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Abstract: As influenza viruses mutate rapidly, a prediction model for potential outbreaks of influenza-
like illnesses helps detect the spread of the illnesses in real time. In order to create a better prediction
model, in this study, in addition to using the traditional hydrological and atmospheric data, features,
such as popular search keywords on Google Trends, public holiday information, population density,
air quality indices, and the numbers of COVID-19 confirmed cases, were also used to train the model
in this research. Furthermore, Random Forest and XGBoost were combined and used in the proposed
prediction model to increase the prediction accuracy. The training data used in this research were
the historical data taken from 2016 to 2021. In our experiments, different combinations of features
were tested. The results show that features, such as popular search keywords on Google Trends,
the numbers of COVID-19 confirmed cases, and air quality indices can improve the outcome of the
prediction model. The evaluation results showed that the error rate between the predicted results
and the actual number of influenza-like cases form Week 15 to Week 18 fell to less than 5%. The
outbreak of COVID-19 in Taiwan began in Week 19 and resulted in a sharp rise in the number of
clinic or hospital visits by patients of influenza-like illnesses. After that, from Week 21 to Week 26,
the error rate between the predicted and actual numbers of influenza-like cases in the later period
dropped down to 13%. It can be confirmed from the actual experimental results in this research that
the use of the ensemble learning prediction model proposed in this research can accurately predict
the trend of influenza-like cases.

Keywords: forecasting of influenza-like illnesses; public opinion analysis; COVID-19; monitoring
and early warning

1. Introduction

The COVID-19 pandemic broke out at the end of 2019. It has spread all over the
world at lightning speed. Large-scale pandemics, such as SARS, H1N1, Influenza A, and
MERS, etc. have drawn much global attention to the damage that pandemics can bring
to the world [1,2]. Due to the convenience in public transport, viruses these days can
be easily spread to every corner of the world these days [3,4]. An influenza-like illness
means any illness caused by a virus with symptoms similar to those that are caused by
influenza viruses (“flu”), including symptoms such as fever, respiratory symptoms, muscle
pain, and fatigue, etc. If they are not diagnosed as influenza, they are called influenza-like
illnesses. In this research, an “influenza-like illness” is defined as a sudden onset of illness
with a fever over of 38° or more, accompanied by respiratory symptoms, muscular soreness,
headache, or extreme fatigue, excluding mild rhinitis, tonsillitis, and bronchitis [5]. The
results of many studies have shown the correlation between survival rates and outbreak
periods of most viruses and seasonal climate changes. Prel et al. [6] explored the effects
of different climates on acute respiratory tract infections (ARI) and found that different
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viruses had different survival rates and tolerance of different temperatures, humidity, and
other climatic conditions and seasons. Chan et al. [7] observed Hong Kong from 1997 for
10 years and found that there were two seasonal flu peaks every year and that although
there were many seasonal factors of influenza, changes in weather were likely to play a
key role. Taking Taiwan as an example [8], influenza outbreaks in Taiwan mainly occur in
autumn and winter. The number of influenza cases gradually increases from November
and peaks between December and March. Influenza may cause acute respiratory infections
in patients. Common symptoms include fever, runny nose, and muscle pain, etc.

In addition to meteorological factors that may affect the timing of virus outbreaks,
keyword searches from social network platforms have also been used in many studies to
monitor epidemic virus outbreaks [9–14], including the number of times a keyword appears
in posts and discussions on social media or search platforms, such as Facebook, Twitter,
and Wikipedia. Therefore, Internet search volumes may immediately reflect how a virus is
affecting people. For example, the popularity of keyword discussions can be calculated on
Google Trends in real time. The data obtained from Google Trends are a better factor than
that from other social media to effectively predict outbreaks of illnesses [15]. Furthermore,
Google Trends has long been used by the Taiwan Centers for Disease Control (CDC) for
tracking and predicting the spread of influenza [16].

According to Ginsberg et al. [16], after analyzing a large number of Google search
queries, the frequency of people searching for related keywords was very close to the
number of clinic or hospital visits by patients with influenza-like symptoms, and as a result,
it was possible to accurately estimate the weekly numbers of influenza-like cases in various
regions of the United States by putting forward 45 search keywords that were most relevant
to influenza outbreaks. Kang et al. [17] studied the time correlation between influenza
keywords used in Google Trends and the routine monitoring data in the Guangdong
province in China to verify whether increases or decreases in Internet search volumes
might match the actual number of influenza cases in the province.

An ensemble learning approach was proposed in this research using multiple fea-
tures, such as the hydrometeorological data, the emergency infectious disease monitoring
statistics—influenza-like illnesses, Google Trends keyword search volumes, the Taiwan
public holiday information, the population data, air pollution indices, and the number of
COVID-19 confirmed cases as features. Random Forest (RF), eXtreme Gradient Boosting
(XGBoost), Support Vector Regression (SVR), and ensemble learning were used to predict
the number of influenza-like cases in Taiwan. Root Mean Squared Log Error (RMSLE)
was used in this research for model error evaluation. RMSLE is widely used to evaluate
regression models and is an evaluation indicator used in many data sciences. It is similar
to Root Mean Square Error (RMSE), but logarithms are used in RMSLE for calculation.
The advantage of using RMSLE as an indicator is that it is robust against outliers [18].
In our experiments, different models were used for comparison and evaluation, and an en-
semble learning model was used to predict the number of influenza-like illnesses in Taiwan.
The results of our experiments are useful and can be applied widely in practice, as they
can provide an early warning of an influenza outbreak. Therefore, the proposed ensemble
learning approach can be used to predict sudden large-scale outbreaks of influenza-like
illnesses. Furthermore, the proposed model can be used to prevent possible threats from
these illnesses in a timely manner, to allocate medical resources reasonably to reduce
morbidity and mortality, and to reduce the risk of transmissions of these illnesses.

Section 1 of this research is the introduction. Related works contributed by scholars in
similar fields in the past are discussed in Section 2. The methodology used in this research
is described in Section 3. The empirical results of this research are discussed in Section 4.
Section 5 contains the conclusion and future work of this research.
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2. Related Works

In this section, the past related works containing discussions and reviews on factors
affecting influenza-like illnesses prediction models for outbreaks of influenza-like illnesses
in machine learning will be reviewed.

2.1. The Definition of Influenza-Like Illnesses

Influenza is an acute viral respiratory illness, often accompanied by fever, cough,
headaches, muscle pain, and other symptoms. It is mainly transmitted from person to
person by droplets produced while coughing or sneezing or by touching a contaminated
object or surface. It is impossible to accurately diagnose whether patients with influenza-
like symptoms, severe community-infected pneumonia, or other similar illnesses are caused
by influenza viruses or other pathogens from their clinical symptoms, routine examinations,
and chest X-rays, etc. [19–21]. There are four types of influenza viruses: influenza A, B, C,
and D. However, influenza A (H1N1 and H3N2) and influenza B are the main influenza
viruses that cause current seasonal influenza [22–24]. Although in clinical diagnosis,
influenza cannot be easily distinguished from other acute respiratory illnesses, such as
common cold, bronchitis, or viral pneumonia, etc., influenza is usually more serious than
the common cold, and the duration of treatment is longer than the common cold. Table 1
shows a comparison between influenza and the common cold [5].

Table 1. A comparison of influenza and the common cold [5].

