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Abstract: This article presents the selection of location and sizing of multiple distributed generators
(DGs) for boosting performance of the radial distribution system in the case of constant power load
flow and constant impedance load flow. The consideration of placing and sizing of DGs is to meet
the load demand. This article tries to overcome the limitations of existing techniques for determining
the appropriate location and size of DGs. The selection of DG location is decided in terms of real
power losses, accuracy, and sensitivity. The size of DG is measured in terms of real and reactive
power. Both positioning and sizing of DG are analyzed with the genetic algorithm and the heuristic
probability distribution method. The results are compared with other existing methods such as ant-
lion optimization algorithm, coyote optimizer, modified sine-cosine algorithm, and particle swarm
optimization. Further, the power quality improvement of the network is assessed by positioning
D-STATCOM, and its location is decided on the basis of the nearby bus having poor voltage profile
and high total harmonic distortion (THD). The switching and controlling of D-STATCOM are assessed
with fuzzy logic controller (FLC) for improving the performance parameters such as voltage profile
and THD at that particular bus. The proposed analytical approach for the system is tested on the IEEE
33 bus system. It is observed that the performance of the system with the genetic algorithm gives a
better solution in comparison to heuristic PDF and other existing methods for determining the optimal
location and size of DG. The introduction of D-STATCOM into the system with FLC shows better
performance in terms of improved voltage profile and THD in comparison to existing techniques.

Keywords: distributed generator; D-STATCOM; fuzzy logic controller; genetic algorithm; power quality

1. Introduction

The current activities of the advanced power system have become very complicated,
which needs to necessarily satisfy the increasing energy needs in an efficient manner [1,2].
The civil, fiscal, and other substantial considerations warrant the site of generation centers
being placed at places distant from load centers. The reorganization and deregulation
of power companies have led to making system governance unpredictable. The factors
which are to be considered while carrying out extension of the transmission system are
the following: cutback stability margins, chances of tripping outages, and rising power
cuts. The distributed generator (DG) installation would be of the utmost benefit where
the installation of new transmission lines and setting up of new power-generating units
are not feasible [3–5]. It is also reasonable to believe that the selection of the right DG
technology, including the optimal location and scale of the DG, would help in decreasing
the losses in such a system. The purpose of optimally placing DG in a power system
network is for achieving correct operation of the network with system error minimization
and voltage profile enhancement inclusive of improved stability, reliability, and load
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ability [6,7]. In contrast to the classical approach, smart techniques for optimal DG sizing
and positioning are simple and have good convergence characteristics for application to
composite power system networks [8–10]. DG is also capable of significantly mitigating
harmonics and improving the voltage profile along with acquiesced transmission and
distribution investment [11–13]. DG is flexible enough to locate anywhere in the system as
per requirement of minimum transmission losses [14–16]. There have been many techniques
proposed to perform such activities as load durability test, exact loss formula, Newton–
Raphson, Gauss–Seidal method etc., [17–19]. At present, in the era of soft computing
technique, every system is trying to obtain fast convergence region so as to reduce the
minimum losses with lesser component involved [20,21].

The biggest challenge is to find the optimal size of DG to fulfil the load requirements.
It is observed that there are four types of DG given as:

(a) DG1: It supports only real power; no component of reactive power at unity power
factor. For example: solar PV array.

(b) DG2: It supports both real power and reactive power at 0.8–0.85 power factor leading.
For example: wind, tidal geothermal.

(c) DG3: It supports only reactive power; no component of real power at 0 power factor.
For example: synchronous condenser, capacitor bank.

(d) DG4: It absorbs the real power, giving the reactive power to the system at 0.8–0.85
power factor lagging. For example: doubly-fed induction generator [22–24].

