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Abstract: Zoning adjustments are a key method of improving the conservation efficiency of a nature
reserve. Existing studies typically consider the one-period programming method and ignore dynamic
ecological changes during the programming of a nature reserve. In this study, a scientific method for
nature reserve (NR) programming, namely the multiperiod dynamic programming (MDP) algorithm,
is proposed. The MDP algorithm designs an NR over three periods and does so by using ecological
suitability values for each grid area. Ecological suitability values for each period were determined
based on existing data on rare aquatic animals with Maxent software and cellular automata (CA). CA
were used to determine the actual protection effect and to adjust each period’s ecological suitability
values through comparisons with the sites’ surroundings. The maximization of ecological suitability
values was used as an objective function; these values were assumed to indicate protection benefits.
The objective function of the MDP also includes grid perimeters and numerical minimization for
spatial compactness. Moreover, we designed three MDP constraints for the dynamic programming,
including base constraints, distinguishing constraints, and multiperiod constraints. In the base and
distinguishing constraints, we require a grid square to be a core, buffer, or unselected square, and
we require the core and buffer grids to be spatially connected. For the multiperiod constraints, we
used virtual points to ensure spatial continuity in different periods while attaining high ecological
suitability. Our main contributions are as follows: (1) the novel MDP algorithm combining ecological
attributes and multiperiod dynamic planning to optimize NR planning; (2) the use of virtual points to
avoid selecting invalid grids and to ensure spatial continuity with significant protection benefits; and
(3) the definition of ecological suitability values and use of CA to simulate dynamic changes over the
three periods. The results reveal that the MDP algorithm results in a reserve with greater protection
benefits than current reserves with superior spatial distribution due to multiperiod programming.
The proposed MDP algorithm is a novel method for the scientific optimization and adjustment of
nature reserves.

Keywords: dynamic site selection; integer programming; Quanzhou Bay; spatial connectivity; spatial
compactness

1. Introduction

Nature reserves are intended to protect natural resources, such as rare wildlife, and to
produce value in the form of ecological services, scientific research, and cultural reserves.
Therefore, they are effective for protecting ecological resources and biodiversity [1]. Nature
reserves are typically divided into functional zones in China, namely core, buffer, and
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experimental zones [2]. The control requirements of the three zones are similar; thus, the
core and buffer zones are typically merged into core protected areas. The experimental
zone is retained as a general control area [3].

Designing nature reserves is complex; the goal of these designs is to scientifically
divide functional zones and to improve conservation efficiency [4–7]. Ecological and
operational algorithms can be combined to further research this area [8]. Most studies
first predict the geographical distribution of species and then use planning algorithms to
select grids because predicting species’ distribution is key for humans to make rational
use of natural and economic resources in constructing protected areas [9,10]. Species
distribution modeling methods use presence–absence data, climate data, and data on biotic
interactions [4,11–15]. The Maxent model is the most widely used model for a highly
accurate prediction using a small amount of data [7].

Network selection algorithms are applied for nature reserve planning; for example,
the prediction results for species distribution and other multisource remote sensing data
can be used to achieve a multiarea division. Some studies have used intelligent heuristic
algorithms, such as genetic algorithms, simulated annealing algorithms, and the tabu
search algorithm, to determine and divide the scope of protected areas [16–18]. However, a
heuristic algorithm cannot ensure that the obtained solution is optimal [19]. By contrast,
optimization algorithms can achieve an optimal objective function solution under various
constraints; integer programming (IP) algorithms are commonly used. An IP model
can transform the conservation objectives into objective functions and conditions; for
example, nonoverlapping regions can be transformed into modeling constraints. Therefore,
some studies have used IP in network selection to express planning nature reserves as an
optimization problem [20].

