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Abstract: The study aims to adopt an artificial neural network (ANN) for modeling industrial energy
demand in Taiwan related to the subsector manufacturing output and climate change. This is the
first study to use the ANN technique to measure the industrial energy demand–manufacturing
output–climate change nexus. The ANN model adopted in this study is a multilayer perceptron
(MLP) with a feedforward backpropagation neural network. This study compares the outcomes of
three ANN activation functions with multiple linear regression (MLR). According to the estimation
results, ANN with a hidden layer and hyperbolic tangent activation function outperforms other
techniques and has statistical solid performance values. The estimation results indicate that industrial
electricity demand in Taiwan is price inelastic or has a negative value of −0.17 to −0.23, with climate
change positively influencing energy demand. The relationship between manufacturing output and
energy consumption is relatively diverse at the disaggregated level.

Keywords: energy demand; manufacturing output; climate change; artificial neural network

1. Introduction

Data published by the International Energy Agency (IEA) [1] illustrates that until
2019, the industrial sector was the highest energy user globally, with a total of 121 million
terajoules. This number has almost doubled compared to the previous three decades. It has
contributed to triggering carbon emissions caused by the industrial sector, which doubled
in the same period. In addition, energy use in industry accounts for 24.2% of greenhouse
gas emissions, and this number is the highest compared to other sectors [2].

At the domestic level, Taiwan is also facing a similar situation. This is due to Taiwan’s
economy being highly dependent on the industrial sector [3]. From data published by
the Taiwan government. Until the third quarter of 2021, the industrial sector contributed
39.87% of Taiwan’s total GDP, of which the manufacturing sector contributed 34.39%. In
addition, the industrial sector also has a reasonably high growth every period, until the
third quarter of 2021, the industrial sector, including the manufacturing industry, grew
13.06% compared to the previous period and contributed to Taiwan’s economic growth of
4.59 points, which is the highest contributor to Taiwan’s economic growth [4].

On the one hand, the large contribution of the industrial sector to Taiwan’s economy
also causes this sector to be the largest energy user in Taiwan. In 2020, the industrial sector
in Taiwan consumed 26,877.4 × 103 kiloliters of oil equivalent (KLOE) of energy, or 31.47%
of total final consumption, an increase of 0.22% from the previous year. In addition, energy
use in this sector is the highest compared to other sectors. Although there was a slowdown
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due to the pandemic impact, energy consumption in the industrial sector still increased.
Examining more specifically with electricity consumption, it is identical: the industrial
sector remains the most extensive electricity user in Taiwan. Until 2020, the use of electricity
by the industrial sector in Taiwan was 150,742.3 gigawatts per hour (GWh) or equivalent to
59.83% of the total final consumption.

Based on the industrial subsector, it can be seen in Figure 1 that the electrical and
electronic machinery industry is the highest electric consumer. Based on data from the
BOE [5], the electrical and electronic machinery industry consumed 55,668 GWh of electric-
ity, or equivalent to 36.9% of the total consumption of the industrial sector. The amount is
even higher than consumption in other sectors, such as the service sector and residential
sector, with consumption levels of 46,237 GWh and 50,207 GWh, respectively. Besides the
high level of energy demand, Taiwan has a problem of low resources, which causes 98% of
the total energy use in Taiwan to attain from imports, of which 93% are fossil fuels. This
causes Taiwan to handle two problems, the risk of energy dependence from abroad and
high carbon emissions.
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It is rather crucial to comprehend the energy demand model based on the situation,
especially industrial electricity demand, in Taiwan. However, there has been no research
on industrial electricity demand in relation to climate change in Taiwan, to our knowledge.
This is not unexpected because studies on industrial energy demand are infrequently
discovered (Bernstein and Madlener [6]). One reason is that the industrial sector is one of
the most challenging end-users to studying, modeling, and forecasting [7]. According to
Agnolucci et al. [8], the problem lies in aggregation problems, such as high heterogeneity
in the industry, lumpy investment, time lags between investment and energy consumption,
and energy price diversity.

Many studies on industrial energy demand refer to the seminal paper by Berndt
and Wood [9], who used a single-equation approach to model industrial energy demand
with inputs of capital, labor, and intermediate materials. After that, the use of the single-
equation approach certainly became prevalent in measuring industrial energy demand [10].
According to Adeyemi and Hunt [11], the popularity of the single-equation approach is
due to its simplicity, straightforward interpretation, and ease of data usage.