Recent work has found that there are many advantages to the installation of DGs within
the power system; namely raising the efficiency of the output and lowering energy deficit
on the electrical grid [25–28]. In this article, only DG2 is used as per system requirements.
The size and location of DG were proposed in many articles by using different techniques
such as crow bar search method, neural network, evolutionary algorithm, intelligent
water droplet, swarm optimization, etc. [29–33]. The advanced algorithms [34,35] or
other existing techniques for identifying the size and location of DG have the biggest
challenge of improper total harmonic distortion (THD), sensitivity, and accuracy. It is
observed in literature that the THD value obtained was in the range of 15–18%, accuracy
and sensitivity are also in the range of 10–15% which are quite high and inadequate,
due to which voltage profile is distorted. Such issues with existing techniques create
the motivation to overcome these problems. These issues are satisfactorily resolved with
the proposed scheme. The genetic algorithm (GA) is proposed to determine the sizing
and location of DG with improved THD, accuracy, sensitivity, and voltage profile. GA
tends to be more highly permissible than heuristic optimization strategies in order to
find the optimal results with less effort than absolute search. In this paper, heuristic
optimization strategy which is a combination of two methods, namely, Poisson distribution
method and normal distribution method, is also utilized to find the performance of the
radial distribution system and show the effectiveness of GA in its comparison. Such a
heuristic method requires more effort for providing detailed solutions in terms of accuracy,
sensitivity, realism, and power loss. In order to have better results with minimal efforts,
GA is applied. It is also observed that the proposed technique gives better results in
comparison to existing techniques presented in literature [4,9,12,15,17,20,28,30,32,35–45].
However, to analyze the efficacy of the proposed work in this paper, the results achieved are
compared with the existing techniques such as ant-lion optimization algorithm [42], coyote
optimizer [43], modified sine-cosine algorithm [44], and particle swarm optimization [45].
The GA seems to have the main advantage of utilizing entity definition, i.e., strings, instead
of handling such entities themselves. Multiple problems in electricity grid optimization
are manifestations in numerical optimization but linear and other nonlinear methods in
programming consider them difficult to address. In this article, the heuristic probability
distribution method and GA are applied for finding the best location and sizing of DG
in the IEEE 33 bus system for the constant power load model (CPLF) and the constant
impedance load model (CILF). The performance parameters show the superiority of GA
over the heuristic probability distribution method and other existing methods such as ant-
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lion optimization algorithm [42], coyote optimizer [43], modified sine-cosine algorithm [44],
and particle swarm optimization [45] in the IEEE 33 standard bus system. By considering
lower real power losses, improved accuracy, and sensitivity, selection criteria of three DGs
location are decided, and after that, size of DG is decided in terms of real and reactive
power. Afterwards, the impact of the distribution static compensator (D-STATCOM) is
assessed for improving the power quality performance at the line near to the bus terminal
having higher distortion. In order to improve the power quality of performance parameters,
the switching of D-STATCOM is performed by using the fuzzy logic controller (FLC). With
the involvement of D-STATCOM, the distortion level has been improved considerably with
FLC in comparison to existing techniques. It is preferred to utilize optimal contribution of
DG for both the CILF and the CPLF system so as to fulfill the load demand using GA.

2. Optimal Location and Sizing of DG

This paper aims to find the optimal location and size of DG. For this, two approaches
are adopted. Firstly, the location and size are found using the heuristic probability distribu-
tion method (PDF), and then the GA method is used. Both these methods utilize CPLF and
CILF to optimize the DG location and size.

DG is placed at a particular bus to fulfil the load demand. Since load demand is fixed
for all buses, the selection of bus for DG placement is assessed in terms of minimum real
power losses, improved accuracy, and improved sensitivity factor. The selection of DG
location is analyzed by using heuristic PDF and GA.

2.1. Heuristic Probability Distribution Method (PDF)

The location and position of DG are decided by the heuristic probability distribution
method which is presented in Equation (1). The heuristic probability distribution method is
a combination of the Poisson distribution method and normal distribution and it is denoted
by operator ‘J’ and is expressed by the following equation:

J = min(
33

∑
i=1

Xi|Si−Sre f |2 + pd f (λ)(
33

∑
i=1

Sloss)) (1)

J is an operator of heuristic probability distribution method for minimization of power
losses shown in Equation (2) and λ is the difference between measured and reference power.

Sloss =
33

∑
i=1

Si−Sload (2)

Sloss is the complex power loss between two buses and Sload is the power consumed by
the load.

Putting the value of Equation (2) into Equation (1), Equation (3) is obtained as:

J = min(
33

∑
i=1

Xi|Si−Sre f |2 + pd f (λ)(
33

∑
i=1

Si−Sload)) (3)

where the measured (Si) and reference value (Sref) of complex power are given by
Equations (4) and (5), respectively:

Si = Pi + jQi (4)

Sre f = Pre f + jQre f (5)

Xi is the design factor given by Equation (6) to improve the accuracy such that mini-
mum power loss can be attained.
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Xi =
Srated∣∣∣C1Si + C2Sre f

∣∣∣2 (6)

The probability distribution factor in Equation (3) is given by Equation (7):

pd f (λ) =
e−

λ2

2σ2

σ
√

2π
(7)

where λ = Si − Sre f = difference factor between measured and reference value of power.
As per standard expression of normal distribution and comparing with Equation (7),

Equation (8) is obtained:

pd f (Si − Sre f ) =
e−
|Si−Sre f |

2

2σ2

σ
√

2π
(8)

where Sref is the mean, σ is the standard deviation, and its corresponding variance is given
as σ2.

Putting the value of Equations (6)–(8) into Equation (3), Equation (9) is obtained:

J = min(
33

∑
i=1

Srated

∣∣∣Si − Sre f

∣∣∣2∣∣∣C1Si + C2Sre f

∣∣∣2 +
e−
|Si−Sre f |

2

2σ2

σ
√

2π
(

33

∑
i=1

Si−Sload)) (9)

where,

C1 is the accuracy measured in terms of real power measurement. Its range lies
between 0.02 and 0.04. The mathematical representation of C1 is given as (∆Pi/Pi).
C2 is the accuracy measured in terms of reactive power measurement. Its range lies
between 0.03 and 0.05. The mathematical representation of C2 is given as (∆Qi/Qi).