In early operations research, researchers proposed using the set covering problem
(SCP) model and maximal covering problem (MCP) model [21,22] with species numbers as
input. Moreover, studies have used the 0–1 programming model and graph theory as the
core ideas associated with spatial information, such as spatial continuity, site minimum
distance, compactness, or both continuity and compactness, to develop linear IP nature
reserve selection models [23–27]. These models represent the relationships between grids
by including linear inequalities to achieve spatial continuity and to increase the constraints
on the total perimeter and grid number in the objective function to achieve a more compact
distribution of the selected grids. Other researchers have considered the effects of envi-
ronmental changes on the benefits of protection and have improved the transshipment
model and other dynamic IP models [28–31]. They indicate that dynamically updating the
cost function and terminal set or changing the selection objects in each period according
to changes in the social economy and environment can produce more realistic results in
the planning process than a general IP can. In addition, a previous study proposed a
programming algorithm for certain ecosystem attributes, such as those of forest ecosystems,
that combines biodiversity and spatial characteristics. Lin et al. [32] associated ecological
information with spatial properties to generate a space–ecology SCP (SeSCP) for designing
a reserve network in Daiyun Mountain, China. Their SeSCP model outperformed three
popular site selection models: the species SCP (SSCP) problem, tail length problem (TLP),
and network flow problem (NFP). Moreover, they further proposed a dual-flow mechanism
to overcome the problem of sparseness in site selection and to outperform three popular
site selection models: SSCP, NFP, and simulated annealing (SA) [33]. These methods can
all be used to systematically and successfully design nature reserves, but most algorithms
attempt to achieve spatial continuity and thus choose numerous grids with little protection
benefit, resulting in inefficient land use.

Moreover, the few studies that have employed a multiperiod reserve planning method
have focused on the characteristics of specific ecosystems and on dynamic changes in
the biological distribution. Jafari et al. [30] first investigated the reserve network design
problem in the context of a multiperiod decision problem. Their proposed 5-year planning
scheme attempts to achieve a certain total value, and the value for each year could differ.
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Finally, selections are compared in these different periods to choose a final optimal strategy.
The central concept of dynamic programming is obtaining the best decision scheme by
considering all possible changes in a certain period. However, applying dynamic pro-
gramming to the multiperiod zoning of protected areas has three main requirements that
are difficult to satisfy: (1) appropriately selecting grids in each period that consider their
current status and potential value to determine the optimal global solution, (2) maintaining
the continuity of the protected areas in different periods—that is, the selected girds in each
period should remain spatially connected with those in the previous period—and (3) de-
termining the zoning of the protected area with dynamic multiphase programming. To
the best of our knowledge, no relevant model has achieved all three of these requirements.
Thus, a discussion of dynamic programming of the multiperiod nature reserve by fully
considering the dynamic changes in ecological suitability value and the overall benefits of
the nature reserve is necessary.

In this paper, a multiperiod dynamic programming algorithm (MDP) for nature
reserves is proposed. The MDP algorithm includes a comprehensive objective function
with three aspects: the benefits of the nature reserve, the perimeter of the nature reserve,
and the number of sites. The MDP algorithm achieves spatial continuity, compaction, and
zoning using the primary optimization constraints and multiperiod constraints based on
virtual points; it also determines an optimization scheme for the nature reserve function
area. Moreover, the MDP algorithm still includes three-zone planning as the zoning basis to
achieve more accurate and adequate protection. The research results significantly improve
reserve planning algorithms and scientific methods for optimizing nature reserves.

2. Study Area and Data
2.1. Study Area

The study site, Quanzhou Bay Estuarine Wetland Nature Reserve (QBEWNR), is lo-
cated in Fujian Province at the southeast coast of China (latitude: 24◦51′21′′ N–24◦48′50′′ N,
longitude: 118◦46′30′′ E–118◦46′50′′ E); the total land area of the study site is 7065.22 m2.
The area is typical of subtropical estuarine wetlands in China and is rich in aquatic re-
sources. Maps and images of the reserve are presented in Figure 1. A total of 193 species,
41 families, and 12 orders of fish have been identified in the reserve; most species are
perch flatfish. The ecological types include migratory, estuarine, and bottom-dwelling
fishes. The Chinese sturgeon is listed as a national class I wildlife protected animal and is
listed as vulnerable in the China Red Book of Animals: Fish. Moreover, finless porpoises and
branchiostoma belcheri are listed as national class II wildlife protected animals. The park
also has 10 types of marine mammals; among these, the Chinese white dolphin, finless
porpoise, grey dolphin, and sperm whale are listed as national wildlife protected animals.