Influenza Common Cold

Pathogens Influenza viruses

More than 200 viruses, such
as commonly seen respiratory
syncytial viruses and aden-
oviruses, etc.

Affected parts of body Whole body Respiratory tracts mainly

Main clinical symptoms Fever, cough, muscle aches, fa-
tigue, runny nose, sore throat

Sore throat, sneezing, stuffy
nose, runny nose

Complications

Pneumonia, myocarditis, en-
cephalitis, neurological symp-
toms (Reye’s syndrome), and
other complications

Less common (otitis media,
pneumonia)

Modes of transmission Droplet and contact transmis-
sion

Droplet and contact transmis-
sion

Seasonal viruses cause respiratory illnesses when human bodies are infected by in-
fluenza viruses. In most countries, there are repeated periodic epidemics every year. The
timing for seasonal influenza outbreaks is different between the southern and northern
hemispheres. In the southern hemisphere, seasonal outbreaks occur between June and
September every year, whereas in the northern hemisphere, they occur between November
and March [5]. Seasonal outbreaks in Taiwan occur between November and March (winters)
every year, as it is in the northern hemisphere.

2.2. The Selection of Training Features

There are four possible modes of transmission of influenza viruses [25]. They are:
(1) transmission through direct physical contact with an infected person; (2) transmission
through mediums, usually inanimate objects (such as droplets on objects or surface); (3) trans-
mission through droplets of an infected person produced through sneezing, coughing, etc.,
which are transmitted to the nasal cavity or oral mucosa of a recipient; and (4) transmis-
sion through particles of a radius of 2.5 µm propelled by coughing or sneezing into the
air. Viruses can survive in particles that float in the air for a long time and be transmitted
through the particles.

The relative importance among the four transmission modes is a controversial issue.
Lowen et al. [26] used guinea pigs as mammalian test objects to test the hypothesis that
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temperature and relative humidity would affect the transmission rate of influenza viruses.
They found that guinea pigs are very sensitive to influenza viruses that infect humans
and that the pups of guinea pigs exposed to the viruses are more likely to be infected. They
used a variety of relative humidity and temperature conditions and various combinations
of them to evaluate the transmission rates of influenza viruses and found that guinea
pigs were very sensitive to influenza viruses that infected humans and that the pups of
guinea pigs exposed to the viruses were more likely to be infected. They used a variety
of relative humidity and temperature conditions and various combinations of them to
evaluate the transmission rates of influenza viruses. They found that transmission speeds
of influenza viruses depended on the temperature and relative humidity of the environment.
Their findings support the hypothesis that meteorological conditions affect the spread of
influenza viruses and help establish the link between meteorological factors and the spread
and evolution of viruses, which was troublesomely uncertain in the past.

In influenza-related prediction studies, people tend to associate them with the climate
and hydrological information. Prel et al. [6] explored the impacts of the climate on acute
respiratory tract infection (ARI) hospitalization. Globally, ARI-related pneumonia is the
leading cause of childhood deaths. It is worth noting that not all known ARI viruses cause
epidemics in cold seasons, and many countries regard ARI as a common cold. The survival
rates of ARI viruses may be influenced by the cold air, but the cold air is by no means
the main reason that determines the survival of the viruses. Low temperature and other
climatic factors may cause the viruses to increase their activity levels, adaptability, infection
rates, and degrees of infection in virus hosts, pathogens, and the environment. For example,
activity levels of influenza A, respiratory syncytial viruses, and adenoviruses are related
to temperature, and rhinoviruses are related to relative humidity. In a study conducted
by Cox and Subbarao [27], they pointed out that influenza had an obvious and consistent
seasonal distribution in temperate regions and that peak outbreak seasons in winter were
from November to March in the northern hemisphere and from May to September in
the southern hemisphere for 5–10 weeks. Yap et al. [28] proposed that in tropical and
subtropical regions, influenza-prone periods varied greatly, and there might be several
peak periods within a year. Chan et al. [7] investigated the relationship between influenza
activity and two key meteorological factors, namely, temperature and relative humidity,
in Hong Kong from 1997 to 2006.

There are many controversies about the impacts of wind speed on the spread of viruses.
Xiao et al. [29] used multiple sets of climatic conditions to conduct their research and found
that slow wind speeds helped the spread of influenza A virus pandemics. Sundell et al. [30]
conducted a study on the impacts of four seasons on the transmission rates of influenza
A virus pandemics in temperate climates. They speculated that when an infected person
coughed, certain wind speed conditions helped spread particles of droplets that contained
the virus for a longer time. In addition, wind speed can help lower outdoor temperature
and reduce outdoor humidity. These two effects of wind speed increase the speed of
the spread of influenza A virus pandemics. However, there are other scholars who do
not consider that wind speed affects the spread of viruses. Peci et al. [31] used a variety
of climatic factors to conduct their research. They found that there was no correlation
between wind speed and any influenza virus test results, so wind speed did not affect
influenza transmission.

Air quality is currently a public health issue. Air pollution is a by-product of a civilized
society. Many studies have shown that air pollution causes a variety of diseases that are
harmful to the human bodies [32–34]. There are significant interactions between different
types of air pollutants and respiratory diseases. Influenza-like illnesses are respiratory
illnesses. Influenza-like viruses spread through air transmission or droplets, so suspended
particles in the air are also one of the factors that affect influenza. Huang et al. [35]
used the wavelet coherence analysis method to explore the possible correlation between
suspended particles and influenza-like illnesses. Their results showed that that there was a
significant correlation between suspended particles PM2.5, PM10, and NO2 and influenza-
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like illnesses but that there was no correlation between suspended particles and a crowd of
people over 25 years old in Nanjing, China during a peak season of influenza. Contrary
to Huang’s finding, Feng et al. [36] found that PM2.5 particles had a positive correlation
with influenza-like illnesses in all age groups, which was most evident for the age group
of 25–29 years old, followed by the age group of 15–24 years old and then the 5–14 years
old and the over 60 years old groups. It had the least impact on children under 5 years old.
Su et al. [37] explored the potential relationship between air pollutants and influenza-like
illnesses in Jinan, China. They found a potential correlation between PM2.5, PM10, and SO2
particles and peak periods of influenza-like illnesses. However, they found no correlation
between NO2 and O3 particles and influenza-like illnesses. Xu et al. [38] discussed the
impacts of air pollution and temperature on the occurrences of influenza cases for people
aged between 0 and 14 years old in Brisbane, Australia. They used a regression model
to analyze the correlation between occurrence rates of influenza cases in winter and air
pollution and temperature. Studies have shown that temperature is negatively correlated
with occurrence rates of influenza cases, and highly concentrated O3 and PM10 have a
significant correlation with occurrence rates of influenza cases. Therefore, O3 and PM10 are
also important indicators when assessing occurrence rates of influenza cases.

