Bootstrapped DEA and Clustering Analysis of Eco-Efficiency in China’s Hotel Industry
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. The Bootstrap-Based Test of Returns to Scale
- (i)
- Use the appropriate DEA model to calculate (=) (h = 1, 2, …, H).
- (ii)
- Randomly draw a sample of size H with replacement from the following set:to obtain .
- (iii)
- Calculate , where , , and are respectively the standard deviation and the interquartile range of , draws randomly from a standard normal distribution, and and are the mean and standard deviation of , respectively.
- (iv)
- Calculate the bootstrap estimate (h = 1, 2,…, H ) by the appropriate DEA model with technology (V*, B, U), where V*, , and if and otherwise.
- (v)
- Re-do the above steps (ii)~(iv) L times to get bootstrap estimates for .
3.2. Correcting Eco-Efficiency Bias
3.3. The Bootstrap Test for Comparison of Two Means
3.4. Data and Input–Output Variables
4. Results and Discussion
4.1. Bootstrap-Based Test of Returns to Scale
4.2. General Analysis
4.3. Analysis of Coastal and Inland Hotel Industries
4.4. Cluster Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Report on World Tourism Economy Trends. 2020. Available online: https://cn.wtcf.org.cn/special/2020/0110/4988.html (accessed on 26 January 2022).
- Sustainable Stock Exchanges. Sustainable Stock Exchanges Initiative: Model Guidance on Reporting ESG Information to Investors. 2015. Available online: www.sseinitiative.org/wp-content/uploads/2015/09/SSE-Model-Guidance-on-Reporting-ESG.pdf (accessed on 29 February 2020).
- World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- World Tourism Organization; International Transport Forum. Transport-Related CO2 Emissions of the Tourism Sector—Modelling Results; UNWTO: Madrid, Spain, 2019. [Google Scholar] [CrossRef]
- Malefors, C.; Callewaert, P.; Hansson, P.A.; Hartikainen, H.; Pietilainen, O.; Strid, I.; Strotmann, C.; Eriksson, M. Towards a baseline for Food-Waste quantification in the hospitality Sector-Quantities and data processing criteria. Sustainability 2019, 11, 3541. [Google Scholar] [CrossRef] [Green Version]
- Amicarelli, V.; Aluculusei, A.C.; Lagioia, G.; Pamfilie, R.; Bux, C. How to manage and minimize food waste in the hotel industry? An exploratory research. Int. J. Cult. Tour. Hosp. Res. 2021. [Google Scholar] [CrossRef]
- International Hotel Environmental Initiative. Hotels Case: Community Action and Responsibility for the Environment; IHEI: London, UK, 2002. [Google Scholar]
- Pirani, S.I.; Arafat, H. Solid waste management in the hospitality industry: A review. J. Environ. Manag. 2014, 146, 320–336. [Google Scholar] [CrossRef] [PubMed]
- Abdulredha, M.; Al Khaddar, R.; Jordan, D.; Kot, P.; Abdulridha, A.; Hashim, K. Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression. Waste Manag. 2018, 77, 388–400. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.; Leach, B.; Christensen, K.; Armstron, G.D.; Hawkins, R.P.; Lane, A.J.G.; Scholes, P. The Composition of Waste Disposed of by the UK Hospitality Industry; Report RES093-001; Waste & Resources Action Programme (WRAP): Banbury, UK, 2011. [Google Scholar]
- Hall, C.M. Framing behavioural approaches to understanding and governing sustainable tourism consumption: Beyond neoliberalism, “nudging” and “green growth”? J. Sustain. Tour. 2013, 21, 1091–1109. [Google Scholar] [CrossRef]
- Bella, G. Estimating the tourism induced environmental Kuznets curve in France. J. Sustain. Tour. 2018, 26, 2043–2052. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.-H.; Qi, Q. Domestic tourism demand of urban and rural residents in China: Does relative income matter? Tour. Manag. 2014, 40, 193–202. [Google Scholar] [CrossRef] [Green Version]
- York, Q.Y.; Zhang, H.Q. The determinants of the 1999 and 2007 chinese golden holiday system: A content analysis of official documentation. Tour. Manag. 2010, 31, 881–890. [Google Scholar] [CrossRef]
- Deng, T.; Li, X.; Ma, M. Evaluating impact of air pollution on China’s inbound tourism industry: A spatial econometric approach. Asia Pac. J. Tour. Res. 2017, 2, 771–780. [Google Scholar] [CrossRef]
- World Travel and Tourism Council. Economic Impact Reports. 2019. Available online: https://www.wttc.org/economic-impact/country-analysis/ (accessed on 14 October 2020).