In general, empirical assessment techniques for energy demand modeling is classified
into conventional, machine learning, and deep learning methods, and it employs both
parametric and nonparametric approaches [12–14]. Time-series methods commonly used
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to measure energy demand include autoregressive (AR), vector autoregressive (VAR),
autoregressive moving average (ARMA), autoregressive moving average (ARIMA), and
ARIMA with exogenous variables (ARIMAX). Several studies employed regression models
in addition to time-series models. Some studies, such as those conducted by Ouedraogo [15]
and Harris et al. [16], employed logistic regression. Multiple linear regression is another
popular regression model. Kipping and Trømborg [17] employed this model to forecast
electricity consumption in Norway, and Kovačič and Šarler [18] employed MLR to forecast
gas consumption in Slovenia. Bianco et al. [19] analyzed the natural gas consumption
in the Italian residential sector. They used MLR with a logarithmic function containing
the research, which took the form of a standard dynamic constant elasticity function of
consumption. Because the models are more diverse, and their applications can be found
in many fields, one of which is the environmental field, parametric approaches tend to be
easier [20]. They also require less data than machine learning models [13].

Furthermore, artificial neural networks (ANN), support vector machines (SVM), and
long-short-term memory (LSTM) are machine learning methods that are commonly used in
energy consumption modeling [21,22]. Feedforward neural network (FFNN), backpropaga-
tion neural network (BPNN), and adaptive network-based fuzzy inference system (ANFIS)
are some of the ANN models used [13]. Several studies that measure energy demand using
ANN include those conducted by Szoplik [23]. It estimates Poland’s energy demand using
ANN and a multilayer perceptron model. Then, Soldo et al. [24] used ANN and SVM to
forecast residential natural gas consumption in their study. In addition, Amber et al. [25]
conducted a study that compared the estimation results of multiple regression, genetic
programming, ANN, DNN, and SVM. According to the findings of their research, ANN
outperforms all four other techniques. Machine learning, according to Parmezan et al. [26],
has flexible structures and nonparametric procedures for capturing and identifying complex
interactions and nonlinear relationships among variables.

Specifically for measuring industrial energy demand, several approaches are used,
including using time-series analysis with time-varying parameters [27]. The study’s find-
ings, based on data from Korea’s residential and industrial sectors, show that conditional
factor demands in the industrial sectors are more elastic than those in the residential sector,
and that those elasticities have also increased significantly. Another study that measures
industrial energy demand using time-varying parameters was carried out by Wang and
Mogi [28]. They employed a time-varying parameter model in conjunction with the Kalman
filter. According to the findings, industrial consumers have become less price sensitive
following the deregulation of electricity and the financial crisis. However, one of the
drawbacks of TVP is the risk of overfitting, which increases as the number of coefficients
in the model increases [29]. Another method is vector autoregressive (VAR), as used by
Agnolucci, De Lipsis, and Arvanitopoulos [8], who used industrial energy demand data up
to disaggregated levels in the UK. This study yielded disparate findings regarding the long-
term impact of economic activity and energy prices on industrial energy consumption. In
addition to TVP and VAR, the structural time-series model proposed by Harvey [30] is used
for modeling industrial energy demand. Adeyemi and Hunt [11], Adeyemi and Hunt [31],
and Alarenan, Gasim, and Hunt [10] are studies that use this approach. Adeyemi and
Hunt [31] discovered that almost all of the preferred models for OECD industrial energy
demand incorporate a stochastic underlying energy demand trend and asymmetric price
responses using data on industrial energy consumption. Furthermore, Alarenan, Gasim,
and Hunt [10] discovered that in Saudi Arabia’s energy demand model, both energy prices
and income are inelastic.

In addition to the conventional methods above, modeling industrial energy demand
using machine learning is more challenging to find than conventional methods. Several
previous studies using machine learning were carried out by Kucukali and Baris [32] using
fuzzy logic. Their research forecasts Turkey’s short-term gross annual electricity demand.
The result shows 3.9 percent absolute relative error. According to the study findings, the
advantage of this model is its ability to mimic human thinking and reasoning. Bilgili
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et al. [33] used ANN, linear regression, and nonlinear regression to estimate industrial
energy demand in Turkey. The electricity consumption prediction was based on two
different scenarios, and the results of the three methods were compared, with the ANN
method producing better predictions than the LR and NLR methods. The same result is
shown by Azadeh et al. [34], who compared the estimation of industrial energy demand
using ANN and ANOVA. The study’s findings indicate that ANN outperforms ANOVA.
Ramos et al. [35] conducted a more recent study that measured energy consumption in
industrial buildings using ANN and incremental learning to improve forecast accuracy.
Their study’s findings indicate that ANN is capable of predicting electricity consumption
in industrial buildings. Another approach is using the cointegration panel conducted by
El-Shazly [36]. Several studies also focus on the problem of asymmetric prices [37,38],
which Adeyemi and Hunt [11], Adeyemi and Hunt [31], applied to the industrial energy
demand sector.