2.3. Machine Learning Models for Predicting Outbreaks of Influenza-Like Illnesses

Cheng et al. [39] used four machine learning algorithms, namely, ARIMA, Random
Forest, SVM, and XGBoost, to establish a real-time national system to monitor influenza
outbreaks and predict influenza-like cases for a four-week period for the Taiwan Centers
for Disease Control (CDC). To combine the prediction results of the four different ma-
chine learning models, a stacking ensemble learning method was used to form the final
prediction model. Its most accurate prediction result for a week scored a MAPE of less
than 0.75 and a hit rate 0.75. Darwish et al. [40] used machine learning and deep learning
multiple algorithms to establish a model to predict the number of influenza-like cases in
Syria. The lowest MAPE of its prediction results was 3.52% and the lowest RMSE 0.01662.
Chen et al. [41] used the Seasonal Autoregressive Integrated Moving Average (SARIMA)
to predict outpatient rates of the influenza-like illnesses in Shenyang, China. The authors
mentioned that the predicted values of influenza-like illnesses could be used as a reference
for outbreaks of influenza-like cases in the short term, but other factors should be taken into
consideration when forming strategies for influenza prevention and control. Hu et al. [42]
proposed an IAT-BPNN model to predict the number of influenza-like illnesses in dif-
ferent regions of the United States. They used the artificial tree (AT) algorithm to train
the model, which optimized the initial parameters of the BP neural network. They used
BPNN, AT-BPNN, and IAT-BPNN in their experimental tests and comparisons. Their
results showed that IAT-BPNN reduced the error rates and produced the most accurate
predictions. Tapak et al. [43] used support vector machine (SVM), artificial neural-network,
and Random Forest time series models to predict weekly influenza-like illnesses in Iran.
The results showed that the Random Forest time series models outperformed the other
three methods in simulating the weekly ILI frequencies. The comparison of related works
on using machine learning for predicting outbreaks of influenza-like illnesses in Table 2.
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Table 2. The comparison of related works on using machine learning for predicting outbreaks of
influenza-like illnesses.

Author Dataset Model Evaluation Metrics

Cheng et al. [39]
ILI dataset, records of patients
with severe influenza with com-
plications

ARIMA, Random Forest,
SVR, XGBoost

Pearson correlation, MAPE, Hit
rate of trend prediction

Darwish et al. [40] EWARS data
GLM, SVR, Gradient
boosting, Random Forest,
LSTM

MAPE, RMSE

Chen et al. [41] Influenza surveillance data SARIMA MAPE, RMSE, R2 (coefficient of
determination)

Hu et al. [42] Twitter dataset, ILI dataset IAT-BPNN MSE, RMSE, MAPE

Tapak et al. [43] ILI dataset from FluNet SVM, ANN, random forest RMSE, MAE, ICC (intra-class
correlation coefficient)

The definition of influenza, how to choose eigenvalues, and the proposed influenza
prediction system have been discussed in this Section. As stated above, some scholars
have proposed different methods to build an influenza-like illness prediction system, but in
terms of feature selections, few studies have included weather, air pollution factors, public
holidays, and other data into their model training. Therefore, different features have been
incorporated in the experiments and discussions of this research.

3. Methodology
3.1. Prediction Framework

In this section, the methodology and techniques used in this research on the predic-
tion of outbreaks of influenza-like illnesses will be described. Hydrometeorological data
taken from meteorological observation data, statistics on emergency infectious diseases—
influenza-like illnesses, data on keyword search volumes on Google Trends, air quality
indices, data on total population, population density, and Taiwan public holiday informa-
tion were used in this research. XGBoost, Random Forest, SVR, and ensemble learning were
selected for experiments and verifications in this research. Descriptions of the experimental
environment and related package versions are shown in Table 3:

Table 3. The experimental environment on hardware and software library.

Item Specifications and Version Description

CPU Intel i7-8700 3.2 GHz–4.6 GHz
GPU Intel® UHD Graphics 630
RAM 8 GB DDR4 2400 MHz ∗ 4
SSD Micron Crucial MX500 500GB SATAIII

System OS Windows Pro 10 1909
Anaconda 1.9.7

Jupyter Notebook 6.0.1
Python 3.7.4

scikit-learn 0.23.1
XGBoost 1.1.1
Pandas 1.1.0
Numpy 1.19.1

The observation stations, where the hydrometeorological data were taken for this
research, were the ground weather observation stations and the automatic weather/rainfall
observation stations of the Central Weather Bureau, Taiwan. The observation data con-
sisted of several parts. The first part comprised the data taken from the “Data Bank for
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Atmospheric and Hydrologic Research” in Taiwan up to April 2020 and the data taken
from the “Open Weather Data” in Taiwan from that date up to the date of this research.
This research focused on predicting the number of influenza-like cases in counties and
cities in Taiwan. However, as there were no ground weather observation stations of the
Central Weather Bureau in some counties and cities, such as Miaoli County and Chiayi
County, etc., the data for those regions were taken from the automatic weather/rainfall
observation stations to fill in the missing data of these counties and cities.

Data on statistics on emergency infectious diseases—influenza-like illnesses—were
taken from the “Taiwan National Infectious Disease Statistics System” of the Taiwan
Centers for Disease Control (CDC), which contained statistical data on the number of visits
to emergency departments at hospitals by patients with influenza-like illnesses of every
age in every county/city in every week of the year.

Data on keyword search volumes were based on Google keyword searches. Various
flu symptoms were selected as keywords, and their search volume values on Google were
collected. The search volume values are relative values and refer to the popularity of a
search term in a specific area within a specific period. The value range was set at [0, 100].

Monitoring data of the Environmental Protection Administration of the Executive
Yuan in Taiwan were used as air quality indices in this research. Data on total population
and population density were based on the statistical data of all counties, cities, towns, and
villages in Taiwan as provided by the Department of Statistics of the Ministry of the Interior,
Taiwan. The total population was the statistical data of the statistical population, and the
population density was the population indicator data. The Taiwan public holiday informa-
tion was taken from the open government data platform at “data.gov.tw” (accessed on 1
August 2021).

Datasets required for this research were first imported from their sources. They were
then pre-processed using its applicable data processing method, and then all the processed
data were grouped into its applicable training and testing datasets. Assuming prediction
took place in week 0 (lag0) to predict the number of influenza-like cases in the following
week, as the features used in this research to predict outbreaks of influenza-like cases did
not predict outbreaks for the same week but they lagged behind for a week or longer, data
of the week before (lag1) were used for week 0 for prediction. Machine learning was then
used to predict the number of influenza-like cases for the following week. Figure 1 shows
the framework used in this research for predicting influenza-like cases. The following
subsection in this section will discuss the techniques used and the reasons why they were
chosen for this research.

Figure 1. The framework for prediction of influenza-like cases in this research.

data.gov.tw
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3.2. Data Pre-Processing

The pre-processed datasets discussed in this section are datasets that are publicly
available as mentioned in the section above. The features required for this research were
selected from among the datasets. The features contained in Table 4 are the original features
used in this research. The features contained in Table 5 are the features related to influenza-
like symptoms subsequently added to this research, as mentioned in Section 2.2, and the
additional features will be compared at the end of this section. PP and RH may show
negative values in the observatory instruments due to various reasons, and TX, WD may
show abnormal negative values in the observation instruments due to various reasons.
Please refer to Table 6. However, anomalous values for PM10, PM2.5, SO2, O3, and NO2
will be removed, as mentioned in Table 7.

Table 4. Original features.

Features Measurement Units Descriptions Notes

PP Millimeter
(mm) Precipitation

The minimum value of precipitation in this
research is 0. All negative values that may be
caused by instrumental and human factors
are replaced by 0. After excluding outliers of
a distance greater than three standard devia-
tions, the average value for a week is calcu-
lated (using one week as a unit), and a log
value is taken.

RH Percentage (%) Average relative humidity

After excluding outliers of a distance greater
than three standard deviations, the average
value for a week is calculated (using one
week as a unit), and a log value is taken.