- Verfaillie, H.A.; Bidwell, R. Measuring Eco-Efficiency. In A Guide to Reporting Company Performance; World Business Council for Sustainable Development: Geneva, Switzerland, 2000. [Google Scholar]
- Amicarelli, V.; Rana, L.R.; Lombardi, M.; Bux, C. Material flow analysis and sustainability of the Italian meat industry. J. Clean. Prod. 2021, 299, 126902. [Google Scholar] [CrossRef]
- United Nations. Eco-Efficiency Indicators: Measuring Resource-Use Efficiency and the Impact of Economic Activities on the Environment; ST/ESCAP/2561; United Nations Publication: Bangkok, Thailand, 2009. [Google Scholar]
- Gossling, S.; Peeters, P.; Ceron, J.P.; Dubois, G.; Patterson, T.; Richardson, R.B. The eco-efficiency of tourism. Ecol. Econ. 2005, 54, 417–434. [Google Scholar] [CrossRef]
- Zha, J.; Yuan, W.; Dai, J.; Tan, T.; He, L. Eco-efficiency, eco-productivity and tourism growth in China: A non-convex metafrontier DEA-based decomposition model. J. Sustain. Tour. 2020, 28, 663–685. [Google Scholar] [CrossRef]
- Hadjikakou, M.; Miller, G.; Chenoweth, J.; Druckman, A.; Zoumides, C. A comprehensive framework for comparing water use intensity across different tourist types. J. Sustain. Tour. 2015, 23, 1445–1467. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Yang, X.; Cheng, G.; Wang, S. A comprehensive eco-efficiency model and dynamics of regional eco-efficiency in China. J. Clean. Prod. 2014, 67, 228–238. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, J.; Fu, Z. Tourism eco-efficiency of Chinese coastal cities-analysis based on the DEA-Tobit model. Ocean. Coast Manag. 2017, 148, 164–170. [Google Scholar] [CrossRef]
- Peng, H.; Zhang, J.; Lu, L.; Tang, G.; Yan, B.; Xiao, X.; Han, Y. Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China. Tour. Manag. 2017, 60, 201–211. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the Efficiency of Decision-making Units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnres, A.; Cooper, W.W. Some Models for Estimation of Technical and Scale Inefficiencies in Data Envelopment Analysis. Manag. Sci. 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Simar, L.; Wilson, P.W. Non-Parametric Tests of Returns to Scale. Eur. J. Oper. Res. 2002, 139, 115–132. [Google Scholar] [CrossRef]
- Banker, R.D.; Morey, R.C. Efficiency analysis for exogenously fixed inputs and outputs. Oper. Res. 1986, 34, 513–521. [Google Scholar] [CrossRef]
- Barros, C.P.; Mascarenhas, M.J. Technical and allocative efficiency in a chain of small hotels. Int. J. Hosp. Manag. 2005, 24, 415–436. [Google Scholar] [CrossRef]
- Hathroubi, S.; Peypoch, N.; Robinot, E. Technical efficiency and environmental management: The Tunisian case. J. Hosp. Tour. Manag. 2014, 21, 27–33. [Google Scholar] [CrossRef]
- Xia, B.; Dong, S.; Zhao, M.; Li, Z.; Li, F.; Li, Y.; Cheng, H. Analysis of economic efficiency and eco-efficiency of Chinese star hotels based on SBM model. Earth Environ. Sci. 2018, 190, 12066. [Google Scholar] [CrossRef] [Green Version]
- Johns, N.; Howcroft, B.; Drake, L. The use of data envelopment analysis to monitor hotel productivity. Prog. Tour. Hosp. Res. 1997, 3, 119–127. [Google Scholar] [CrossRef]
- Assaf, A.; Barros, C.P. Performance analysis of the Gulf hotel industry: A Malmquist index with bias correction. Int. J. Hosp. Manag. 2011, 30, 819–826. [Google Scholar] [CrossRef]
- Assaf, A.; Cvelbar, L.K.; Pahor, M. Performance drivers in the casino industry: Evidence from Slovenia. Int. J. Hosp. Manag. 2012, 32, 149–154. [Google Scholar] [CrossRef]