Aquatic animals leave the protected areas due to their natural migration behavior
and human factors, such as the presence of cross-sea bridges and conduct of marine
economic operations. Therefore, protecting the rare aquatic animals in existing protected
areas is critical. In this study, the ecological function area of Puganqiangcheng estuary,
in which the Jinjiang River and Luoyang River converge into the sea, as the primary
research area to develop a better protection plan and to improve the protective effect for
rare aquatic animals.

The government of Quanzhou city has increased the ecological restoration of the
QBEWPNR, but the survival of rare marine animals has still been affected by human
activities. Thus, the original functional area lacks sufficient protection [34]. Figure 2
presents the Puguncheng estuary wetland ecological function area, which is an essential
functional zone of the QBEWNR. The figure reveals that only a few rare aquatic animals
appeared in the core or buffer areas; most of their activities are outside the functional zone.
The results indicated that the existing ecological function zone of Pugangcheng does not
include the primary living habitats of rare aquatic animals and does not sufficiently protect
these rare aquatic animals.
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Figure 1. Location of Quanzhou Bay.

Figure 2. Distribution of rare aquatic animals and the original reserve.
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2.2. Data

We took satellite images with a resolution of 8 m × 8 m captured by the Ziyuan-
3 (ZY-3) satellite in 2016 as input and performed preprocessing, including geometric
registration, atmospheric correction, and crop. Moreover, we selected the factors of the
natural environment and human activity affecting the distribution of rare aquatic animals,
including elevation, land use type, and nearest distance to the reserve. Land use types were
divided into eight types: forest, mangrove, dry field, paddy field, building, bare land, road,
and water using supervised classification and visual interpretation. The nearest distance
to infrastructure that significantly affects the activities of rare aquatic organisms, namely
paddy fields, roads, and buildings, was determined using the multiring buffer analysis
function of ArcGIS 10.2. Grid sections were used as the base unit, and Quanzhou Bay was
divided into 200 m × 200 m square grids using ArcGIS 10.2; a total of 5969 grid sections
were produced.

The data of rare aquatic animals were derived from a field scientific investigations
performed in 2016–2017 (Figure 3). These data were collected by irregular fishing and
observation at historical animal occurrence points provided by the Quanzhou Marine
Bureau, the nature reserve, and local fishers. The distribution data described the occurrence
of rare aquatic animals, such as the time and place of the observation, the species, and the
number of animals observed. After data screening and elimination, we obtained 17 rare
aquatic animal distribution sites. We assumed that if rare aquatic animals were successfully
protected, other aquatic animals would also be protected because rare aquatic animals have
strict habitat requirements. Therefore, we only analyzed rare aquatic animals in this study.

Figure 3. Distribution of rare aquatic animals.

We randomly selected 75% of the distribution sites as the training set and 25% as
the testing set based on the distribution data of the rare aquatic animals. Moreover, we
analyzed the relationship between rare aquatic animals and environmental factors using
the Maxent model and then predict the potential distribution probability of the rare aquatic
animals; this number was used as the ecological suitability value (Figure 4). The included
environmental factors were land use type, a digital elevation model, and the nearest
distance. The test area under the receiver operating characteristic curve (AUC) value
generated from the Maxent model was 0.856, indicating that the model has high prediction
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accuracy. The potential distribution probability, as shown in Figure 4, was used as the
ecological suitability value in the first period.

Figure 4. Potential distribution probability of rare aquatic animals.

3. Methods

An MDP algorithm for nature reserves based on cellular automata (CA), network flow,
and other fundamental theories is proposed and developed to address the weaknesses of
existing algorithms.