TX Celsius(◦C) Average temperature

After excluding any average temperature of
a negative value and obvious outliers of a dis-
tance greater than three standard deviations,
the average value for a week is calculated
(using one week as a unit), and a log value
is taken.

TD Celsius(◦C) Daily temperature differences A week is taken as a unit. After the data for
a week are tallied up, a log value is taken.

WD Meter per second (m/s) Average wind speeds

After excluding outliers of a distance greater
than three standard deviations, the average
value for a week is calculated (using one
week as a unit), and a log value is taken.

ILI Number of people The number of influenza-
like cases

The number of emergency visits by patients
of influenza-like illnesses is obtained and tal-
lied up for all age groups in each county/city.

ILI_D Number of people
Differences in the
numbers of influenza-
like cases

Weekly changes in the number of emergency
visits by patients of influenza-like illnesses
are obtained by deducting the number of
emergency visits of this week with the num-
ber of visits of the week before.

GT_I [0, 100]
Keyword search volumes
on Google Trends—
influenza (flu)

Values of search volumes of a keyword, “in-
fluenza (flu),” on Google Trends by people in
Taiwan on a weekly basis within five years.

HoC Number of days The number of public hol-
idays in Taiwan per week

The weekly number of public holidays in
Taiwan in five years
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Table 5. Additional features.

Features Measurement Units Descriptions Notes

ILI_LW Number of people The number of influenza-like
cases from the week before

The number of emergency visits by patients with
influenza-like illnesses from the week before is
obtained and tallied up in accordance with all age
groups in each county/city.

GT_IS [0, 100]
Keyword search volumes
on Google Trends—influenza
(flu) symptoms

Values of search volumes of keywords, influenza
(flu) symptoms, on Google Trends by people in
Taiwan on a weekly basis within five years are ob-
tained.

GT_C [0, 100]
Keyword search vol-
umes on Google Trends—
common cold

Values of search volumes of keywords, common
cold, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_CS [0, 100]
Keyword search volumes
on Google Trends—common
cold symptoms

Values of search volumes of keywords, common
cold symptoms, on Google Trends by people in
Taiwan on a weekly basis within five years are
obtained.

GT_D [0, 100] Keyword search volumes on
Google Trends—diarrhea

Values of search volumes of keyword, diarrhea,
on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_N [0, 100] Keyword search volumes on
Google Trends—nausea

Values of search volumes of a keyword, nau-
sea, on Google Trends by people in Taiwan on
a weekly basis within five years are obtained.

GT_FR [0, 100]] Keyword search volumes on
Google Trends—fever

Values of search volumes of a keyword, fever,
on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_T [0, 100] Keyword search volumes on
Google Trends—tiredness

Values of search volumes of a keyword, tired-
ness, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_FE A value range of [0, 100] Keyword search volumes on
Google Trends—fatigue

Values of search volumes of a keyword, fatigue,
on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_SM A value range of [0, 100] Keyword search volumes on
Google Trends—muscle pain

Values of search volumes of a keywords, muscle
pain, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_H A value range of [0, 100] Keyword search volumes on
Google Trends—headaches

Values of search volumes of a keyword,
headaches, on Google Trends by people in Taiwan
on a weekly basis within five years are obtained.

GT_ST A value range of [0, 100] Keyword search volumes on
Google Trends—sore throat

Values of search volumes of keywords, sore throat,
on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_SN A value range of [0, 100] Keyword search volumes on
Google Trends—stuffy nose

Values of search volumes of keywords, stuffy
nose, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_RN A value range of [0, 100] Keyword search volumes on
Google Trends—runny nose

Values of search volumes of keywords, runny
nose, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_CH A value range of [0, 100] Keyword search volumes on
Google Trends—coughing

Values of search volumes of a keyword, cough-
ing, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_S A value range of [0, 100] Keyword search volumes on
Google Trends—sneezing

Values of search volumes of a keyword, sneez-
ing, on Google Trends by people in Taiwan on a
weekly basis within five years are obtained.

GT_DA A value range of [0, 100]
Keyword search volumes on
Google Trends—breathing
difficulty

Values of search volumes of keywords, breathing
difficulty, on Google Trends by people in Taiwan
on a weekly basis within five years are obtained.

PIR Number of people Total population in each
county/city/town/village

The statistics on total population in each
county/city/town/village for every four quar-
ters are obtained and converted into the weekly
population data.
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Table 5. Cont.

Features Measurement Units Descriptions Notes

PD Population density Population Density

The population indicators in each
county/city/town/village for every four
quarters are obtained and converted into the
weekly population density data.

PDoI Population density Population density of in-
fluenza

The number of patients with influenza this week
(ILI) is divided by the total population of a
county/city (PIR) and then multiplied by the pop-
ulation density of the county/city (PD) to obtain
the weekly population density of influenza cases.

PM10 µg/m3 Air quality index —PM10 The PM10 data are obtained from the air quality
index and computed to obtain weekly averages.

PM2.5 µg/m3 Air quality index —PM2.5 The PM2.5 data are obtained from the air quality
index and computed to obtain weekly averages.

SO2 ppb Air quality index —SO2
The PMSO2 data are obtained from the air quality
index and computed to obtain weekly averages.

O3 ppb Air quality index —O3
The O3 data are obtained from the air quality in-
dex and computed to obtain weekly averages.

NO2 ppb Air quality index —NO2
The NO2 data are obtained from the air quality
index and computed to obtain weekly averages.

Cov19 Number of people The number of confirmed
cases of COVID-19

The number of confirmed cases of COVID-19 is
obtained and tallied up for all age groups in each
county/city.

Table 6. Descriptions for the negative values at the Atmospheric Hydrological Observation Stations
mentioned in this research [44].

Negative Values Descriptions

−9991 Instrument failures, to be repaired
−9996 Data accumulated later
−9997 No information available due to unknown reasons or malfunctions
−9998 Traces of rain
−9999 No data due to no observation

Table 7. Descriptions for the anomalies at the Air Quality Index Observation Stations mentioned in
this research.

Anomalies Descriptions

# Indicates an invalid value after instrument checks
* Indicates an invalid value after program checks
x Indicates an invalid value after manual checks

NR Indicates no rain fall
blank Indicates no value
888 Indicates no wind
999 Indicates instrument failures