- Mendieta-Peñalver, L.F.; Perles-Ribes, J.F.; Ramón-Rodríguez, A.B.; Such-Devesa, M.J. Is hotel efficiency necessary for tourism destination competitiveness? An integrated approach. Tour. Econ. 2018, 24, 3–26. [Google Scholar] [CrossRef]
- Lado-Sestayo, R.; Fernández-Castro, Á.S. The impact of tourist destination on hotel efficiency: A data envelopment analysis approach. Eur. J. Oper. Res. 2019, 272, 674–686. [Google Scholar] [CrossRef]
- Anderson, R.I.; Fok, R.; Scott, J. Hotel Industry Efficiency: An Advanced Linear Programming Examination. Am. Bus. Rev. 2000, 18, 40–48. [Google Scholar]
- Ilić, I.; Petrevska, I. Using DEA method for determining tourism efficiency of Serbia and the surrounding countries. Hotel. Tour. Manag. 2018, 6, 73–80. [Google Scholar] [CrossRef]
- Soysal-Kurt, H. Measuring Tourism Efficiency of European Countries by Using Data Envelopment Analysis. Eur. Sci. J. 2017, 13, 1857–7881. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Hou, G.; Huang, Z.; Zhong, Y. Spatial-Temporal Differences and Influencing Factors of Tourism Eco-Efficiency in China’s Three Major Urban Agglomerations Based on the Super-EBM Model. Sustainability 2020, 12, 4156. [Google Scholar] [CrossRef]
- Barros, C.P.; Alves, F.P. Productivity in tourism industry. Int. Adv. Econ. Res. 2004, 10, 215–225. [Google Scholar] [CrossRef]
- Higuerey, A.; Viñan-Merecí, C.; Malo-Montoya, Z.; Martínez-Fernández, V. Data Envelopment Analysis (DEA) for Measuring the Efficiency of the Hotel Industry in Ecuador. Sustainability 2020, 12, 1590. [Google Scholar] [CrossRef] [Green Version]
- Oukil, A.; Channouf, N.; Al-Zaidi, A. Performance evaluation of the hotel industry in an emerging tourism destination: The case of Oman. J. Hosp. Tour. Manag. 2016, 29, 60–68. [Google Scholar] [CrossRef]
- Lee, Y.L.; Kuo, S.H.; Jiang, M.Y.; Li, Y. Evaluating the performances of Taiwan’s international tourist hotels: Applying the directional distance function and meta-frontier approach. Sustainability 2019, 11, 5773. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Chu, J.; Wu, J.; Ding, J.; Yang, M.; Wang, Y. A DEA-based two-stage network approach for hotel performance analysis: An internal cooperation perspective. Omega 2020, 93, 102035. [Google Scholar] [CrossRef]
- Zhang, B.; Bi, J.; Fan, Z.; Yuan, Z.; Ge, J. Eco-efficiency analysis of industrial system in China: A data envelopment analysis approach. Ecol. Econ. 2008, 68, 306–316. [Google Scholar] [CrossRef]
- Mickwitz, P.; Melanen, M.; Rosenstrom, U.; Seppala, J. Regional eco-efficiency indicators—A participatory approach. J. Clean. Prod. 2006, 14, 1603–1611. [Google Scholar] [CrossRef]
- Ji, D. Evaluation on China’s regional eco-efficiency: Based on ecological footprint methodology. Contemp. Econ. Manag. 2013, 35, 57–62. [Google Scholar]
- Wang, J. A comprehensive evaluation of China’s provincial ecological pressure and ecological efficiency: Based on ecological footprint method. J. Contemp. Financ. Econ. 2016, 8, 3–15. [Google Scholar]
- Kuosmanen, T.; Kortelainen, M. Measuring eco-efficiency of production with data envelopment analysis. J. Ind. Ecol 2005, 9, 59–72. [Google Scholar] [CrossRef]
- Reinhard, S.; Lovell, C.A.K.; Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar] [CrossRef]
- Mahlberg, B.; Luptacik, M. Eco-efficiency and eco-productivity change over time in a multisectoral economic system. Eur. J. Oper. Res. 2014, 234, 885–897. [Google Scholar] [CrossRef] [Green Version]