3.1. CA

In protected areas, the ecological benefits of a grid are affected by the surrounding
grids. That is, the ecology of the central grid is also optimized if the surrounding grids
have good ecology. Moreover, the execution of this process is similar to the theory of the
CA model in which each cell is modified based on the state of neighboring cells according
to certain system-level rules in the cellular space with discrete units and finite states.
Therefore, if the ecological suitability values of adjacent grids are all higher than that of
the central grid, the ecological suitability values of the plot is assumed to correspondingly
increase. This dynamic updating system for the CA is designed based on this assumption
and is expressed as follows:

e1
i = S (1)

et+1
i =

{
et

i + k, ∑Ni
j nij ≥ 2

et
i , ∑Ni

j nij < 2
t ∈ {1, 2, · · · , T} (2)

Here, S is the ecological suitability value of the grids, as presented in Figure 4, et
i is the

ecological suitability value of grid i in the period t (such that e1
i is the ecological suitability

value of grid i in period 1), and nij is the ecological suitability value between grid i and
its adjacent grid j. If the ecological suitability value grid i is less than the adjacent grid j,
nij = 1; otherwise, nij = 0. k is a random number that increases the ecological suitability
value. The ecological suitability values in the rest periods are produced using the CA
dynamic update mechanism in Equation (2). Specifically, the ecological suitability value e1

i
is the potential distribution probability assigned to each grid, as shown in Figure 4. We then
analyze the relationship between grid i and its neighborhood using Equation (2) to adjust
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the ecological suitability value of grid i and to generate the updated ecological suitability
value, e2

i , in period 2. These steps are repeated until the final period t to obtain et
i .

3.2. Optimized Objective Function

The objective function of the MPD algorithm has three goals: (1) the maximization of
the protection benefits, (2) the minimization of the total perimeter, and (3) the minimization
of the number of buffer zones. Finally, the overall protection level was maximized using
the multiperiod procedure. The relevant equations are as follows:

We consider the maximization of the ecological value as the objective function of pro-
tection benefits in the designed multiperiod programming; this maximization is expressed
as follows:

max E =
T

∑
t=1

I

∑
i=1

Ut
i et

i (3)

Here, E is the total ecological suitability value of the nature reserve. Ut
i indicates

whether grid i is selected as a core area in period t and is 1 if selected and 0 otherwise. T is
the total number of periods. I is the total number of grids.

Moreover, the minimization of the perimeter of the selected grids of core and buffer
areas is an additional goal of the objective function. The objective function for minimizing
the perimeter of the selected core grids is as follows:

min M = 4
I

∑
i=1

Ci − Lij (4)

Here, M is the total perimeter of the nature reserve, and Ci is a binary variable
indicating whether grid i is selected as part of the core area; it is 1 if selected and 0
otherwise. Lij indicates whether grid i and its adjacent grid j are selected as core areas and
form a connection; if so, Lij = 1; otherwise, Lij = 0.

Furthermore, we minimize the number of grids selected as buffer areas to limit the
total number of selected grids; the minimization function is as follows:

min N =
I

∑
i=1

Bi (5)

Here, N is the total number of buffer grids, and Bi is a binary variable. If grid i is
selected as a buffer area, Bi = 1; otherwise, Bi = 0. We only consider the minimization
of the perimeter of the selected core and buffer areas (grids) in the final period because
we must first ensure the overall spatial compactness of the core areas, and the buffer areas
must surround the core areas.

Finally, we integrate these subobjectives into an objective maximization function
formulated as follows:

max(1− λ)
T

∑
t=1

I

∑
i=1

Ut
i et

i − λ(4
I

∑
i=1

Ci − Lij)−
I

∑
i=1

Bi (6)

Here, λ is an empirically determined parameter. Equation (6) is a modification of
Equations (4) and (5) from minimization to maximization functions with a multiplication
by (−1).

