes up. Figure 5 plots R2 against the number of trees for the RF model to identify the
convergence point from which this performance metric remains constant as the number of
trees goes up.
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Results of this analysis indicate that the performance factors converge after about
90 trees are employed. Although the optimum solution may result in different numbers of
trees for each gas, a separately performed sensitive analysis reveals slight differences (less
than 0.01%) in results after 90 trees. The 0.01% is considered an insignificant difference for
the purpose of this research. Therefore, in order to stay consistent for all five emission types
and provide a threshold that is both acceptable and computationally inexpensive, 100 trees
is determined as the cutoff point. All performance metrics for the optimum number of trees
are presented in Table 11.

Table 11. Performance metrics related to RF.

Gas Number of Trees R2 RMSE MAE NRMSE

CO 100 0.94 11.70 5.48 4.25

NO 100 0.91 28.35 16.77 7.00

NO2 100 0.95 1.30 0.64 2.60

NOx 100 0.91 28.19 16.74 6.42

CO2 100 0.94 31.63 15.98 5.17
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5. Discussion

In this section, first the performance of the four algorithms developed in this study are
compared using the metrics used as the benchmark. Following this comparison, the results
of previous studies in the field of emission prediction are evaluated to contextualize the
findings of this study within the literature.

5.1. Model Performance and Pollutants Predictability

Table 12 shows R2 for training and testing datasets. As shown, the accuracy for trained
and test data is close. While it is expected to see higher training performance in all cases, the
results of the RT model do not show this behavior which is due to overfitting, as discussed
previously. In general, training performance is not a reliable evaluation metric and testing
performance should be taken into consideration when deciding about deploying a model.

Table 12. R2 for test and train data.

Gas R2—Test Performance R2—Train Performance

LR

CO 0.06 0.08
NO 0.19 0.25
NO2 0.33 0.33
NOX 0.18 0.21
CO2 0.22 0.22

NN

CO 0.82 0.81
NO 0.66 0.71
NO2 0.78 0.78
NOx 0.65 0.68
CO2 0.78 0.78

RT

CO 0.85 0.99
NO 0.79 0.98
NO2 0.87 0.99
NOx 0.78 0.99
CO2 0.87 0.99

RF

CO 0.94 0.94
NO 0.91 0.94
NO2 0.95 0.95
NOx 0.91 0.94
CO2 0.94 0.94

An analysis of the calculated R2 metrics indicates that RF outperformed the three other
algorithms used in this research in predicting the emission levels for all three pollutants,
which were 0.94, 0.91, and 0.94 for CO, NOx, CO2, respectively. Therefore, it can be
concluded that with an appropriate number of trees, RF can be a superb model when the
equipment emission levels are explained by inertial sensor data. NN ranks third and shows
a lower performance compared with RF and RT. Table 13 shows the R2 values for the best
models in each case.

Table 13. Best coefficient of determination calculated by different algorithms.

R2 NN RT RF LR

CO 0.82 0.85 0.94 0.06

NOX 0.65 0.77 0.91 0.18

CO2 0.78 0.87 0.94 0.22

According to Table 11, the RF model performed similarly in the case of CO and CO2
and resulted in a very high R2 value. A close examination of NOX prediction (which
followed these two pollutants very closely) indicates that the R2 metric for NO2 was, in fact,
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equal to that of CO and CO2 whereas this value for NO was significantly lower in the case
of all four algorithms (see Tables 3, 7, 10 and 11). Plotting the collected raw emission data
against time (Figure 6) reveals that NO exhibits a different pattern in terms of the number
and range of fluctuations per time unit compared with other pollutants. While this different
pattern does not explain the lower performance, it does indicate the difference that exists
in the nature of the collected data that may call for different learning methodologies.
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5.2. Evaluation of the Results in the Context of Previous Studies

Several studies have aimed at forecasting the emission of combustion engines in
transportation vehicles. As stated earlier, most of the previous studies in this area of research
targeted on-road vehicles. The present paper describes the first study with the objective
of predicting emissions of the construction equipment only through the evaluation of
vehicle movement and without collecting data related to factors such as engine parameters,
weather conditions, speed of the equipment, or fuel consumption. Therefore, the purpose
of outlining the results of similar work in the literature in this section is not a point-to-point
comparison between the methodologies or numerical values of the results between this
research and those studies. Rather, it is to contextualize the outcome of this research against
similar work and compare the results of predicting emissions for heavy equipment versus
on-road vehicles. The coefficient of determination or R2 is used as a comparison metric
since it is a common metric in most of the previous similar studies.