- Lampe, H.W.; Hilgers, D. Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA. Eur. J. Oper. Res. 2015, 240, 1–21. [Google Scholar] [CrossRef]
- Woo, C.; Chung, Y.; Chun, D.; Seo, H.; Hong, S. The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries. Renew. Sust. Energy Rev. 2015, 47, 367–376. [Google Scholar] [CrossRef]
- Broadstock, D.C.; Li, J.; Zhang, D. Efficiency snakes and energy ladders: A (meta-) frontier demand analysis of electricity consumption efficiency in Chinese households. Energy Policy 2016, 91, 383–396. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Huang, J.; Zhang, N. Industrial eco-efficiency, regional disparity, and spatial convergence of China’s regions. J. Clean. Prod. 2018, 204, 872–887. [Google Scholar] [CrossRef]
- Chen, L.; Huang, Y.; Li, M.J.; Wang, Y.M. Meta-frontier analysis using cross-efficiency method for performance evaluation. Eur. J. Oper. Res. 2020, 280, 219–229. [Google Scholar] [CrossRef]
- Sofield, T.; Li, S. Tourism governance and sustainable national development in China: A macro-level synthesis. J. Sustain. Tour. 2011, 19, 501–534. [Google Scholar] [CrossRef]
- Han, J. Carrying capacity of low carbon tourism environment in coastal areas from the perspective of ecological efficiency. J. Coast. Res. 2018, 83, 199–203. [Google Scholar] [CrossRef]
- Yang, G.H.; Li, P.; Zheng, B.A.; Zhang, Y.Q. GHG emission-based eco-efficiency study on tourism itinerary products in Shangri-La, Yunnan Province, China. Curr. Issues Tour. 2008, 11, 604–622. [Google Scholar] [CrossRef]
- Rungsrisawat, S. Image of tourism destinations-principles of macromarketing and environmental efficiency: The case of Thailand. Int. J. Ecol. Dev. 2017, 32, 133–140. [Google Scholar]
- Färe, R.; Grosskopf, S.; Lovell, C.K.; Yaisawarng, S. Derivation of Shadow Prices for Undesirable Outputs: A Distance Function Approach. Rev. Econ. Statis. 1993, 75, 374–380. [Google Scholar] [CrossRef]
- Chang, C.-C. The Nonparametric Risk-Adjusted Efficiency Measurement: An Application to Taiwan’s Major Rural Financial Intermediaries. Am. J. Agric. Econ. 1999, 81, 902–913. [Google Scholar] [CrossRef]
- Li, Y.; Hu, J.L.; Liu, H.W. Non-performing Loans and Bank Efficiencies: An Application of the Input Distance Function Approach. J. Stat. Manag. Syst. 2009, 12, 435–450. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. New Directions: Efficiency and Productivity; Springer: New York, NY, USA, 2004. [Google Scholar]
- Simar, L.; Wilson, P.W. Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models. Manag. Sci. 1998, 44, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Banker, R.D. Maximum Likelihood, Consistency and Data Envelopment Analysis: A Statistical Foundation. Manag. Sci. 1993, 39, 1265–1273. [Google Scholar] [CrossRef]
- Daraio, C.; Simar, L. Advanced Robust and Nonparametric Methods in Efficiency Analysis: Methodology and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman and Hall: New York, NY, USA, 1993. [Google Scholar]
- Wang, F.C.; Hung, W.T.; Shang, J.K. Measuring Pure Managerial Efficiency of International Tourist Hotels in Taiwan. Serv. Ind. J. 2006, 26, 59–71. [Google Scholar] [CrossRef]
- Shyu, J.; Hung, S.C. The True Managerial Efficiency of International Tourist Hotels in Taiwan: Three–stage Data Envelopment Analysis. Serv. Ind. J. 2012, 32, 1991–2004. [Google Scholar] [CrossRef]