In the case of Taiwan, there are several studies that measure the relationship between
electricity consumption and economic growth. The study from Pao [39], with the new error-
correction state space (ECSTSP) model, STSP, and SARIMA, found a strong forecasting
performance through the model proposed. The study also found a unilateral short- and
long-term causality from real GDP to electricity consumption. Concerning the industrial
sector, compelling research was completed by Lu et al. [40], who measured the potential for
energy savings in the six most energy-intensive industrial sectors in Taiwan. With the BAT
approach, they found that the total energy savings in the industrial sector are estimated
at 66.3 TWh or about 5.3% of national energy use. Additionally, the reduction in GHG
emissions from the six industries was estimated to be around 16.2 Mt-CO2 or around 6.4%
of the national GHG emissions. Another study from Lu [41], who investigated the Granger
causality between electricity consumption and economic growth in 17 Taiwanese industries,
found that a 1% increase in electricity consumption raises the real GDP by 1.72%.

Based on the findings of previous studies, it can be seen that machine learning methods
have advantages over conventional methods in several studies. However, the application
of machine learning for modeling industrial energy demand and its relationship to climate
change is even more limited. Therefore, our study employs ANN to model industrial
energy demand in Taiwan and its relationship to subsector manufacturing output and
climate change. This work used three activation function models in the ANN analysis, and
the study also measured using multiple linear regression (MLR). Thus, the study compared
three activation function models in ANN and MLR.

ANN is a mathematical model consisting of interconnected neurons that process
information using a computing-based connection. ANN performs the processing of the
information entered into the network during the learning process. One of the advantages
contained by ANN is that it cannot only process linear data but is also useful at processing
nonlinear data because it can learn data flows directly [42–46]. ANN as an alternative to
statistical modeling and forecasting has been widely used today because, in some literature,
it shows better performance when compared to the regression model [45,47,48]. In addition,
ANN is also used to identify, model, and predict complex systems in various cases [49–53],
including that was recently used to forecast cryptocurrency volatility [54,55]. To the best
of our knowledge, no previous studies have used the ANN approach to model industrial
energy demand and its relationship to subsector manufacturing output and climate change
in Taiwan.

Based on the explanation, this study aims to adopt the ANN to model industrial
energy demand in Taiwan and its relation to subsector manufacturing output and climate
change. Hence, this research has several contributions to the industrial energy demand
literature. First, we emphasize that this paper is the first to measure industrial energy
demand using an artificial neural network by assessing the climate change factor as one
of the critical determinants in the industrial energy demand model. This study also uses
disaggregated level data, where studies on industrial energy demand using the subsector
level data are still rarely found. Thus, the method in this study can be an alternative for
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modeling energy demand because it has a statistically good performance. Second, this
research is not only important from an academic perspective, but the study results are also
essential to be input for policymakers in Taiwan concerning industrial energy demand
elasticity policy.

The remainder of this paper is organized as follows. Section 2 describes the method-
ology and data. Section 3 explains the findings of the measurement. Section 4 provides
the discussions, and Section 5 concludes the paper by providing the conclusion, research
limitations, and avenues for future research.

2. Methodology and Data
2.1. Methodology

This research used a multilayer perceptron (MLP) with a feedforward backpropagation
neural network [47,56,57]. The model consists of several neurons in the input layer, and the
signal moves from the input layer to the hidden layer, then to the output layer [42,44]. Back-
propagation has the advantage of being able to minimize the following cost function related
to weights and neurons [58]. Figure 2 illustrates a multilayer perceptron anatomy [59]. This
study employs R software to perform data processing and analysis, as well as to generate
figures, and several figures also use Stata software.
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Figure 2. MLP anatomy.

In general, there are several steps to constructing a neural network. It begins by
preprocessing the data by normalizing it. Second, the data are distributed based on the
training and testing data obtained. Third, the number of hidden layers and neurons used
in the model is determined. The fourth stage is to evaluate the activation function in the
model. The work began preprocessing the data by normalizing them, then normalizing
the data using minimum–maximum normalization into a specific range between 0 and
1. This method is commonly used because it is more convenient when performing data
learning [60].