Lastly, to consolidate the knowledge about influenza-like illnesses, we selected the
features introduced at Tables 4 and 5 to perform different processing on different data
according to the categories they belonged to. The features of hydrometeorological data
were combined and calculated according to the observation stations of the county and
city, from which the data was collected. The minimum value of the PP data was 0, and
there should be no negative value for RH data. As to the TX data, as only the mountainous
areas at a high altitude might be subjected to a temperature below 0 degree Celsius in
winter while the rest of the areas should be above 0 degree Celsius, negative values of
this set of data were also excluded. There should be no negative values for the WD set
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of data either. All anomalous negative values of these four sets of data were caused by
instrumental or human factors (please refer to Table 6, and therefore, the negative values
of the PP data were replaced by 0; those of the RH, TX, and WD data were excluded due
to their characteristics. Additionally, outliers of a distance greater than three standard
deviations were excluded. Weekly average values were calculated, and log values (using
one week as a unit) were taken for the PP and RH data. TD was the most special among
the hydrometeorological features. TD represented the differences between the highest and
the lowest temperature of TX, which were then calculated on a weekly basis to take logs.
ILI represented the emergency infectious disease monitoring statistics—the influenza-like
illness, the aggregate data of the total number of emergency visits by patients of influenza-
like illnesses for all age groups in each county/city. ILI_D represented the weekly changes
in the number of emergency visits by patients of influenza-like illnesses by deducting the
number of emergency visits in this week with the number of visits in the week before.
ILI_D was the total number of emergency visits by patients of influenza-like illnesses from
the week before. Each feature value of GT was the numerical data of a Google Trends search
volume within 5 years. The numerical values were floating values, not absolute values.
HoC was the number of public holidays per week, from Sunday to Saturday, in Taiwan
within 5 years. PIR was the statistical data on the total population in each county/city in
Taiwan, converted from the data for four quarters into weekly units. Data on PD were
the statistical data on the population density of each county/city in Taiwan and were
converted, like PIR, from the data for four quarters into weekly units. PDoIs represented
the values of an IL, divided by a PIR and multiplied by a PD. As mentioned earlier, there
are six severity levels of air quality indices, i.e., PM10, PM2.5, SO2, O3, and NO2. Anomalies
(see Table 7 for anomalies) were excluded to calculate weekly averages. Cov19 represented
the number of confirmed cases of COVID-19. As symptoms of COVID-19 are similar to
those of influenza, the public often finds it difficult to tell whether they catch an influenza
or COVID-19 virus. It is considered that the number of confirmed cases of COVID-19 has
an impact on the number of influenza-like illness cases. Therefore the number of confirmed
cases of COVID-19 was taken into account in this research.

3.3. Keyword Volumes from Google Trends

Google Trends displays the search volumes of users on the Google search engine
within a specific geographic region in time series indices. A keyword search index is based
on its search volume proportion, meaning a search volume of a keyword is divided by
the total search volume in the geographic region within a specific period to compare the
relative popularity of its discussions. The percentage of a total volume of a keyword search
in a designated region within a designated period is normalized to the range of [0, 100].
The maximum search volume percentage is 100, and the contrary to that is 0 [45,46].

Figure 2 is the visual presentation of keyword search volumes of “common cold” on
Google Trends, adjusted to show the search popularity of the keywords in Taiwan, as the
designated region, in the last 5 years. Google Trends can also use keywords to view the
search popularity in each sub-region in a specific geographic area within a specific period.
The search popularity in this research was calculated in the range of [0, 100]. If a search
volume of a keyword in a sub-region showed the highest popularity in the total search
volume in the relevant geographic region, that sub-region was marked 100. If a search
volume of a keyword in a sub-region occupied only half of the total search volume in
the relevant geographic region, that sub-region was marked 50. If a search volume of a
keyword in a sub-region was insufficient, that sub-region was marked 0. Figure 3 presents
the search popularity of the keyword of “common cold” in each sub-region in 5 years in
Taiwan. The sub-regions are the counties and cities, such as Taipei City, New Taipei City,
and Taichung City, etc., in Taiwan. It shows in Figure 3 that the keyword, “common cold,”
is the most searched in New Taipei City, whose search popularity is marked 100.
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Figure 2. Trends of the search popularity of “common cold”.

Figure 3. The search popularity of “common cold” in sub-regions of Taiwan.

3.4. Lag Features

Individual data in a data series are arranged according to their time sequence (e.g.,
a second, minute, day, week, or month apart) in a chronological order in the time series.
Time series can be divided into two types: systematic and non-systematic time series.
A non-systematic time series contains random data changes, called noise. A systematic
time series is divided into two types: a trend and a periodic time series. A trend time series
refers to a trend of changes according to time periods, e.g., linear or exponential increases
or decreases. A periodic time series refers to periodic changes, e.g., seasonal increases or
changes in peak and off-peak seasons.

The datasets used in this research to predict the weekly numbers of influenza-like
cases were all time series data. The data were organized into weekly units, as it did not
have any impact on the daily numbers of influenza-like cases but usually had a delay
impact on the number of influenza-like cases in a week later or longer. As shown in Table 8,
assuming that the target prediction week of this research is Week 13 of 2021, the data of
Week 11 (Lag1) of 2021 are used to fill in the data in Week 12 (Lag0), so that the data of
Week 11 are used to predict the number of influenza-like cases for Week 13.

Table 8. The illustration of processing lag features.

Week City Flue
_Amt

Lag New Lag New Lag New Lag

Flue_Amt PP PP GT_I GT_I PM10 PM10

2021-11 Nantou County 158 148 0 0 5 3 50.302 54.827
2021-11 Taoyuan City 468 459 0 0.068 5 3 47.811 36.383
2021-12 Nantou County 133 158 1.292 0 3 5 45.599 50.302
2021-12 Taoyuan City 570 468 2.047 0 3 5 40.372 47.811
2021-13 Nantou County Predict 133 0.080 1.292 3 3 42.813 45.599
2021-13 Taoyuan City Predict 570 0 2.047 3 3 43.098 40.372
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3.5. Periodicity

In this section, the steps of feature selections are discussed. There were 34 features
in total selected for this research, as mentioned in the previous section. Considering the
periodic issues associated with influenza-like illnesses, one-hot encoding was used to
process the time data of the numbers of years and weeks to deal with periodicity. There are
6 years from 2016 to 2021, and there are 52 or 53 weeks in each of those years, as shown in
Table 9.

Table 9. The illustration of using one-hot encoding to process the time data of the numbers of years
and weeks to deal with periodicity.

Year Week Months
Year Week Week Week Week Week Week Week

2021 01 02 03 04 05 06 07

2021 1 1 1 1 0 0 0 0 0 0
2021 2 1 1 0 1 0 0 0 0 0
2021 3 1 1 0 0 1 0 0 0 0
2021 4 1 1 0 0 0 1 0 0 0
2021 5 2 1 0 0 0 0 1 0 0
2021 6 2 1 0 0 0 0 0 1 0
2021 7 2 1 0 0 0 0 0 0 1

3.6. Machine Learning Models

Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Support Vector Regression
(SVR), and ensemble learning were selected as training models in this research. Random
Forest affects proportions of features and facilitates the verification of hypotheses and
ideas. Similar principles are used in XGBoost and Random Forest to predict results more
accurately. SVR is different from the previous two. SVR was used as a control group.
The final prediction results of models were compared with the past data to obtain the
accuracy rates. In this research, the values of the XGBoost and Random Forest models were
combined by ensemble learning as the final prediction results of this research.

3.6.1. eXtreme Gradient Boosting (XGBoost)

XGBoost [47] is a scalable machine learning system, used for tree boosting and based
on the extension and improvement in the Gradient Boosted Tree (GBDT), while retaining
the original model. New functions can be added to XGBoost to adjust mistakes of the
last tree, i.e., to add a new tree to the last tree to rectify the insufficiency of the last tree to
boost the overall efficiency, known as additive training, the formula of which is shown in
Equation (1). Features are segmented each time a tree is constructed. Method (1): A greedy
algorithm is used to obtain a best segmentation point. After all features are listed, a feature
is used as a segmentation point, and parameters, to which features are corresponded, are
calculated in accordance with Equation (2). The larger the value is, the more the loss
value decreases. The best segmentation point can then be found. Method (2): A proximity
algorithm is used to select features to assemble quantiles of feature distributions into sets of
split points. Features of continuous information are assembled into corresponding buckets
according to their segmentation points, and then samples in the buckets are accumulated,
and the best split point is found by its accumulated value. Method (3): A weighted quantile
algorithm is used to solve the problems that the data cannot be accessed in one go or the low
efficiency of the greedy algorithm. Method (4): A sparse perception algorithm is used when
the content of a dataset is sparse as there are missing values in most datasets. The datasets
without missing values are used for node branching. When a feature with missing data
is to be placed on a node, it will directly determine which branch node the missing value
should be assigned to [48]. XGBoost is used to solve classification and regression problems.
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It can generate a set of classification and regression trees (CART). Each leaf of the CART
corresponds to a set of scores, which is used as the basis for classification.