Power flow at bus ‘i’ is given by Equations (10) and (11) as:

∆P = Pi − Pre f (10)

∆Q = Qi −Qre f (11)

where, Pi and Qi are real and reactive power flow between two buses and their reference
values are given as Pref and Qref as shown in Equations (12) and (13):

Pi = Pij =
33

∑
i=1

33

∑
j=1

ViVj(Gij cos(θi−θj) + Bij sin(θi − θj)) (12)

Qi = Qij =
33

∑
i=1

33

∑
j=1

ViVj(Gij cos(θi−θj)− Bij sin(θi − θj)) (13)

where conductance (Gij) and susceptance (Bij) are given by Equations (14) and (15),
respectively:

Gij =
Rij√

R2
ij + X2

ij

(14)

Bij =
Xij√

R2
ij + X2

ij

(15)

The best performance index can be measured by differentiating Equation (9) to obtain
the minimal optimal solution as shown in Equation (16):
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∂J
∂Si

= 0;
∂2 J
∂Si

2 > 0 (16)

J is the function of variable Si which employs J(Si). For checking the convergence
nature, Taylor series expansion for second order is used for ‘k’ iteration as shown in
Equation (17):

J(Sk+1
i ) = J(Sk

i ) + h
∂(J(Sk

i ))

∂Sk
i

+ h2 ∂2(J(Sk
i ))

∂(Sk
i )

2 (17)

Using the condition of Equation (16) in Equation (17), Equation (18) is obtained:

J(Sk+1
i )− J(Sk

i ) = h2 ∂2(J(Sk
i ))

∂(Sk
i )

2 (18)

Rearranging Equation (18), Equation (19) is obtained:

J(Sk+1
i )− J(Sk

i )

h2 =
∂2(J(Sk

i ))

∂(Sk
i )

2 > 0 (19)

where h = Sk+1
i − Sk

i . In order to obtain Equation (19), there is a constraint limit to attain
the convergence level, which is shown in Equation (20):

Magnitude
∣∣∣J(Sk+1

i )− J(Sk
i )
∣∣∣< ε (20)

The complete iterative process under the heuristic PDF method is shown using
Figure 1.

The load representations for CPLF and CILF are given by Equations (21)–(23):

Sload = PL + jQL (21)

where

PL = Pi

(
Vo

Vi

)x
(22)

QL = Qi

(
Vo

Vi

)y
(23)

Vo is rated voltage of a particular bus while x and y are constant load parameter and
its values are shown in Table 1.

Table 1. Constant parameter value for CPLF and CILF.

Load Type x y

CPLF 0 0
CILF 1.8 1.8

The constant values of x and y are taken for power load and impedance load; that is
why they are called constant power load and constant impedance load.

The sensitivity and accuracy can be represented as
∂(J)
∂(Si)

in pu and Si − Sre f in

pu, respectively.
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Figure 1. Flowchart of heuristic PDF method.

2.2. Performance Evaluation for Standard IEEE Tested 33 Bus Systems Using Heuristic PDF

The effectiveness of the proposed scheme using the conventional method is being
tested initially on the standard IEEE 33 bus test system for CPLF and CILF [36,37]. The
typical diagram of the IEEE 33 bus test system is shown in Figure 2 [37].

The IEEE 33 bus test system is modelled in MATLAB with location of fault from
0–90 km. This system consists of 33 buses and 32 lines and has 12.66 kV, 3.715 MW, and
2.3 MVar load size. Thirty percent of the entire load is the size of the source unit used. The
source unit voltage is 12.66 kV and the system’s lower and upper voltage is set between
0.95 pu and 1.05 pu with standard internal parameters as given in [37]. Bus 1 is considered
as the slack bus or main substation. The internal parameters of the IEEE 33 bus test system
are shown in [36].

The proposed design illustrated from Equations (1)–(23) is applied on the standard
IEEE 33 bus test system for estimation of location of DG using the heuristic PDF method.
By using these equations, the parameters such as real power loss, accuracy, and sensitivity
are estimated as shown in Table 2. The design part has already been discussed in the
previous section.
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Table 2. Performance parameter of DG at different locations for the IEEE 33 bus system with the
heuristic PDF method for CPLF and CILF.

Bus No.
CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

1 0.31 0.031 0.056 0.32 0.071 0.066
2 0.29 0.029 0.047 0.31 0.087 0.065
3 0.27 0.021 0.057 0.29 0.078 0.061
4 0.21 0.019 0.056 0.30 0.079 0.055
5 0.29 0.025 0.049 0.31 0.080 0.061
6 0.28 0.031 0.054 0.27 0.079 0.059
7 0.27 0.049 0.055 0.26 0.080 0.057
8 0.31 0.050 0.061 0.25 0.090 0.056
9 0.32 0.071 0.054 0.30 0.069 0.055