Yi =
yi − ymin

ymax − ymin
(1)

where Yi is normalization value from yi, if yi (i = 1,2,3, . . . ,n).
The data are then divided into training and testing sets. This separation is used to

validate the performance of the data used, thereby verifying the level of accuracy. According
to Nefeslioglu et al. [61], the data separation does not follow strict mathematical rules in
determining the size of the data used. In this study, we used a 70:30 ratio for training and
testing the data set.

In the third stage, according to Heaton [62], the number of hidden layers used in the
neural network does not have a tightly theoretical basis. Several basic options, including
no hidden layers and up to two hidden layers, can be used empirically. One hidden layer,
on the other hand, can estimate a variety of functions by continuously mapping from one
finite space to another [62]. As a result, this study experimented with one and two hidden
layers and compared the results. After that, in determining the number of neurons in the
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hidden layer, this research used 30 nodes for one hidden layer and 20:10 nodes for two
hidden layers.

The next step in this study is to evaluate the model’s activation function. As a possible
consequence, this research compares three types of common activation functions as dis-
played in Figure 3: linear (purelin) functions, the hyperbolic tangent-sigmoid (tansig) and
logsigmoid (logsig). These functions are commonly applied as activation functions to solve
nonlinear and linear regression problems [63].

Sustainability 2022, 14, x FOR PEER REVIEW 6 of 18 
 

 

no hidden layers and up to two hidden layers, can be used empirically. One hidden layer, 

on the other hand, can estimate a variety of functions by continuously mapping from one 

finite space to another [62]. As a result, this study experimented with one and two hidden 

layers and compared the results. After that, in determining the number of neurons in the 

hidden layer, this research used 30 nodes for one hidden layer and 20:10 nodes for two 

hidden layers. 

The next step in this study is to evaluate the model’s activation function. As a possible 

consequence, this research compares three types of common activation functions as dis-

played in Figure 3: linear (purelin) functions, the hyperbolic tangent-sigmoid (tansig) and 

logsigmoid (logsig). These functions are commonly applied as activation functions to 

solve nonlinear and linear regression problems [63]. 

Figure 3. Activation function used in this study. 

Moreover, based on Haykin [44], the adoption of multilayer perceptron (MLP) in the 

study has a structure with the input 𝑥1, 𝑥2, … , 𝑥𝑖 and weights 𝜔𝑗1, 𝜔𝑗2, … , 𝜔𝑗𝑖. Then, 𝜐 is 

the weighted sum of inputs, and b is bias. Mathematically, the description of the MLP 

model is following the equations: 

𝜐𝑗𝑖 = 𝑏𝑗 + ∑ 𝜔𝑗𝑖𝑥𝑖

𝑚

𝑖=1

  (2) 

where m is the number of inputs used by neurons j. The learning process in the perceptron 

is accomplished by varying the connection weight for each part of the data based on the 

number of errors in the output. The error can be represented by the following equation: 

𝑒𝑗𝑖 = 𝑑𝑗𝑖 − 𝑦𝑗𝑖 (3) 

From the equation above, j is the output node, d is the target value, and y is the MLP 

value produced [46]. The sum of the weights on the hidden layer to the output layer is 

fixed to 1 based on Equation (2), and the output is computed by the following equation: 

Figure 3. Activation function used in this study.

Moreover, based on Haykin [44], the adoption of multilayer perceptron (MLP) in the
study has a structure with the input x1, x2, . . . , xi and weights ωj1, ωj2, . . . , ωji. Then, υ
is the weighted sum of inputs, and b is bias. Mathematically, the description of the MLP
model is following the equations:

υji = bj +
m

∑
i=1

ωjixi (2)

where m is the number of inputs used by neurons j. The learning process in the perceptron
is accomplished by varying the connection weight for each part of the data based on the
number of errors in the output. The error can be represented by the following equation:

eji = dji − yji (3)

From the equation above, j is the output node, d is the target value, and y is the MLP
value produced [46]. The sum of the weights on the hidden layer to the output layer is
fixed to 1 based on Equation (2), and the output is computed by the following equation:

O = f

(
k

∏
j=1

vji

)
(4)

where f is the activation function used in the study, and k is the network’s analogous
order. This study also measured the industrial energy demand model using multiple linear
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regression (MLR) to compare the results of the ANN estimation. The MLR model used
in this study is expressed as a linear logarithmic function with the shape of a parametric
persistent elasticity function of consumption [19,64]. The autocorrelation problem is one of
the issues that can arise with time-series data, particularly when error terms in a regression
model correlate over time. As a result, this research used the Durbin–Watson test to examine
the data. The test results show that the Durbin–Watson statistic is 1.993, indicating that
there is no serial correlation between the model’s residuals [25,45,46,65].