L(t) =
n

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(Xi)

)
+Ω( ft) (1)

Lsplit =
1
2

[
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gi)
2

∑iεIL
hi + λ

+
(∑iεIR

gi)
2

∑iεIR
hi + λ

+
(∑iεI gi)

2

∑iεI hi + λ

]
− γ (2)

3.6.2. Random Forest (RF)

Random Forest [49] consists of decision tree classifiers. Each of the classifiers is
generated independently from random vectors in input vectors. A bagging algorithm
is used for each feature or each feature combination, i.e., samples are randomly taken
from the training data to train multiple classifiers. Gini coefficients are used to select
features, to measure the impurity of the features to their categories, and to segment each
feature. The smallest Gini is selected for segmentation. In the end, if it is the classified data,
weights are used to vote. The averaging method is used in the regression model to obtain
results [50].

3.6.3. Support Vector Regression (SVR)

SVR [51] is an extension of the support vector machine (SVM). SVR can handle contin-
uous prediction problems. Consistent with the classification method, SVR is characterized
by the use of kernel functions, sparse solutions, VC marginal controls, and the number of
support vectors. One of the main advantages of SVR is that its complex calculation does
not depend on the dimensionality of the input space. It has an excellent generalization
ability and a high prediction accuracy [52].

3.7. Model Evaluation

RMSLE was used in this research to measure the effects of the models. RMSLE is
RMSE in the log form. It considers relative errors in the same ways as MSPE and MAPE,
but RMSLE error curves are asymmetrical. The closer its value is to 0, the less often errors
occur. The RMSLE formula is shown in Equation (3). The error rates of this research for
influenza-like prediction results were calculated by the differences in percentage between
the predicted number of cases and the actual number of confirmed cases of influenza-like
illnesses. The formula for calculating the prediction error rates is shown in Equation (4).

RMSLE =

√√√√ 1
N

N

∑
t=1

(log(yi + 1)− log(ŷi + 1))2

= RMSE(log(yi + 1), log(ŷi + 1))

(3)

Predicterr =
1
n

n

∑
i=1

∣∣∣∣1 − Predicti
Actuali

∣∣∣∣ ∗ 100% (4)

3.8. Model Testing and Adjustments

When conducting model testing and adjustments in this research, much time was
spent in the data pre-processing stage to carry out the numerical processing of the data and
sorting out the data from different time periods, such as excluding outliers of distances
greater than three standard deviations, replacing negative PP values with 0, and excluding
other anomalous data of negative values. After multiple adjustments, the processing
method that produced better results was selected. During the adjustment process, it was
discovered that the number of predicted cases was suddenly reduced. During the anomaly
exclusion process, it was discovered during the data pre-processing that the data from
the “Data Bank for Atmospheric and Hydrologic Research” in Taiwan were missing from
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the datasets received from the Hsin-Wu Observation Station, which was subsequently
supplemented by the data taken from the “Open Weather Data” in Taiwan. After the
use of the supplementary data, the problem of the sudden reduction in the predicted
result was resolved. As it was found that, during the consolidation of the data, the data
from Miaoli County and Chiayi County were missing, the data were then taken from the
automatic weather/rainfall observation stations of the Central Weather Bureau to fill in the
missing data.

The data taken from 10 remote observation stations, such as Wu-Fen-Shan Radar
Station and An-Bu-Peng-Jia-Yu, etc., were first excluded, and the data taken from stations
located in more populated areas were retained. Then, features, such as temperature
differences (TD), differences in the number of influenza-like cases (ILI-D), and the number
of public holidays in Taiwan per week (HoC), were then added. The process of additions
and adjustments of various features was recorded. The first step was to add features,
such as daily temperature differences (TD) and the number of influenza-like cases from
the previous week. The results showed that some data reflected more accurately the
actual number of confirmed cases, but some deviated more from it. However, the average
differences between the predicted results and the actual confirmed cases of influenza-like
illnesses of those after the addition of these features were slightly smaller than those before
the addition. In the second step, the data taken from remote observation stations were
excluded, and the number of Taiwan public holidays (HoC) was added. After the additions
and adjustments of the features, the best parameters for the models of this research were
selected. The predicted results were compared with the results in step two, and it showed
better results. The average differences are relatively reduced [39,53].

Previous studies have shown that relative humidity affects the spread and survival
rates of influenza viruses. Shaman and Kohn [25] mentioned in their study that absolute
humidity had more obvious impacts on the spread rates and activity of viruses than
relative humidity. In temperate regions, there are strong seasonal cycles of both absolute
humidity indoor and outdoor. These seasonal cycles are consistent with the increases
in virus activity and transmissions in winter and can be used to explain the seasonality
of influenza. Therefore, differences in absolute temperature provide single, coherent,
and more physical explanations for observed changes in activity, transmission, and the
seasonality of influenza viruses in temperate regions. However, absolute humidity was not
included as a feature in this research as there was insufficient hydrometeorological data to
calculate absolute humidity.

As to the feature of the average temperature differences, Suntronwong et al. [54]
explored the relationship among each influenza virus, influenza activity, and meteoro-
logical variables. After analyzing average temperature differences, relative humidity,
and accumulated rainfall, it was found that all flu activity is positively correlated with
average temperature, relative humidity, and rainfall. Kamigaki et al. [55] found that in
the Philippines, average temperature differences were positively correlated with respira-
tory infections. Therefore, average temperature differences were added as a feature in
this research.

As to the choices for the data for Week 0 (Lag0), assuming the number of influenza-like
cases was to be predicted for Week 1, as there were no complete data for Week 0, there
were a few options. Option 1 was to use the known data from the week before Week 0
to fill in the data for Week 0. Option 2 was to use the average data of the data from the
month before to fill in the data for Week 0. After testing and the adjustment of parameters
and the comparison with historical data, it was found that Option 1 brought the predicted
results closer to the actual confirmed cases than Option 2. Option 1 was therefore adopted
in this research.

Features mentioned in Section 2.2 were also selected. Features, such as the popularity
or search volumes of keywords selected from influenza-like symptoms on Google Trends,
various air quality indices, the data on total population and population density in each
county/city, and the number of confirmed cases of COVID-19 were also adopted as features
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in this research. All these factors have effects on the outbreaks of influenza-like cases. These
features were used in our experiments as discussed in the following section.