Xu et al. (2020) developed a gradient boosting (i.e., XGBoost) model to predict CO2
and PM2.5 where they examined a variety of variables on trip-level emissions including
meteorology, trip characteristics (such as time of day), driving characteristics (such as idling
frequency), and driver characteristics (such as experience in driving). They obtained an R2

value of 0.84 [83]. A complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) and long short-term memory (LSTM) neural network has been proposed for
estimating transient NOX emissions by Yu et al. (2021). They used engine attribute variables
such as vehicle speed, engine speed, torque percentage, instantaneous fuel consumption,
and accelerator pedal opening as the input of the CEEMDAN-LSTM model where they ob-
tained an R2 of 0.98 [36]. Barati and Shen (2016) developed a multivariate linear regression
(MLR) where engine attributes, operational parameters, environmental factors, and fuel
type were the factors used as the input of the model for on-road construction equipment
emissions. The R2 values for the MLR method were 0.96, 0.89, 0.93 and 0.90 for CO2, CO,
NOx, HC, respectively [49]. Table 14 summarizes these results along with the final R2

values obtained in this study for comparison.

Table 14. Comparison between different algorithms.

R2 Random Forest (This Study) MLR [49] CEEMDAN-LSTM [36] CEEMDAN-XGBoost [36] XGBoost [83]

CO 0.94 0.89 - - -

NOX 0.91 0.93 0.98 0.96 -

CO2 0.94 0.96 - - 0.84

As shown in Table 14, previous work demonstrated that a combination of CEEMDAN
and deep recurrent networks (i.e., CEEMDAN-LSTM) would result in a slightly higher
accuracy compared with when CEEMDAN and XGBoost are used together for NOX predic-
tion. However, both these methods applied to on-road vehicles outperform the RF model
developed in this study, which was applied to off-road equipment. Also, MLR performance
is higher than RF for CO2 detection and lower than RF for CO detection considering the
fact that MLR was also applied to on-road vehicles versus the RF in this study which was
applied to off-road equipment.

6. Conclusions

The objective of this study was to examine the performance of an IoT-ML integrated
framework that includes collecting and transmitting multi-modal data to predict construc-
tion equipment emissions. In particular, this study examined the relationship between the
movement of construction equipment chassis and their emission rates. As such, it laid
the foundation for managing the level of equipment emissions in a simple yet effective
way. A case study of an excavator involved in a real-world operation is outlined where the
amount of equipment emissions was predicted using accelerometer and gyroscope sensors
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installed in its cabin and on its arm. No information with regards to the engine attributes
such as load and size, environmental factors such as temperature, air pressure, slope, fuel
type, and payload was collected. Four supervised learning algorithms were employed to
predict emissions from the construction equipment. Results show that random forest by
the coefficient of determination (R2) equal to 0.94, 0.91, and 0.94 for CO, NOX, and CO2,
respectively, outperformed the other algorithms tested in this research.

As a first attempt to estimate heavy equipment emissions using inertial sensors, this
study can inspire future research in this area. Nevertheless, there are a few limitations that
can be addressed in future research. First, while this methodology is applicable to any
kind of equipment, this specific work focused on one type of equipment (i.e., Caterpillar
305D CR excavator), and the trained model was used to predict emissions for the same
machine. Thus, future research can expand the scope of this work by including more
equipment types and subject-independent training and testing. This can be best achieved
by collecting large amounts of data, something which requires access to a variety of projects
and companies that, at the time of conducting data collection for this research, was not a
possibility. Second, this research deploys traditional shallow learning algorithms, whereas
recent advancements in the area of deep learning show that such a method could prove
valuable to enhance the results of similar studies. Computational models with multiple
layers of processing can learn abstractions of data through deep learning. In future studies,
deep learning algorithms such as LSTM or convolutional neural network (CNN) can replace
traditional methods. Third, even in the realm of traditional ML methods, the performance
of other supervised algorithms such as Naive Bayes, Perceptron, relevance vector machine
(RVM), and support vector machine (SVM) can be assessed. Fourth, a more comprehensive
research project can focus on several pollutants including but not limited to the ones
explored in this study.
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