To be even more convincing, we examined the error term’s autocorrelation function
(ACF) and partial autocorrelation function (PACF) plots. The ACF plot in Figure 4 shows
that there is a significant spike at lag 5, indicating that there is serial autocorrelation in the
residuals. Furthermore, the PACF plot shown in Figure 4 provides the same value. As a
result, the estimated model violates the assumption of no autocorrelation in the errors, and
our forecasts may be inefficient, based on the ACF and PACF plots. Estimates from a model
with autocorrelated residuals are still unbiased, but they usually have wider prediction
intervals than necessary [66]. The MLR with logarithmic function follows this equation:

lnECt = α + β1lnPt + β2lnDDt + βi

n

∑
n=1

lnMOt + ut (5)

where MO is manufacturing output that will be separated into disaggregate levels in our
analysis. As a result, this study makes a comparison from the estimation results of the
seven models used. The values of the mean absolute error (MAE), root mean squared error
(RMSE), mean absolute percentage error (MAPE), and adjusted R2 will be used to compare
the performance of all the methods.

MAE =
1
n

n

∑
i=1

∣∣Ŷi − Yi
∣∣ (6)

RMSE =

√
1
n

n

∑
i=1

(
Ŷi − Yi

)2 (7)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (8)

Adjusted R2 = 1 −

(
1 − R2

)
(n − 1)

n − p − 1
(9)

where Yi is the actual value, Yi is the mean of actual value, Ŷi is the estimated value, n is the
number of observations, and p is the number of independent variables. In the investigation,
this work used the trial-and-error method used by Ghasemiyeh, Moghdani, and Sana [63]
to select the best model. Table 1 shows the structure of the neural network that was utilized
to conduct the experiment.

Table 1. Proposed neural network structure.

Structure Explanation

Number of layers 3 and 4
Number of hidden layers 1 and 2
Number of nodes 30, 20:10
Activation function Linear, sigmoid, Tansig
Preprocessing (data range) [0 1] for Linear and Sigmoid, [−1 1] for Tansig
Percentage of training and test set 70:30
Number of inputs 29
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2.2. Data

The dataset used in this study consists of four main variables: electricity consumption,
electricity prices, degree days to demonstrate climate change, and manufacturing output as
a measure of economic activity. The variables are observed monthly between January 1998
and December 2019. Table 2 displays the descriptive statistics.

Data on electricity consumption and electricity prices were observed from the Bureau
of Energy, Ministry of Economic Affairs Taiwan. In this study, manufacturing output data
is used up to the subsector level, which contains 27 industrials subsectors. The data were
collected from the Ministry of Economic Affairs’ Department of Statistics. Furthermore,
the degree days data were derived from temperature data published by Taiwan’s Central
Weather Bureau. We used a widely used formula to calculate degree days, which is to add
heating degree days (HDD) and cooling degree days (CDD) [67], as follows:

HDD =
n

∑
i=1

(Tbase − Tn)M (10)

CDD =
n

∑
i=1

(Tn − Tbase)M (11)

where Tbase refers to the base temperature of the degree day. Tn is the average daily tem-
perature obtained from the daily maximum temperature and daily minimum temperature
divided by two. Thus, the DD value is obtained from the sum of the HDD and CDD.

DD = HDD + CDD (12)



Sustainability 2022, 14, 2896 9 of 18

Table 2. Descriptive statistics.