3.9. Experimental Design

In terms of predicting the number of clinic or hospital visits by patients of influenza-
like illnesses, it is known from previous studies that the number of the clinic or hospital
visits is affected by atmospheric and hydrological factors, such as precipitation (PP), relative
humidity (RH), temperature (TX), temperature differences (TD), and wind speed differences
(WD), etc. A new factor, keyword search volumes on Google Trends, that has not been
included as a factor affecting the number of outbreaks of influenza-like cases in previous
predictions of influenza-like cases was added as a feature in this research. The use of search
volumes on Google Trends is the highlight of this research in the prediction of influenza-like
cases. The popularity of keyword searches of influenza-like illnesses and symptoms in
specific regions within specific periods was calculated through search volumes on Google
Trends. The values of the popularity of keyword search volumes were set to range from 0
to 100. The larger the number was, the more popular was a keyword being discussed on
Google. The smaller the number was, the less popular was a keyword being discussed on
Google. The number of Taiwan public holidays was added to this research as a feature,
excluding the data taken from remote observation stations and adding features of the total
population and population density. Air quality indices were added as a feature as well,
as they too would affect the speed of the spread of influenza-like illnesses accordingly to
previous studies.

In Section 2.2, factors that affect transmission rates of influenza-like illnesses were
discussed. Some scholars consider that wind speed is not significantly related to the spread
of influenza-like illnesses. Some study air quality indices and discover that air pollution is
significantly related to outbreaks of influenza-like illnesses. The symptoms of COVID-19
in 2019 were very similar to those of influenza-like illnesses. Most people could not tell
them apart. Additionally, people had different symptoms, which made it even harder for
them to diagnose themselves with the virus that caused their illness. Therefore, COVID-19
was included as a feature in this research. In order to evaluate and select features, various
combinations of features were experimented in this research to conduct training, testing,
and subsequent evaluation.

Random Forest, XGBoost, SVR, and ensemble learning, the most seen models used in
the prediction of data, were used to construct models in this research to predict the number
of influenza-like cases. Random Forest and XGBoost were used in this research to carry
out the prediction and then to carry out comparisons through SVR. Random Forest and
XGBoost can be used to output weights that affect features and are convenient in verifying
hypotheses and ideas. Similar principles in carrying out the prediction of data are used
in Random Forest and XGBoost, but, generally speaking, XGBoost is more accurate in its
prediction outputs than Random Forest. To this end, in this research, an ensemble learning
model combining Random Forest and XGBoost was used to obtain more accurate results.
In addition to using these three models to carry out predictions, SVR was used to predict
results, and its results were compared with the other three in this research. As the SVR
prediction results were worse than the other three, only the ensemble learning model of
Random Forest and XGBoost were used as the prediction models. The SVR prediction
results were not adopted.

4. Experiments and Evaluation Results
4.1. Datasets

The data used in this research were all taken from the open data provided by various
government agencies or the data publicly available on the Internet, including the hydrome-
teorological data, the emergency infectious disease monitoring statistics—the influenza-like
illness, the Google Trends search volume data, the Taiwan public holiday information,
the data on air quality indices, and the data on the total population and population density.
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There were a total of 35 selected features in this research, as listed in Tables 4 and 5. Adding
periodic features of 52 or 53 weeks for 6 years that were converted by one-hot encoding,
and four columns of “City,” “Year,” “Month,” and “Week,” it tallied up to a total of 97
features in this research. As discussed in Section 2.2, past scholars have proposed that
various hydrometeorological factors and air quality indices have significant or insignificant
effects on the number of influenza-like cases. Therefore, models were trained with different
combinations of features using the above-mentioned research methods and processes in
our experiments. The effects of different feature combinations will be discussed at the end
of this section.

4.2. Comparisons of Different Combinations of Features

As mentioned before, features used in this research were adjusted many times before
being finalized. Some previous studies have suggested that many features directly affect the
number and the spread of influenza-like cases, whereas some are not significantly related
to outbreaks of influenza-like illnesses. Various combinations of features were therefore
used in this research to conduct training, testing, and subsequent evaluation, as shown in
Table 10.

Table 10. Combinations of features.

Combinations Features Used

Org_df
Atmospheric hydrological data, the number of influenza-
like cases, Google Trends search volumes: influenza, public
holidays, as listed in Table 4

GT_df

Similar to Org_df, but adding the features of 17 keywords
relating to influenza-like symptoms on Google Trends,
such as runny nose, common cold, sore throat, etc., also
adding the population data

GT_noWD_df Similar to GT_df but excluding the feature of wind speed
differences (WD)

AQI_df Similar to GT_df but adding air quality indices, e.g., PM10,
PM2.5, NO2, SO2 and O3

AQI_noWD_df Similar to AQI_df but excluding the feature of wind speed
differences (WD)

Covid_noWD_df Similar to AQI_noWD_df but adding the feature of the
number of COVID-19 confirmed cases

Two RMSLE evaluation indicators were used for the performance comparison of
this model. As mentioned above, various feature combinations were used for training.
The numbers of influenza-like cases were predicted from Week 15 to Week 28 of 2021. Next,
performance evaluations were performed on six different feature combinations. The results
are shown in Tables 11–16. Predictions on the number of influenza-like cases were carried
out, using three RMSLE models each week. The average method was used to calculate the
error rates for these 14 weeks. Table 17 shows a comparison of the performance evaluation
of the six feature combinations.

According to the error rates of all feature combinations, it was found that most of the
error rates of SVR were higher than those of XGBoost and Random Forest. As a result,
SVR-predicted results were not used in this research. Only the predicted results of XGBoost
and Random Forest were used in this research. Table 17 shows the overall comparison of
average evaluation results of XGBoost and Random Forest for each feature combinations.
When the RMSLE values were used for comparison, the top three feature combinations
with the lowest error rates were Covid_noWD_df, GT_noWD_df, and AQI_noWD_df.
Therefore, in Section 4.3, only these three prediction results are discussed.
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Table 11. Org_df performance evaluation.

Week XGR RF SVR

2021-15 0.234 0.226 0.247
2021-16 0.244 0.200 0.232
2021-17 0.164 0.182 0.198
2021-18 0.215 0.194 0.220
2021-19 0.222 0.198 0.235
2021-20 0.203 0.187 0.205
2021-21 0.247 0.223 0.230
2021-22 0.187 0.198 0.224
2021-23 0.192 0.212 0.229
2021-24 0.159 0.193 0.218
2021-25 0.198 0.208 0.237
2021-26 0.203 0.187 0.218
2021-27 0.248 0.224 0.242
2021-28 0.259 0.234 0.244

Table 12. GT_noWD_df performance evaluation.

week XGR RF SVR

2021-15 0.220 0.222 0.250
2021-16 0.223 0.196 0.226
2021-17 0.154 0.176 0.190
2021-18 0.166 0.193 0.219
2021-19 0.204 0.204 0.246
2021-20 0.161 0.178 0.198
2021-21 0.226 0.224 0.226
2021-22 0.162 0.190 0.220
2021-23 0.187 0.205 0.223
2021-24 0.159 0.186 0.219
2021-25 0.186 0.211 0.235
2021-26 0.192 0.186 0.229
2021-27 0.230 0.217 0.226
2021-28 0.233 0.227 0.232

Table 13. GT_noWD_df performance evaluation.

Week XGR RF SVR

2021-15 0.214 0.223 0.251
2021-16 0.203 0.197 0.226
2021-17 0.155 0.178 0.190
2021-18 0.162 0.194 0.218
2021-19 0.207 0.202 0.246
2021-20 0.166 0.177 0.198
2021-21 0.203 0.227 0.226
2021-22 0.168 0.191 0.220
2021-23 0.169 0.203 0.223
2021-24 0.160 0.186 0.220
2021-25 0.192 0.212 0.235
2021-26 0.194 0.188 0.229
2021-27 0.230 0.219 0.226
2021-28 0.224 0.226 0.232
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Table 14. AQI_df performance evaluation.