- Chen, C.M.; Chang, K.L.; Langelett, G. How Demand Uncertainty and Market Concentration Affect Long–term Price Instability. Int. J. Hosp. Manag. 2014, 37, 146–149. [Google Scholar] [CrossRef]
- Guo, X.; Wei, W.; Li, Y.; Wang, L.Y. A Study of Different Types of Air Pollutants on the Efficiency of China’s Hotel Industry. Int. J. Environ. Res 2019, 16, 4319. [Google Scholar] [CrossRef] [Green Version]
- Shieh, H.S.; Hu, J.L.; Gao, L.Y. Tourist Preferences and Cost Efficiency of International Tourist Hotels in Taiwan. Int. J. Mark. Stud. 2014, 6, 1918–7203. [Google Scholar] [CrossRef] [Green Version]
- World Tourism Organization; United Nations Environment Programme. Climate Change and Tourism: Responding to Global challenges; World Tourism Organization: Madrid, Spain, 2008. [Google Scholar]
- Dong, X.; Zhang, J.; Zhang, J.; Cheng, S. A Critical review on several issues of regional tourism-related carbon emissions or its carbon footprint. Acta Ecol. Sin. 2016, 36, 554–568. [Google Scholar]
- Gossling, S. Global environmental consequences of tourism. Glob. Environ. Chang. 2002, 12, 283–302. [Google Scholar] [CrossRef]
- Qiu, X.; Fang, Y.; Yang, X.; Zhu, F. Tourism Eco-Efficiency Measurement, Characteristics, and Its Influence Factors in China. Sustainability 2017, 9, 1634. [Google Scholar] [CrossRef] [Green Version]
- Kneip, A.; Simar, L.; Wilson, P.W. Asymptotics for DEA Estimators in Non-Parametric Frontier Models; Discussion Paper No. 0317; Institut de Statistique, Universite’ Catholique de Louvain: Louvain-la-Neuve, Belgium, 2003. [Google Scholar]
- Löthgren, M.; Tambour, M. Bootstrapping the DEA-based Malmquist Productivity Index. Appl. Econ. 1999, 31, 417–425. [Google Scholar] [CrossRef]
- Simar, L.; Wilson, P.W. Statistical inference in nonparametric frontier models: The state of the art. J. Product. Anal. 2000, 13, 49–78. [Google Scholar] [CrossRef]
- Aly, H.Y.; Grabowski, R.; Pasurka, C.; Rangan, N. Technical, Scale, and Allocative Efficiencies in U.S. Banking: An Empirical Investigation. Rev. Econ. Stat. 1990, 72, 211–218. [Google Scholar] [CrossRef]
- Li, Y. DEA Efficiency Measurement with Undesirable Outputs: An Application to Taiwan’s Commercial Banks. Int. J. Serv. Technol. Manag. 2005, 6, 544–555. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.K.; Chien, F.S.; Lee, W.C.; Hsu, Y.C. Study of Optimal Capital Adequacy Ratios. J. Product. Anal. 2016, 45, 261–274. [Google Scholar] [CrossRef]
- Wackerly, D.D.; Mendenhall, W., III; Scheaffer, R.L. Mathematical Statistics with Applications, 7th ed.; Duxbury Press: Pacific Grove, CA, USA, 2008. [Google Scholar]
- Amin, G.R.; Emrouznejad, A.; Rezaei, S. Some Clarifications on the DEA Clustering Approach. Eur. J. Oper. Res. 2011, 215, 498–501. [Google Scholar] [CrossRef]
- Dai, X.; Kuosmanen, T. Best-Practice Benchmarking Using Clustering Methods: Application to Energy Regulation. Omega 2014, 42, 179–188. [Google Scholar] [CrossRef]
- Li, Y. Analyzing Efficiencies of City Commercial Banks in China: An Application of the Bootstrapped DEA Approach. Pac-Basin Financ. J. 2020, 62, 101372. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Hirschberg, J.G.; Lye, J.N. Clustering in a Data Envelopment Analysis Using Bootstrapped Efficiency Scores. In Department of Economics—Working Papers Series 800; The University of Melbourne: Melbourne, Australia, 2001. [Google Scholar]
Variables | Mean | Median | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Inputs | |||||
Number of employees (thousand) | 58.391 | 48.894 | 47.132 | 5.077 | 245.588 |