Description Variable Mean Std. Dev. Min Max

Electricity Consumption (GWh) EC 18,624.3 3268.13 10,398.7 24,900
Price Rate (NTD/KWh) P 2.4223 0.3163 2.052 3.070
Degree Days DD 353.3 181.77 64.4 664.6
Manufacture Output (Thousand NTD):
Basic Metal BM 102,000 34,700 39,900 181,000
Fabricated Metal Products FMP 57,000 11,000 29,900 74,900
Electrical Equipment EE 29,800 4348 16,200 40,400
Machinery and Equipment ME 45,500 11,200 21,400 68,100
Motor Vehicles and Parts MVP 28,900 5919 12,700 42,200
Transport Equipment and Parts TEP 18,400 4626 8660 29,300
Repair and Installation RI 46,280 2334 1158 10,600
Electronic Parts and Component EPC 231,000 79,900 77,100 351,000
Computers and Electronic CEO 65,600 12,200 33,900 96,700
Leather and Fur LF 2501 1065 779 5600
Paper and Paper Products PAP 13,100 1751 7306 16,400
Printing and Reproduction PR 5855 708 3634 7820
Petroleum and Coal Products PCP 71,500 30,300 18,800 147,000
Chemical Material MCM 129,000 48,500 33,400 219,000
Other Chemical Products OCP 17,800 4709 8271 25,800
Pharmaceuticals and Medicinal PMC 5002 1208 2783 8272
Rubber Products RP 6895 1411 3736 9376
Plastics Products PP 24,200 2321 14,000 28,100
Food Products and Animal Feeds FPAF 35,000 6732 22,400 51,500
Beverages MB 7743 1111 4953 10,900
Tobacco Products TP 3488 1584 1322 9281
Textiles MT 25,900 3957 13,900 37,000
Apparel and Clothing ACA 3630 2189 1115 11,900
Products of Wood and Bamboo PWB 1581 2853 834 2484
Nonmetallic Mineral NMP 17,100 2128 10,500 22,000
Furniture MF 3184 6492 1822 5363
Other Manufacturing O 10,800 1915 6937 16,800

3. Results

In this section, the ANN architecture is trained using 264 observation data and 30
variables, of which 185 are training data, and 79 are testing data. This work used a trial-
and-error method [63,68] to find the best model based on the activation functions used
in this study. Additionally, the analysis compares the ANN results with the MLR model.
According to Figure 5, the performance of the BP-FFNN model in this study is more promis-
ing than the MLR model because the distribution plot generated by ANN is more closely
aligned with the ideal line. This is because the neural network produces better prediction
results than the MLR model. Our findings also support the results of past researchers,
who found that ANN produced better estimation results than MLR [42,46,51,61]. When
comparing the three ANN functions used in our analysis (linear, sigmoid, and tansig),
the hyperbolic tangent-sigmoid function (tansig) has an ideal value distribution. This is
supported by nearly the same value when using one hidden layer and two hidden layers.

In addition to testing the performance between the predicted and actual values, as
shown in Figure 5, this study also tested each activation function’s forecasting ability.
Figure 6 depicts the forecasting results of each activation function over a 12-month period
using train and test datasets. The forecasting results in each model show an increasing
trend in Taiwan’s industrial energy demand.
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In this study, the best model was selected by comparing the MAE, RMSE, MAPE, and
adj-R2 values. Table 3 displays that an ANN with one hidden layer and 30 nodes using
a tansig activation function has the lowest MAE, RMSE, and MAPE values, as well as
the highest adjusted R2 values. As a result, our experiment revealed that BP-FFNN with
the hyperbolic tangent-sigmoid activation function produced the best results. In order to
evaluate the model’s performance, we plotted the real value against the predicted value
generated by the ANN model, as shown in Figure 5. To be confident, we performed the
same plotting with MLR.
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Table 3. Model comparison.

Methods f(xj) Nodes Data Type
MAE RMSE MAPE Adj-R2

Value Rank Value Rank Value Rank Value Rank

MLR - - - 0.028 7 0.036 11 2.861 6 0.956 11

BP-FFNN

Linear 30
Train 0.014 5 0.019 6 2.630 5 0.990 5
Test 0.015 6 0.016 5 2.427 4 0.983 6

Linear 20,10
Train 0.081 8 0.024 8 4.440 8 0.968 8
Test 0.083 10 0.032 10 4.294 7 0.964 10

Sigmoid 30
Train 0.082 9 0.023 7 5.198 11 0.967 9
Test 0.084 12 0.027 9 5.046 10 0.953 12

Sigmoid 20,10
Train 0.083 10 0.041 12 6.723 12 0.973 7
Test 0.088 13 0.057 13 7.396 13 0.919 13

Tansig 30
Train 0.005 2 0.003 1 1.066 2 0.996 4
Test 0.003 1 0.008 2 0.829 1 0.999 1