3.3. Basic Constraints

Two basic constraints were included: cost and type constraints.
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3.3.1. Cost Constraints

Grid selection: Each grid can only be selected as a core area once per period
as follows:

T

∑
t=1

Ut
i ≤ 1 (7)

Grid Aggregation: The construction cost of nature reserves was used to limit the
number of grids selected in each period; this limitation is expressed as follows:

I

∑
i=1

Ut
i = B (8)

Here, B is the total number of grids selected in each period.
Minimum Protection of Core Area: The total ecological suitability value of grids

selected as core areas in each period must be higher than the minimum protection require-
ment. The minimum protection requirements are expressed as follows:

T

∑
t=1

I

∑
i=1

Ut
i et

i ≥
I

∑
i=1

T

∑
t=1

βet
i (9)

Here, β is the conservation proportion of the target species in the core area.

3.3.2. Type Constraints

Statistics of Core Area: The number of times a grid i was selected as a core area over
all periods dynamically can be formulated as follows:

T

∑
t=1

Ut
i = Ci (10)

Here, Ci is a binary variable of 0 or 1, as defined in Equation (4).
Continuity of the Core Area: Core areas should be selected to achieve both spatial

continuity and compactness to provide stable breeding sites for species. If grid i and its
adjacent grid j are both selected as core areas, they must have a spatial connection. However,
if one of these grids is not a core area, this connection may not exist. Core area continuity is
expressed as follows:

Lij ≤ Ci (11)

Lij ≤ Cj (12)

Lij ≥ Ci + Cj − 1 (13)

Here, C and L are the binary variables defined in Equation (4).
Partition Attribute: The grid i cannot be selected for both the core and the buffer areas

simultaneously.
Ci + Bi ≤ 1 (14)

Here, C and B are binary variables indicating inclusion in the core and buffer areas,
respectively.

Partition Connection: A key requirement in nature reserve programming is ensuring
that the buffer area surrounds the core area. If grid i is selected as a core area, its adjacent
grid j must either be a core area or buffer area. This condition is formulated as follows:

Ci − Bj − Cj ≤ 1 (15)

Here, C and B are binary variables indicating inclusion in the core and buffer areas,
respectively.
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3.4. Multiperiod Constraints Based on Virtual Point

The selected grids must be continuous in all periods to achieve overall spatial con-
tinuity of the nature reserve MDP. Figure 5 presents an example of grid selection over
three periods indicated by red, green, and blue. Each grid square in Figure 5 is labeled
at the upper left corner, and its ecological suitability value is centered. In this example,
three grids in each period are selected: blue in period 1, green in period 2, and red in
period 3. Although the selected grids in each period are continuous both within and
between periods (i.e., local and global continuity, respectively), grid 8 (light grey, ecological
suitability value of 0.90) is not included to ensure continuity. This example reveals that the
balance between spatial continuity and ecological suitability is critical when selecting grids
in reserve programming.

Figure 5. Example of grid selection with MDP.

Therefore, we introduce the concept of the virtual point in the MDP to balance the
conflict between spatial continuity and ecological suitability value when selecting grids. A
virtual point is a virtual grid independent of the grids but connected to each grid already
selected in the nature reserve, as indicated by the orange square in Figure 6. Grids in each
period are selected beginning at the virtual point; this enables selecting grids that are locally
discontinuous but globally continuous. For example, the grids selected in periods 2 (green)
and 3 (red) are not locally continuous, but the final selection is globally continuous, and
the total ecological suitability value is 7—0.20 greater than the result of Figure 5. Thus, the
protection benefits can be maximized by setting virtual points to ensure global continuity
in each period. We set the relevant constraints of the virtual points as follows:

Number of Starting Points: The Netflow algorithm specifies the number of starting
points to limit the final selection of set regions; the constraint is formulated as follows:

I

∑
i=1
V t

i = 1 (16)

Here, V t
i is the flow from the virtual point to grid i in period t. V t

i = 1 indicates that
only one grid is connected to the virtual point in period one to limit the number of reserve
areas to 1.
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Figure 6. Example of grid selection using MDP with a virtual point.