Number of guest rooms (thousand) | 43.985 | 42.197 | 28.463 | 2.565 | 164.458 |
Fixed assets (RMB billion) | 15.645 | 11.255 | 13.478 | 1.501 | 61.481 |
Undesirable Output | |||||
CO2 emissions (thousand tons) | 3.723 | 3.471 | 2.505 | 0.176 | 13.877 |
Desirable Outputs | |||||
Revenues from guest rooms (RMB billion) | 6.958 | 4.822 | 6.794 | 0.400 | 31.840 |
Revenues from F&B (RMB billion) | 4.694 | 3.215 | 4.327 | 0.197 | 18.681 |
Other revenues (RMB billion) | 1.705 | 0.946 | 2.277 | 0.069 | 9.882 |
Outputs | Revenues from Guest Rooms | Revenues from F&B | Other Revenues | CO2 Emissions | |
Inputs | |||||
Number of employees | 0.9265 | 0.9537 | 0.8271 | 0.8864 | |
(<0.001) | (<0.001) | (<0.001) | (<0.001) | ||
Fixed assets | 0.8435 | 0.8592 | 0.7906 | 0.9911 | |
(<0.001) | (<0.001) | (<0.001) | (<0.001) | ||
Number of guest rooms | 0.9411 | 0.8897 | 0.9149 | 0.8967 | |
(<0.001) | (<0.001) | (<0.001) | (<0.001) |
p-Value | Critical Values | ||||
α = 0.01 | α = 0.05 | α = 0.10 | |||
H0: CRS Ha: VRS | 0.9722 | 0.0005 | 0.9773 | 0.9802 | 0.9814 |
Mean | Median | Std. Dev. | Min | Max | |
---|---|---|---|---|---|
BCC Eco-Efficiency | 0.9105 | 0.9134 | 0.0813 | 0.7085 | 1 |
Bias-corrected Eco-Efficiency | 0.8591 | 0.8763 | 0.0635 | 0.6776 | 0.9609 |
Mean | Median | Std. Dev. | Min | Max | No. of Provinces (DMUs) | |
---|---|---|---|---|---|---|
BCC Eco-Efficiency | ||||||
Overall | 0.9105 | 0.9134 | 0.0813 | 0.7085 | 1 | 31 (124) |
Coastal Hotels | 0.9293 | 0.9542 | 0.0798 | 0.7583 | 1 | 12 (48) |
Inland Hotels | 0.8986 | 0.8968 | 0.0804 | 0.7085 | 1 | 19 (76) |
Bias-corrected Eco-Efficiency | ||||||
Overall | 0.8591 | 0.8763 | 0.0635 | 0.6776 | 0.9609 | 31 (124) |
Coastal Hotels | 0.8676 | 0.8831 | 0.0596 | 0.7322 | 0.9588 | 12 (48) |
Inland Hotels | 0.8537 | 0.8652 | 0.0657 | 0.6776 | 0.9609 | 19 (76) |
Mean Eco-Efficiency | The 100(1 − 2α)% Confidence Intervals | p-Value | |||
α = 0.025 | α = 0.05 | ||||
Coastal Hotels | 0.9293 | 0.8676 | [−0.0085, 0.0343] | [−0.0050, 0.0324] | 0.24 |
Inland Hotels | 0.8986 | 0.8537 |
Cluster 1 | Cluster 2 | |||
---|---|---|---|---|
Mean | 0.9738 | 0.9018 | 0.8583 | 0.8239 |
Median | 0.9707 | 0.9016 | 0.8803 | 0.8377 |
Std. Dev. | 0.0227 | 0.0192 | 0.0513 | 0.0482 |
Min | 0.9374 | 0.8698 | 0.7775 | 0.7407 |
Max | 1 | 0.9279 | 0.9307 | 0.9137 |
Representative Province | Shandong | Jiangsu | ||
0.9664 | 0.8944 | 0.8899 | 0.8514 | |
Number of Provinces | 14 | 17 | ||
Coastal Provinces | 7 | 5 | ||
Inland Provinces | 7 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, A.-C.; Yu, Y.-Y.; Zhang, Y.; Zhan, Y.; Lin, W.-C. Bootstrapped DEA and Clustering Analysis of Eco-Efficiency in China’s Hotel Industry. Sustainability 2022, 14, 2925. https://doi.org/10.3390/su14052925
Li Y, Liu A-C, Yu Y-Y, Zhang Y, Zhan Y, Lin W-C. Bootstrapped DEA and Clustering Analysis of Eco-Efficiency in China’s Hotel Industry. Sustainability. 2022; 14(5):2925. https://doi.org/10.3390/su14052925
Chicago/Turabian StyleLi, Yang, An-Chi Liu, Yi-Ying Yu, Yueru Zhang, Yiting Zhan, and Wen-Cheng Lin. 2022. "Bootstrapped DEA and Clustering Analysis of Eco-Efficiency in China’s Hotel Industry" Sustainability 14, no. 5: 2925. https://doi.org/10.3390/su14052925
APA StyleLi, Y., Liu, A. -C., Yu, Y. -Y., Zhang, Y., Zhan, Y., & Lin, W. -C. (2022). Bootstrapped DEA and Clustering Analysis of Eco-Efficiency in China’s Hotel Industry. Sustainability, 14(5), 2925. https://doi.org/10.3390/su14052925