10 0.31 0.072 0.049 0.31 0.091 0.053
11 0.29 0.098 0.095 0.41 0.098 0.052
12 0.31 0.098 0.075 0.29 0.084 0.049
13 0.27 0.084 0.085 0.28 0.072 0.045
14 0.29 0.087 0.084 0.31 0.073 0.044
15 0.31 0.088 0.045 0.33 0.074 0.042
16 0.27 0.086 0.039 0.32 0.078 0.043
17 0.25 0.075 0.039 0.27 0.069 0.041
18 0.27 0.069 0.042 0.29 0.081 0.048
19 0.31 0.058 0.025 0.39 0.079 0.047
20 0.30 0.047 0.024 0.40 0.081 0.046
21 0.27 0.059 0.034 0.28 0.083 0.057
22 0.29 0.098 0.036 0.31 0.087 0.051
23 0.31 0.094 0.054 0.32 0.081 0.050
24 0.27 0.095 0.045 0.33 0.079 0.065
25 0.29 0.089 0.078 0.27 0.074 0.079
26 0.27 0.075 0.084 0.31 0.072 0.065
27 0.31 0.061 0.084 0.30 0.077 0.054
28 0.33 0.072 0.094 0.32 0.076 0.051
29 0.34 0.065 0.018 0.33 0.075 0.053
30 0.35 0.050 0.045 0.31 0.091 0.064
31 0.42 0.064 0.061 0.41 0.094 0.091
32 0.41 0.042 0.082 0.43 0.080 0.085
33 0.39 0.084 0.083 0.39 0.078 0.084
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2.3. Genetic Algorithm

GA is used to find the best location of DG in the IEEE 33 bus system. It involves
reproduction, crossover, and mutation. Its procedure can be illustrated by the flowchart
as shown in Figure 3. The process begins with selection of a binary string as shown by
Equation (24), the parameters for which are assumed as follows:

Sustainability 2022, 14, x FOR PEER REVIEW 9 of 32 
 

Start

Select Si, string length, population size, Pc, Pm

Generate binary String code for variable and measure speed

Set iteration count k=0

Calculate all variable values 

Optimize Si using Equation (9)

Estimate fitness function  

Perform Crossover, mutation

Calculate the value of Si & losses

Display the results

Stop 

Were convergence 
criteria achieved? 

Increment the iteration count, 
k=k+1

NO

YES

 
Figure 3. Flowchart representing the GA. 

Table 3. Performance parameter of DG at different locations for the modified IEEE 33 bus system 
with GA for CPLF and CILF. 

Bus No. 
CPLF CILF 

Real Power 
Losses (pu) 

Accuracy 
(pu) 

Sensitivity 
(pu) 

Real power 
losses (pu) 

Accuracy 
(pu) 

Sensitivity 
(pu) 

1 0.29 0.029 0.052 0.30 0.069 0.061 
2 0.27 0.027 0.044 0.29 0.082 0.059 
3 0.24 0.019 0.050 0.27 0.076 0.060 
4 0.23 0.017 0.051 0.27 0.078 0.052 
5 0.25 0.016 0.042 0.30 0.077 0.058 
6 0.22 0.024 0.051 0.25 0.078 0.055 
7 0.24 0.040 0.050 0.25 0.072 0.049 

Figure 3. Flowchart representing the GA.

Population size: 6, length of the complete string: 8, crossover probability, Pc = 0.9,
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r = Si

min +
Si

max − Si
min

2l − 1
yr (24)
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where r is the iteration count. The application of iteration in Equation (24) results in
Equations (25) and (26):

f r =
1

(1 + αεr

Si
r )

(25)

α is step size which is equal to 0.5.

εr = Si
r − Si

re f (26)

Figures 4 and 5 show real power loss at bus 17 for CPLF and CILF using GA. The
performance parameter for finding the DG location can be analyzed from Tables 2 and 3
at different DG locations in the IEEE 33 bus system using heuristic PDF and GA methods
for both CPLF and CILF. Figures 6 and 7 provide the performance parameter comparison
of GA with the heuristic method at different buses for CPLF and CILF. Moreover, in
order to have comprehensive analysis and comparison for the DG location with GA and
heuristic pdf, the results are compared with those obtained with the ant-lion optimization
algorithm [42], coyote optimizer [43], modified sine-cosine algorithm [44], and particle
swarm optimization [45]. The performance parameter evaluation for the estimation of DG
location by using the ant-lion optimization algorithm [42], coyote optimizer [43], modified
sine-cosine algorithm [44], and particle swarm optimization [45] is shown in Tables 4–7 for
CPLF and CILF type of load.

From Tables 2–7, it is observed that the selection of DGs location is better found under
GA for CPLF and CILF in comparison to other methods. By comparing the real power
loss, sensitivity, and accuracy, it can be concluded that bus 17 is the best location for the
placement of DG for both CPLF and CILF. In the sequence manner, bus 3 and bus 4 are
the second and third position of placing the next two DGs. The comparative results for
positioning of three DGs with different methods are shown in Table 8.
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Table 3. Performance parameter of DG at different locations for the modified IEEE 33 bus system
with GA for CPLF and CILF.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

1 0.29 0.029 0.052 0.30 0.069 0.061
2 0.27 0.027 0.044 0.29 0.082 0.059
3 0.24 0.019 0.050 0.27 0.076 0.060
4 0.23 0.017 0.051 0.27 0.078 0.052
5 0.25 0.016 0.042 0.30 0.077 0.058
6 0.22 0.024 0.051 0.25 0.078 0.055
7 0.24 0.040 0.050 0.25 0.072 0.049
8 0.29 0.045 0.052 0.25 0.084 0.051
9 0.28 0.055 0.050 0.26 0.061 0.049