Tansig 20,10
Train 0.008 4 0.014 4 4.499 9 0.997 3
Test 0.005 2 0.011 3 2.211 3 0.999 1
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The average rating was measured based on the validation criteria (MAE, RMSE, MAPE,
and adj-R2) to determine the score for each model, as shown in Table 3. The final score
results for each proposed model are shown in this table. Based on the validation criteria
comparison results, it is clear that ANN with a sigmoid activation function has the poorest
performance. It is primarily indicated in the model with two hidden layers because the
model receives the lowest ranking with the highest MAE, RMSE, and MAPE, while the
adjusted R2 value is the smallest. MLR produces better results than ANN with a sigmoid
activation function in terms of MAE, RMSE, MAPE, and adjusted R2 values. Even for some
criteria, such as MAE and MAPE, MLR outperforms ANN with a linear activation function.
Overall, it can be seen that the ANN value with linear activation function outperforms MLR
for each assessment parameter. If we look at the validation criteria for all of the estimation
techniques used in this study, we can see that the ANN with hyperbolic tangent-sigmoid
has the best results. When compared to the entire proposed model, the model with one
hidden layer has the lowest MAE, RMSE, and MAPE values of 0.003, 0.008, and 0.829,
respectively, and the highest adjusted R2 value of 99.9%.

4. Discussion

Based on a comparison of MAE, RMSE, MAPE, and adj-R2 values, the estimation
results show that the hyperbolic tangent-sigmoid model is the best model. As a result, the
variable importance is measured using that activation function. To calculate the variable
importance, we used the method proposed by Goh [56] and Garson [69], which divides
the hidden output connection weights into components associated with each input neuron
based on the absolute value of the connection weights [70]. However, one of the model’s
drawbacks is its use of absolute values, which do not reflect the actual value. Therefore, we
modified it by using the model proposed by Olden and Jackson [71]. Figure 7 depicts the
end result.
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Figure 7. Variable importance.

The results of the relative importance estimation show that the electricity price variable
has a negative value of −0.17 to −0.23. In general, the negative relationship between price
and industrial electricity demand indicates that the price of electricity is price inelastic.
In comparison to the price elasticity of Taiwanese household electricity demand, which
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is −0.11 to −0.21 [42], industrial electricity demand in Taiwan is significantly more price
elastic. In other words, the industrial sector, particularly the Taiwanese manufacturing
industry, is more sensitive to changes in electricity prices than the household sector. How-
ever, it should be noted that the price elasticity generated by ANN will require further
consideration in the future because the value generated by the ANN’s relative importance
measurement is not identical to the conventional regression technique. As a result, in order
to increase confidence in the value of relative importance, we compared it to the estimation
results generated by MLR. Table 4 demonstrates that though. When the two models are
compared, the result shows that the price elasticity of industrial energy demand in Taiwan
is inelastic. According to the MLR estimation results, the coefficient value of the electricity
price is negative or inelastic with a value of −0.183 and significant at 5% alpha.

Table 4. ANN and MLR estimation.

Input ANN
MLR

Train Test

Intercept 0.787 ***
Price −0.229 −0.17 −0.183 **
Degree Days 0.305 0.176 0.078 ***
Basic Metal −0.290 0.316 −0.074 *
Fabricated Metal Products 0.592 −0.189 0.141
Electrical Equipment 0.377 0.405 −0.237 ***
Machinery and Equipment 0.103 −0.375 −0.012
Motor Vehicles and Parts 0.034 0.064 −0.037 *
Transport Equipment and Parts 0.129 0.339 0.091 *
Repair and Installation 0.108 0.034 0.098 ***
Electronic Parts and Component −0.059 0.013 0.188 ***
Computers and Electronic 0.425 0.505 0.055 *
Leather and Fur −0.687 −0.724 −0.068 *
Paper and Paper Products 0.109 0.224 −0.047
Printing and Reproduction −0.030 0.001 0.067 *
Petroleum and Coal Products −0.205 −0.168 0.041 *
Chemical Material −0.015 −0.257 0.026
Other Chemical Products −0.495 −0.246 0.235 **
Pharmaceuticals and Medicinal −0.256 −0.241 0.023
Rubber Products 0.001 −0.219 −0.009
Plastics Products −0.735 −0.999 0.044
Food Products and Animal Feeds −0.421 −0.217 0.011
Beverages 0.080 0.568 0.033
Tobacco Products 0.053 0.542 0.011
Textiles 1.00 0.467 −0.082
Apparel and Clothing −0.149 −0.079 0.151 ***
Products of Wood and Bamboo −0.017 −0.135 0.050
Nonmetallic Mineral 0.022 −0.055 0.001
Furniture −0.482 −0.573 −0.173 ***
Other Manufacturing 0.423 0.306 0.068

Note: *, ** and *** denote 10%, 5%, and 1% levels of significance, respectively.