Limitation of Flow Traffic: If grid i is not selected in period t, the inflow number of
grid i is 0; otherwise, the maximum number of the inflow from the adjacent grid j to grid i
is (M − 1). The constraint formula is expressed as follows:

Ni

∑
j=1

Xt
ji ≤ (M− 1) ·Ut

i (17)

Here, ∑ Xt
ji is the total number of flows from core grid j to its adjacent core grid i

in period t. Xt
ji is a binary variable; Xt

ji = 1 indicates that grids i and j are connected;
otherwise, Xt

ji = 0. Ni is the set of grid numbers adjacent to grid i. M is a constant and can
be set to an arbitrary value but should be larger than the total number of grids.

Quantity Relationship between Inflow and Outflow: The difference between the
outflow and inflow of grid i in period t must be greater than or equal to (Uit −M · V t

i ). Its
constraint is formulated as follows:

Ni

∑
j=1

Xt
ij −

Ni

∑
j=1

Xt
ji ≥ Ut

i −M · V1
i (18)

Here, ∑ Xt
ij is the total number of flows from core grid i to an adjacent core grid j in

period t. If grid i in period t is not connected to the virtual point, its outflow is greater than
or equal to the inflow + 1.

Continuity constraint between the virtual point and the core grid: If grid i in period
t is connected to the virtual point, it must be selected as a core grid. The formulation is
expressed as follows:

V1
i ≤ Ut

i (19)

Multiperiod grid continuity: If grid i connects to the virtual point, it must connect to
grid j, selected as a core grid in the previous period, to ensure the grid’s continuity between
each period. We express the constraint as the following formulation:

V t
i ≤

Ni

∑
j=1

Ut−1
j (20)

Here, Ut−1
j indicates whether grid j adjacent to grid i is selected as a core area in period

t− 1. If grid j is selected in period t-1, Ut−1
j = 1; otherwise, Ut−1

j = 0.
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4. Results
4.1. Parameter Settings

We programmed the MDP model with the branch and bound algorithm of the Gurobi
Optimizer. The parameters were adjusted several times; the optimal set is as follows:
k = 0.30, λ = 0.50, and a total of 300 core grids. Thus, we selected 100 core grids (B = 100)
in each of the three periods (T = 3). Moreover, grids with high ecological suitability values
improve the values of surrounding grids due to regionalism. Therefore, we set k to be
0 6 k 6 0.05 in CA.

4.2. Ecological Suitability Value

The frequency distribution for ecological suitability values over various periods with
the adjustment of CA is presented in Figure 7. Rectangular bars with a greater width
indicate higher frequencies of the ecologically suitable value. The number of grids with
low ecological suitability values decreased gradually because of the positive influence of
the reserve construction and the surrounding grids with a high ecological suitability value.
The number of grids with a high ecological suitability value also increased, but this change
was small. Thus, the overall ecological environment of Quanzhou Bay improved.

Figure 7. Frequency distribution of multiperiod ecological suitability values.

A visualization of the ecological suitability values in various periods is displayed in
Figure 8. The overall distribution of ecological suitability values in Quanzhou Bay did not
change significantly beacuse k was set to 0.05. However, this agreed with typical natural
processes, which have only small variations in short periods. The red grids with high
ecological suitability values (e > 0.70) in the north and east gradually expanded outward,
and dark green grids with the lowest ecological suitability value (e ≤ 0.10) transformed
into light green grids with low ecological suitability values (0.10 < e ≤ 0.30). Overall, some
grids in each color category were transformed into the grids of a higher color category, as
depicted in Figure 7.
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(a) (b) (c)

Figure 8. Visualization of multiperiod ecological suitability values: (a) Period 1; (b) Period 2;
(c) Period 3.

4.3. Multiperiod Dynamic Changes

The results of the MDP algorithm for nature reserve planning is presented in Table 1
and Figure 9. The difference between total ecological suitability values in the three periods
was small because 100 grids were selected in each period. The total ecological suitability
value of the first period was the largest because grids with the largest ecological values
were selected first in the MDP algorithm. The total ecological suitability value of period 3
was greater than that of period 2 because period 2 is an intermediate transitional period;
grids with the largest ecological values were not selected in period 2 to ensure continuity.
A total of 300 grids were selected for the core area, and the total ecological suitability value
was 185.51 with a mean ecological suitability value of 0.62. These results reveal that the
programming is effective for environmental protection.