10 0.27 0.056 0.048 0.30 0.089 0.050
11 0.28 0.081 0.047 0.38 0.094 0.050
12 0.29 0.089 0.069 0.29 0.082 0.045
13 0.25 0.079 0.079 0.27 0.070 0.044
14 0.25 0.079 0.078 0.28 0.071 0.043
15 0.25 0.079 0.031 0.32 0.072 0.041
16 0.26 0.076 0.037 0.31 0.075 0.041
17 0.21 0.070 0.034 0.23 0.061 0.039
18 0.23 0.065 0.032 0.28 0.070 0.041
19 0.28 0.051 0.021 0.34 0.071 0.045
20 0.29 0.045 0.022 0.39 0.072 0.041
21 0.26 0.052 0.031 0.23 0.077 0.051
22 0.29 0.091 0.035 0.30 0.081 0.047
23 0.30 0.090 0.051 0.30 0.079 0.047
24 0.22 0.091 0.044 0.29 0.071 0.047
25 0.26 0.081 0.071 0.21 0.069 0.074
26 0.25 0.070 0.081 0.30 0.069 0.064
27 0.23 0.089 0.080 0.29 0.071 0.051
28 0.31 0.090 0.079 0.31 0.072 0.049
29 0.30 0.091 0.015 0.32 0.071 0.047
30 0.31 0.081 0.035 0.24 0.085 0.059
31 0.40 0.089 0.051 0.39 0.084 0.082
32 0.34 0.081 0.073 0.41 0.077 0.071
33 0.32 0.082 0.075 0.34 0.071 0.077

Table 4. Performance parameter of DG at different locations for the IEEE 33 bus system with the
ant-lion optimization algorithm [42] for CPLF and CILF.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

1 0.4 0.042 0.064 0.37 0.081 0.075
2 0.38 0.04 0.055 0.36 0.097 0.074
3 0.36 0.032 0.065 0.34 0.088 0.07
4 0.3 0.03 0.064 0.35 0.089 0.064
5 0.38 0.036 0.057 0.36 0.09 0.07
6 0.37 0.042 0.062 0.32 0.089 0.068
7 0.36 0.06 0.063 0.31 0.09 0.066
8 0.4 0.061 0.069 0.3 0.1 0.065
9 0.41 0.082 0.062 0.35 0.079 0.064

10 0.4 0.083 0.057 0.36 0.101 0.062
11 0.38 0.109 0.103 0.46 0.108 0.061
12 0.4 0.109 0.083 0.34 0.094 0.058
13 0.36 0.095 0.093 0.33 0.082 0.054
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Table 4. Cont.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

14 0.38 0.098 0.092 0.36 0.083 0.053
15 0.4 0.099 0.053 0.38 0.084 0.051
16 0.36 0.097 0.047 0.37 0.088 0.052
17 0.34 0.086 0.047 0.32 0.079 0.05
18 0.36 0.08 0.05 0.34 0.091 0.057
19 0.4 0.069 0.033 0.44 0.089 0.056
20 0.39 0.058 0.032 0.45 0.091 0.055
21 0.36 0.07 0.042 0.33 0.093 0.066
22 0.38 0.109 0.044 0.36 0.097 0.06
23 0.4 0.105 0.062 0.37 0.091 0.059
24 0.36 0.106 0.053 0.38 0.089 0.074
25 0.38 0.1 0.086 0.32 0.084 0.088
26 0.36 0.086 0.092 0.36 0.082 0.074
27 0.4 0.072 0.092 0.35 0.087 0.063
28 0.42 0.083 0.102 0.37 0.086 0.06
29 0.43 0.076 0.026 0.38 0.085 0.062
30 0.44 0.061 0.053 0.36 0.101 0.073
31 0.51 0.075 0.069 0.46 0.104 0.1
32 0.5 0.053 0.09 0.48 0.09 0.094
33 0.48 0.095 0.091 0.44 0.088 0.093

Table 5. Performance parameter of DG at different locations for the IEEE 33 bus system with the
coyote optimizer [43] for CPLF and CILF.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

1 0.44 0.051 0.068 0.42 0.088 0.082
2 0.42 0.049 0.059 0.41 0.104 0.081
3 0.4 0.041 0.069 0.39 0.095 0.077
4 0.34 0.039 0.068 0.4 0.096 0.071
5 0.42 0.045 0.061 0.41 0.097 0.077
6 0.41 0.051 0.066 0.37 0.096 0.075
7 0.4 0.069 0.067 0.36 0.097 0.073
8 0.44 0.07 0.073 0.35 0.107 0.072
9 0.45 0.091 0.066 0.4 0.086 0.071