Week XGR RF SVR

2021-15 0.216 0.224 0.247
2021-16 0.206 0.199 0.225
2021-17 0.161 0.179 0.190
2021-18 0.167 0.194 0.218
2021-19 0.198 0.207 0.244
2021-20 0.145 0.177 0.200
2021-21 0.209 0.225 0.227
2021-22 0.173 0.194 0.220
2021-23 0.204 0.208 0.223
2021-24 0.176 0.187 0.220
2021-25 0.187 0.212 0.237
2021-26 0.195 0.189 0.229
2021-27 0.229 0.221 0.227
2021-28 0.221 0.228 0.231

Table 15. AQI_noWD_df performance evaluation.

Week XGR RF SVR

2021-15 0.217 0.224 0.247
2021-16 0.204 0.199 0.225
2021-17 0.164 0.180 0.190
2021-18 0.161 0.196 0.217
2021-19 0.186 0.208 0.244
2021-20 0.170 0.178 0.200
2021-21 0.215 0.224 0.227
2021-22 0.161 0.193 0.220
2021-23 0.167 0.208 0.223
2021-24 0.163 0.188 0.220
2021-25 0.183 0.213 0.236
2021-26 0.196 0.192 0.229
2021-27 0.223 0.221 0.227
2021-28 0.238 0.227 0.231

Table 16. Covid_noWD_df performance evaluation.

Week XGR RF SVR

2021-15 0.204 0.188 0.224
2021-16 0.152 0.171 0.223
2021-17 0.172 0.170 0.200
2021-18 0.206 0.194 0.237
2021-19 0.178 0.175 0.232
2021-20 0.176 0.168 0.204
2021-21 0.162 0.177 0.199
2021-22 0.233 0.167 0.213
2021-23 0.270 0.169 0.212
2021-24 0.235 0.178 0.212
2021-25 0.208 0.206 0.238
2021-26 0.249 0.211 0.245
2021-27 0.219 0.191 0.226
2021-28 0.140 0.168 0.219
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Table 17. A comparison of the performance evaluation of the six feature combinations.

Combinations RMSLE

Org_df 0.2085
GT_df 0.197

GT_noWD_df 0.1955
AQI_df 0.1975

AQI_noWD_df 0.1965
Covid_noWD_df 0.1905

4.3. Evaluation Results and Discussion

In terms of results, the ensemble learning model combining RandomForest and XG-
Boost was used as a predictive model, and the data of the week before Week 0 were used as
the data of Week 0; the number of influenza-like cases for Week 1 was predicted. It was
mentioned in the previous section that the three feature combinations with the smallest
error rates were: Covid_noWD_df, GT_noWD_df, and AQI_noWD_df. So, next, the results
of these three feature combinations will be discussed.

The weekly numbers of influenza-like cases for 14 weeks of 2021 were examined and
predicted in this research. As seen from Figures 4–6, the prediction results from Week
15 to Week 18 were close to the actual number of influenza-like cases, and the prediction
error rate for that period was only about 5%. From Week 19, the difference between the
predicted and the actual number of influenza-like cases was huge, and the prediction error
rate increased to 50%. The reason for the increase in the error rate was that in Week 19,
there was an outbreak of COVID-19 in Taiwan, and the number of confirmed cases of
COVID-19 surged. However, the symptoms of COVID-19 are similar to those of influenza,
such as fever, coughs, fatigue, etc.. The incubation period of influenza is 1–4 days, and
it takes approximately 2–14 days for COVID-19 symptoms to appear [56]. Therefore, it
is difficult for people to quickly tell whether they catch a COVID-19 or an influenza-like
virus. According to the guidelines issued by the Taiwan Centers for Disease Control, all
patients who exhibit symptoms of COVID-19 or influenza-like illnesses must report to the
relevant authorities, take appropriate protective measures, and seek medical treatment.
When people find that they have similar symptoms, they choose to seek medical treatment
directly, which leads to an increase in the number of patients of influenza-like illnesses.
At present, the number of confirmed cases of COVID-19 in Taiwan has gradually slowed
down, and the number of clinic or hospital visits by patients of influenza-like illnesses
has also decreased. From Week 21 to Week 26, the predicted and the actual numbers of
influenza-like cases gradually became close to each other, and the prediction error rate for
that period was reduced to 13%.

Figure 4. Predicted results of GT_noWD_df.
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Figure 5. Predicted results of AQI_noWD_df.

Figure 6. Predicted results of Covid_noWD_df.

5. Conclusions and Future Work

Due to the convenience in public transport, viruses can be easily spread to every
corner of the world these days, especially as it can be seen in the COVID-19 pandemic.
However, the symptoms of COVID-19, SARS, H1N1, and Influenza A are very similar.
Before pandemics are said to be caused by influenza viruses, they are called influenza-like
illnesses. If the potential number of influenza-like illness cases can be predicted earlier and
accurately, the predicted results can help the government, hospitals, pharmacies, and com-
panies quickly prepare for the spread of influenza-like cases, as they can help form informed
decisions and take preventive measures. In this research, an ensemble learning approach,
fusing Random Forest and XGBoost learning models, is proposed. Multiple features, such
as the hydrometeorological data, the emergency infectious disease monitoring statistics on
influenza-like illnesses, Google Trends keyword search volumes, the Taiwan public holiday
information, the population density, average temperature differences, air pollution indices,
and the number of COVID-19 confirmed cases, were used in the proposed model.

In our experiments, the weekly numbers of influenza-like cases were predicted for
14 weeks in 2021. The experimental results were compared with the actual numbers of
influenza-like cases. The error rate for the period from Week 15 to Week 18 was within 5%.
In Week 19, there was a sudden surge in the number of influenza-like cases. According
to seasonal flu periods in Taiwan, outbreaks do not occur in summers. Nevertheless,
the number of COVID-19 confirmed cases suddenly increased at that time. It is speculated
that it is because people cannot tell for sure whether they have a common cold, a flu-
like illness, or COVID-19. Moreover, the Taiwan Centers for Disease Control requires all
patients who exhibit symptoms of COVID-19 or influenza-like illnesses to seek medical
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treatment. This led to an increase in the number of patients of influenza-like illnesses being
reported at that time. Three weeks later, the number of confirmed cases of COVID-19 in
Taiwan gradually slowed down, and the number of clinic or hospital visits by patients of
influenza-like illnesses also decreased. The prediction error rate between the predicted and
the actual number of influenza-like cases for that period was reduced to 13%, getting closer
to the actual number of influenza-like cases. The experimental results showed that our
proposed ensemble learning approach could accurately predict the number of influenza-
like cases. The outcomes of our experiments can be practically useful and applied widely,
as they can provide an early warning of an influenza outbreak. The proposed model can
be used to prevent possible threats from these illnesses in a timely manner, to allocate
medical resources reasonably to reduce morbidity and mortality, and to reduce the risk of
transmission of these illnesses.

In the future, the model will be built into a prediction system, which will be provided to
the government, hospitals, pharmacies, and companies to predict the number of influenza-
like illnesses at any time. This will enable them to quickly understand the spread of
influenza-like cases in the future, so that they can form informed decisions and take
preventive measures. This can also help the public understand, through the government
and hospitals, potential large-scale outbreaks of influenza-like illnesses in the near future,
so that they can take measures to protect their own health and safety.
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