Table 1. Comparison results of the selected core areas using the MDP algorithm in three periods.

Period Grid Number Total Value Mean Value

1 100 63.94 0.64
2 100 60.21 0.60
3 100 61.36 0.61

Total 300 185.51 0.62

Moreover, we present the visualization results of multiperiod programming for the
selected core areas in each period in Figure 9. The blue, red, and yellow areas indicate
the core grids selected in periods 1 to 3; the distribution of the selected grids significantly
differ between periods. The selected grids in period 1 are continuous from northwest
to southeast; this distribution was consistent with the distribution of grids with high
ecological suitability values (e > 0.50), as shown in Figure 8a. The selected grids in
periods 2 and 3 were distributed discretely from northwest to southeast and gradually
spread outward around the core area secreted in period 1. This distribution was consistent
with the distribution of below-average ecological suitability values (e > 0.30), as presented
in Figure 8b,c. The programming results for the two periods were discrete, but the final
core area had spatial continuity and compactness, as presented in Figure 10.
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(a) (b) (c)

Figure 9. Selected core areas in each period: (a) Period 1; (b) Period 2; (c) Period 3.

Figure 10. Integration of the selected core grids.

Figure 10 presents the final core area and buffer areas (grids) selected by the MDP
algorithm; green grids indicate the buffer areas. The selected buffer grids surround the
core area and fill holes to increase the compactness of the protected area. Furthermore,
we present a comparison of the original nature reserve and that of the MDP algorithm in
Table 2. The original reserve had 339 core grids and 209 buffer grids; the MDP algorithm
selected 300 grids and 72 grids. Thus, the reserve selected by the MDP algorithm had fewer
core and fewer buffer grids.

Table 2 reveals that the MDP algorithm also outperformed the original reserve in
most measures of ecological suitability. Despite selecting fewer grids, the MDP reserve
had far higher total and mean ecological suitability values than the original reserve. The
original reserve only had a superior result for the total ecological suitability value of the
buffer zone compared with the MDP reserve (47.05 vs. 27.41, respectively); however, this
result can be attributed to the inefficient buffer zone selection in the original reserve, as
revealed by the mean values (0.23 vs. 0.38, respectively). Therefore, the MDP algorithm
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reserve represents a substantial improvement compared to the existing reserve both for
total protection and efficiency.

Table 2. Statistics of the MDP algorithm and original reserves.

Area Index Original Nature Reserve MDP Algorithm Results

Core
Number of grids 339 300

Total ecological suitability value 64.30 185.51
Mean ecological suitability value 0.19 0.62

Buffer
Number of grids 208 72

Total ecological suitability value 47.05 27.41
Mean ecological suitability value 0.23 0.38

Total
Number of grids 547 372

Total ecological suitability value 111.35 212.92
Mean ecological suitability value 0.20 0.57

5. Discussion
5.1. Multiperiod Programming

The proposed MDP algorithm was used for nature reserve design based on IP, in-
cluding the innovation of multiperiod programming. The Chinese government typically
implements designs for natural areas in decadal plans. They first designate a large area as
a nature reserve and gradually develop each area according to project requirements and
funding. Most studies [22,24,27,31] on nature reserves have schemes that design the core,
buffer, and experimental zones of the reserve in a single step. They focus on selecting core
or buffer zones, improving the protection effect, and realizing spatiality.

Moreover, Jafari et al. [30] first proposed multiperiod programming in a nature reserve
by considering the connectivity between different periods. However, the core and buffer
areas were not divided, and the reserve was not compact; these are key requirements for
nature reserve design. Therefore, we propose the novel MDP algorithm to gradually expand
the reserve around the sites selected in the first period until an overall optimal solution is
determined. The MDP algorithm satisfies the requirements for long-term construction of
nature reserves.