10 0.44 0.092 0.061 0.41 0.108 0.069
11 0.42 0.118 0.107 0.51 0.115 0.068
12 0.44 0.118 0.087 0.39 0.101 0.065
13 0.4 0.104 0.097 0.38 0.089 0.061
14 0.42 0.107 0.096 0.41 0.09 0.06
15 0.44 0.108 0.057 0.43 0.091 0.058
16 0.4 0.106 0.051 0.42 0.095 0.059
17 0.38 0.095 0.051 0.37 0.086 0.057
18 0.4 0.089 0.054 0.39 0.098 0.064
19 0.44 0.078 0.037 0.49 0.096 0.063
20 0.43 0.067 0.036 0.5 0.098 0.062
21 0.4 0.079 0.046 0.38 0.1 0.073
22 0.42 0.118 0.048 0.41 0.104 0.067
23 0.44 0.114 0.066 0.42 0.098 0.066
24 0.4 0.115 0.057 0.43 0.096 0.081
25 0.42 0.109 0.09 0.37 0.091 0.095
26 0.4 0.095 0.096 0.41 0.089 0.081
27 0.44 0.081 0.096 0.4 0.094 0.07
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Table 5. Cont.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

28 0.46 0.092 0.106 0.42 0.093 0.067
29 0.47 0.085 0.03 0.43 0.092 0.069
30 0.48 0.07 0.057 0.41 0.108 0.08
31 0.55 0.084 0.073 0.51 0.111 0.107
32 0.54 0.062 0.094 0.53 0.097 0.101
33 0.52 0.104 0.095 0.49 0.095 0.1

Table 6. Performance parameter of DG at different locations for the IEEE 33 bus system with the
modified sine-cosine algorithm [44] for CPLF and CILF.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

1 0.48 0.059 0.075 0.49 0.096 0.089
2 0.46 0.057 0.066 0.48 0.112 0.088
3 0.44 0.049 0.076 0.46 0.103 0.084
4 0.38 0.047 0.075 0.47 0.104 0.078
5 0.46 0.053 0.068 0.48 0.105 0.084
6 0.45 0.059 0.073 0.44 0.104 0.082
7 0.44 0.077 0.074 0.43 0.105 0.08
8 0.48 0.078 0.08 0.42 0.115 0.079
9 0.49 0.099 0.073 0.47 0.094 0.078

10 0.48 0.1 0.068 0.48 0.116 0.076
11 0.46 0.126 0.114 0.58 0.123 0.075
12 0.48 0.126 0.094 0.46 0.109 0.072
13 0.44 0.112 0.104 0.45 0.097 0.068
14 0.46 0.115 0.103 0.48 0.098 0.067
15 0.48 0.116 0.064 0.5 0.099 0.065
16 0.44 0.114 0.058 0.49 0.103 0.066
17 0.42 0.103 0.058 0.44 0.094 0.064
18 0.44 0.097 0.061 0.46 0.106 0.071
19 0.48 0.086 0.044 0.56 0.104 0.07
20 0.47 0.075 0.043 0.57 0.106 0.069
21 0.44 0.087 0.053 0.45 0.108 0.08
22 0.46 0.126 0.055 0.48 0.112 0.074
23 0.48 0.122 0.073 0.49 0.106 0.073
24 0.44 0.123 0.064 0.5 0.104 0.088
25 0.46 0.117 0.097 0.44 0.099 0.102
26 0.44 0.103 0.103 0.48 0.097 0.088
27 0.48 0.089 0.103 0.47 0.102 0.077
28 0.50 0.100 0.113 0.49 0.101 0.074
29 0.51 0.093 0.037 0.50 0.1 0.076
30 0.52 0.078 0.064 0.48 0.116 0.087
31 0.59 0.092 0.08 0.58 0.119 0.114
32 0.58 0.07 0.101 0.6 0.105 0.108
33 0.56 0.112 0.102 0.56 0.103 0.107
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Table 7. Performance parameter of DG at different locations for the IEEE 33 bus system with the
particle swarm optimization [45] for CPLF and CILF.

Bus No.

CPLF CILF

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power
Losses (pu)

Accuracy
(pu)

Sensitivity
(pu)

1 0.53 0.062 0.077 0.52 0.099 0.094
2 0.51 0.06 0.068 0.51 0.115 0.093
3 0.49 0.052 0.078 0.49 0.106 0.089
4 0.43 0.05 0.077 0.50 0.107 0.083
5 0.51 0.056 0.07 0.51 0.108 0.089
6 0.50 0.062 0.075 0.47 0.107 0.087
7 0.49 0.08 0.076 0.46 0.108 0.085
8 0.53 0.081 0.082 0.45 0.118 0.084
9 0.54 0.102 0.075 0.50 0.097 0.083