The climate change factor indicated by the change in degree days in this study has a
positive relationship with industrial energy demand in Taiwan, with a value of 0.31 in train
data and 0.18 in test datasets. It suggests that the rise in climate change will increase energy
demand. These findings also corroborate the findings of previous studies by numerous
researchers who linked the temperature condition factor with the proclivity to increase
the use of electrical energy in households [42,67,72–77]. The findings from this research
show that the increase in electricity consumption caused by climate change occurs not only
in households but also in the industrial sector. This positive relative importance value is
supported by the MLR estimation results, which are also positive, with values of 0.08 and
statistically significant at 1% alpha.
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Furthermore, according to the relative importance shown in Figure 7, the variable
industrial output of plastic product manufacture, with a value of −0.73, has the strongest
negative relationship with electricity consumption in Taiwan, while the variable industrial
output of textiles manufacture, with a value of 1, has the strongest positive relationship
with electricity consumption. Additionally, the variable of rubber product manufacture has
a relative importance value close to zero, indicating that this variable is not significantly
related to industrial electricity consumption in Taiwan. This value, however, is most likely
to have a minor impact on the response variable [48]. In addition to the manufacture of
plastic products, several manufacturing companies have a negative relative importance
in terms of energy demand, including the manufacture of leather and fur, other chemical
products, furniture, food products, basic metals, pharmaceutical and medicine, petroleum
and coal products, wearing apparel and clothing, electronic parts, printings, woods, and
chemical materials. Furthermore, manufacturing of other nonmetallic mineral products
has a positive relative importance relationship with industrial energy consumption, such
as motor vehicles, tobacco products, beverages, machinery and equipment, repair and
installation, paper, other transport equipment, electrical equipment, computers, electronic
and optical products, and fabricated metal products.

Additionally, the estimates of manufacturing output at the disaggregated level show
varying and disparate values for ANN and MLR. Previous research has shown that this
difference in estimates is common [42,45–47,51,65,78]. Because, as previously stated, the
relative importance of the ANN with the results of the MLR regression coefficient is
calculated using a different technique [48,69]. However, based on the estimation results
and statistical performance demonstrated in this study, ANN can be a viable option for
modeling industrial energy demand.

5. Conclusions

Taiwan’s industrial sector is a key economic driver and contributor to the country’s
GDP. On the one hand, this industry is Taiwan’s largest energy consumer and one of the
highest carbon emitters. Therefore, it is critical to analyze the industrial energy demand
model in order to develop the best policy. However, literature on modeling industrial
energy demand in Taiwan in relation to manufacturing output and climate change remains
scarce. Therefore, the main objective of this research is to use machine learning to analyze
industrial energy demand models related to the manufacturing output subsector and
climate change.

In this study, we used ANN as the machine learning method, and we applied three
activation functions and compared the results to MLR. We used a multilayer perceptron
(MLP) with a feedforward backpropagation neural network as our ANN model. We
compared the performance of each model’s MAE, RMSE, MAPE, and adjusted R2 values to
determine the best model among three activation functions and MLR.

Based on the data from this study’s estimation, it was discovered that ANN with
one hidden layer and a hyperbolic tangent-sigmoid activation function performed the
best. The statistical performance values show that the MAE, RMSE, MAPE, and adjusted
R2 values are 0.003, 0.008, 0.829, and 99.9 percent, respectively. The model’s relative
importance estimation result shows that industrial electricity demand in Taiwan is price
inelastic or has a negative value of −0.17 to −0.23. Furthermore, the climate change factor
as measured by changes in degree days has a positive relationship with Taiwan’s industrial
electricity demand. It demonstrates that as global warming worsens, industrial electricity
use will increase. In this study, the value-added industry as measured by manufacturing
output at the disaggregated level indicates that the manufacturing industry has various
important relationships with industrial energy consumption in Taiwan. According to the
experimental results of this study, ANN can be used as an alternative to industrial energy
demand modeling, as demonstrated by a powerful statistical performance that outperforms
conventional techniques.
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However, this study has several limitations. For starters, the amount of data used in
this study was small. It is due to the availability of data, where data on manufacturing
output at the subsector level that the government publishes only reaches the data used in
this study. Additionally, collecting more comprehensive data necessitates a more compli-
cated bureaucracy. More data are required to obtain better neural network training, testing,
and validation results. Second, lack of development of the ANN model and comparison
with other models. Based on the goal of this research is to use ANN as an alternative to
industrial energy demand modeling, the ANN approach used is a basic model with no
further development, such as the use of a hybrid model [49,52,63] or adopting more models,
both parametric and nonparametric [21]. As a result, the issue for further research is to
address the limitations of this study, such as using larger datasets, employing a hybrid
model, and employing more diverse estimation techniques so that the estimation results
obtained are much better.
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