5.2. Ecological Dynamic Variation

The principle used in CA that areas with good ecological environments improve their
surroundings [35,36] was used to compare nearby sites to increase the actual protection
effect through the adjustment of ecological values in each period. The variation of ecologi-
cal suitability values in numerical frequency and spatial distribution is small, but natural
changes of ecological environments in a short period are typically small [36]; thus, CA can
simulate ecological improvements in the nature reserve. Overall, the overall protection ben-
efit is significantly improved because priority sites were targeted. CA was used to quantify
dynamic changes in ecological value, consistent with the idea that the environmental state
changes as the reserve is constructed [31].

5.3. Continuity through Virtual Points

One of the main contributions of this study is to realize continuity with virtual points.
Existing algorithms [23,24,32,33] can achieve continuity for a single period or multiple
periods but inevitably select grids with low ecological value to ensure continuity, reducing
the average ecological benefit. Virtual points were used in reserve planning to ensure
that ecological benefits were maximized and to achieve continuity for each period and the
whole, despite discontinuity within a single period.

Moreover, landscape fragmentation is a key cause of biodiversity loss. Thus, spatial
continuity is a key factor in reserve construction. MDP for a nature reserve can be regarded
as dynamic path planning. Sites with low ecological value are considered obstacles, and the
selected sites are those with high environmental protection in path planning [37]. Finally,
an optimal path with no collisions and the shortest distance is planned.
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5.4. Number of Zones

Most studies have used three divisions [38] in nature reserve programming, but some
studies have used two zones. This transformation from three zones to two zones facilitates
the management of the reserves; it is not conducted because three zones are unscientific or
unreasonable [3]. In theoretical calculations, the reserve should be programmed with three
zones, including the core area, buffer area, and experimental area, to arrange the results
into two zones according to the protection requirements.

5.5. Limitations and Outlook

The MDP algorithm could be further optimized with stochastic optimization algo-
rithms produced by simulating the behavior of natural biological groups, such as the
particle swarm optimization algorithm or the ant colony algorithm. Moreover, CA was
used to generate the adjusted ecological suitability values based on the original ecological
suitability value of the sites instead of based on the results of grid selection in each period.
Adjustment based on grid selections could have superior performance. Moreover, future
studies could investigate the characteristics of estuarine wetlands in Quanzhou Bay, includ-
ing rare aquatic animals, the ecological suitability value of essential wetland plants, and
an evaluation system of ecological suitability. For example, the distribution of essential
wetland plants, such as mangroves, could be used to calculate the ecological suitability
value. An ecological suitability evaluation system for estuarine wetlands would be based
on a comprehensive evaluation of aspects, such as primary species distribution, wetland
characteristic species distribution, and economic development impact.

Furthermore, the IP was investigated based on 200 m × 200 m grids due to computer
memory limitations. In the future, we could use grids with smaller sizes for more precise
planning or irregular small class planning. Furthermore, we will explore the influence of
the Gurobi parameter setting and the network model constraints on the computational cost.

6. Conclusions

The distribution of rare aquatic animals simulated by Maxent was used to determine
ecological suitability values in the QBEWNR. We used CA to simulate variations in eco-
logical suitability values during different periods of partitioning the QBEWNR. Finally,
we proposed a novel MDP algorithm based on network flow theory to design the nature
reserve. The MDP algorithm satisfies the primary optimization constraints, such as cost,
partitioning, and continuity.

Moreover, we introduced virtual points in the MDP algorithm to design multiperiod
constraints, such as numerous starting points, networked traffic, and continuity between
virtual points and core sites. The MDP algorithm maximized the ecological suitability
value, minimized the perimeter, and minimized the number of sites for the reserve and
thus rationally selected a protection scheme for the QBEWNR over an extended period.

The results reveal that the total ecological suitability value (212.92) of the reserve
generated by the MDP algorithm was substantially higher than that of the original reserve
(111.35). Moreover, the number of selected sites (372) selected by MDP was substantially
lower than the original reserve (547), demonstrating the superior performance of the
MDP algorithm.
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