10 0.53 0.103 0.07 0.51 0.119 0.081
11 0.51 0.129 0.116 0.61 0.126 0.08
12 0.53 0.129 0.096 0.49 0.112 0.077
13 0.49 0.115 0.106 0.48 0.1 0.073
14 0.51 0.118 0.105 0.51 0.101 0.072
15 0.53 0.119 0.066 0.53 0.102 0.07
16 0.49 0.117 0.06 0.52 0.106 0.071
17 0.47 0.106 0.06 0.47 0.097 0.069
18 0.49 0.1 0.063 0.49 0.109 0.076
19 0.53 0.089 0.046 0.59 0.107 0.075
20 0.52 0.078 0.045 0.6 0.109 0.074
21 0.49 0.09 0.055 0.48 0.111 0.085
22 0.51 0.129 0.057 0.51 0.115 0.079
23 0.53 0.125 0.075 0.52 0.109 0.078
24 0.49 0.126 0.066 0.53 0.107 0.093
25 0.51 0.12 0.099 0.47 0.102 0.107
26 0.49 0.106 0.105 0.51 0.1 0.093
27 0.53 0.092 0.105 0.5 0.105 0.082
28 0.55 0.103 0.115 0.52 0.104 0.079
29 0.56 0.096 0.039 0.53 0.103 0.081
30 0.57 0.081 0.066 0.51 0.119 0.092
31 0.64 0.095 0.082 0.61 0.122 0.119
32 0.63 0.073 0.103 0.63 0.108 0.113
33 0.61 0.115 0.104 0.59 0.106 0.112

Table 8. Performance comparison among different methods.

Technique Bus No.

CPLF CILF

Real Power Loss
(pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power Loss
(pu)

Accuracy
(pu)

Sensitivity
(pu)

Heuristic method
17 0.25 0.075 0.039 0.27 0.069 0.041
3 0.27 0.021 0.057 0.29 0.078 0.061
4 0.21 0.019 0.056 0.30 0.079 0.055

Genetic Algorithm
17 0.21 0.070 0.034 0.23 0.061 0.039
3 0.24 0.019 0.050 0.27 0.076 0.060
4 0.23 0.017 0.051 0.27 0.078 0.052

Ant-lion optimization
algorithm [42]

17 0.34 0.086 0.047 0.32 0.079 0.05
3 0.36 0.032 0.065 0.34 0.088 0.07
4 0.3 0.03 0.064 0.35 0.089 0.064

Coyote optimizer [43]
17 0.38 0.095 0.051 0.37 0.086 0.057
3 0.4 0.041 0.069 0.39 0.095 0.077
4 0.34 0.039 0.068 0.4 0.096 0.071



Sustainability 2022, 14, 3305 15 of 31

Table 8. Cont.

Technique Bus No.

CPLF CILF

Real Power Loss
(pu)

Accuracy
(pu)

Sensitivity
(pu)

Real Power Loss
(pu)

Accuracy
(pu)

Sensitivity
(pu)

Modified sine-cosine
algorithm [44]

17 0.42 0.103 0.058 0.44 0.094 0.064
3 0.44 0.049 0.076 0.46 0.103 0.084
4 0.38 0.047 0.075 0.47 0.104 0.078

Particle Swarm
optimization [45]

17 0.47 0.106 0.06 0.47 0.097 0.069
3 0.49 0.052 0.078 0.49 0.106 0.089
4 0.43 0.05 0.077 0.50 0.107 0.083

2.4. Optimal Sizing of DG

After deciding the optimal location of three DGs, it is also required to check the DG size
to confirm its placement at bus 17. DG size is estimated from Tables 9–11 by using heuristic
pdf, GA, ant-lion optimization algorithm [42], coyote optimizer [43], modified sine-cosine
algorithm [44], and particle swarm optimization [45] for both CPLF and CILF type of load.
It is observed that the size of DG when placed at bus 17 is found to be the minimum. The
relative comparison of DG size for bus 17, 4, and 3 is shown in Table 12. The minimal size of
DG is obtained under GA as compared to the heuristic method. Figures 8–10 illustrate the
real power and Figure 11 illustrates the reactive power at bus 17 for both CPLF and CILF.
From the results, it is confirmed that bus 17 is the best choice for the location and optimum
sizing of DG is also obtained here. Subsequently, bus 3 and bus 4 have the appropriate size
of DGs, which assures the confirmation of the DG location. The location and size of three
DGs at the allotted location in the IEEE 33 bus system are shown in Figure 12.
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Table 9. DG size comparison for CPLF and CILF using GA and heuristic PDF.

Bus No.

CPLF CILF

Heuristic PDF GA Heuristic PDF GA

P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu)

1 1.01 0.98 1.02 0.99 1.09 1.02 0.99 1.02
2 1.02 0.94 1.10 0.96 1.03 0.99 1.01 0.99
3 1.05 0.85 0.85 0.78 1.10 1.01 0.90 0.89
4 1.23 0.99 0.91 0.81 1.09 0.95 0.81 0.91
5 1.12 1.01 1.31 0.75 1.11 0.99 1.29 0.76
6 1.03 0.94 1.05 0.73 1.05 1.02 1.01 0.85
7 1.04 0.96 1.06 0.74 1.07 0.95 1.10 0.72
8 0.91 0.95 0.95 0.91 1.02 0.97 0.99 0.84
9 0.89 0.81 0.97 0.82 0.95 0.95 0.94 0.92

10 1.02 0.95 1.03 0.76 0.98 0.92 1.01 0.96
11 0.99 1.00 0.99 1.02 1.02 1.05 0.98 1.01
12 0.98 1.01 0.99 1.03 0.99 1.03 0.92 1.01
13 1.89 1.03 1.95 1.04 1.71 1.02 1.84 1.00
14 0.85 1.05 0.85 1.05 0.97 1.05 1.12 1.01
15 0.94 1.09 0.94 1.10 1.00 0.99 0.99 1.10
16 0.94 1.11 0.98 1.01 0.99 1.02 0.94 1.08
17 0.89 0.90 0.78 0.71 0.84 0.98 0.76 0.70
18 0.95 1.13 0.96 1.04 1.05 1.10 0.99 1.01
19 0.94 1.84 0.99 1.88 0.92 1.21 0.94 1.08
20 1.00 1.24 1.07 1.44 1.10 1.12 1.02 1.40
21 1.00 1.11 1.08 1.21 1.09 1.01 1.02 1.01
22 0.95 1.24 1.98 1.34 1.01 1.10 1.91 1.21
23 0.80 1.00 1.89 1.44 1.02 1.08 1.21 1.01
24 0.81 0.99 1.85 1.00 0.95 1.01 1.01 1.09
25 0.79 1.20 1.84 1.22 0.89 1.12 1.00 1.12
26 0.84 1.21 1.85 1.23 0.94 1.12 1.02 1.11
27 0.99 0.99 2.00 1.02 0.96 0.96 1.01 1.10
28 0.98 0.84 1.75 0.86 1.03 1.01 1.05 0.95
29 0.99 0.95 1.82 0.98 1.21 0.99 1.51 0.97
30 1.33 0.99 1.72 0.99 1.23 0.92 1.10 0.94
31 0.99 1.00 1.81 1.01 1.42 1.01 1.02 1.08
32 1.20 1.01 1.51 1.05 1.47 1.11 1.01 1.06
33 1.05 1.12 1.31 1.15 1.25 1.10 1.01 1.01
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Table 10. DG size comparison for CPLF and CILF using the ant-lion optimization algorithm [42] and
coyote optimizer [43].

Bus No.

CPLF CILF

Ant-Lion
Optimization

Algorithm [42]

Coyote Optimizer
[43]

Ant-Lion
Optimization

Algorithm [42]

Coyote Optimizer
[43]

P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu)

1 1.1 1.04 1.08 1.07 1.18 1.11 1.07 1.09
2 1.11 1 1.16 1.04 1.12 1.08 1.09 1.06
3 1.14 0.91 0.91 0.86 1.19 1.1 0.98 0.96
4 1.32 1.05 0.97 0.89 1.18 1.04 0.89 0.98
5 1.21 1.07 1.37 0.83 1.2 1.08 1.37 0.83
6 1.12 1 1.11 0.81 1.14 1.11 1.09 0.92
7 1.13 1.02 1.12 0.82 1.16 1.04 1.18 0.79
8 1 1.01 1.01 0.99 1.11 1.06 1.07 0.91
9 0.98 0.87 1.03 0.9 1.04 1.04 1.02 0.99

10 1.11 1.01 1.09 0.84 1.07 1.01 1.09 1.03
11 1.08 1.06 1.05 1.1 1.11 1.14 1.06 1.08
12 1.07 1.07 1.05 1.11 1.08 1.12 1 1.08
13 1.98 1.09 2.01 1.12 1.8 1.11 1.92 1.07
14 0.94 1.11 0.91 1.13 1.06 1.14 1.2 1.08
15 1.03 1.15 1 1.18 1.09 1.08 1.07 1.17
16 1.03 1.17 1.04 1.09 1.08 1.11 1.02 1.15
17 0.98 0.96 0.84 0.79 0.93 1.07 0.84 0.77
18 1.04 1.19 1.02 1.12 1.14 1.19 1.07 1.08
19 1.03 1.9 1.05 1.96 1.01 1.3 1.02 1.15
20 1.09 1.3 1.13 1.52 1.19 1.21 1.1 1.47
21 1.09 1.17 1.14 1.29 1.18 1.1 1.1 1.08
22 1.04 1.3 2.04 1.42 1.1 1.19 1.99 1.28
23 0.89 1.06 1.95 1.52 1.11 1.17 1.29 1.08
24 0.9 1.05 1.91 1.08 1.04 1.1 1.09 1.16
25 0.88 1.26 1.9 1.3 0.98 1.21 1.08 1.19
26 0.93 1.27 1.91 1.31 1.03 1.21 1.1 1.18
27 1.08 1.05 2.06 1.1 1.05 1.05 1.09 1.17
28 1.07 0.9 1.81 0.94 1.12 1.1 1.13 1.02
29 1.08 1.01 1.88 1.06 1.3 1.08 1.59 1.04
30 1.42 1.05 1.78 1.07 1.32 1.01 1.18 1.01
31 1.08 1.06 1.87 1.09 1.51 1.1 1.1 1.15
32 1.29 1.07 1.57 1.13 1.56 1.2 1.09 1.13
33 1.14 1.18 1.37 1.23 1.34 1.19 1.09 1.08
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Table 11. DG size comparison for CPLF and CILF using the modified sine-cosine algorithm [44] and
particle swarm optimization [45].

Bus No.

CPLF CILF

Modified Sine-Cosine
Algorithm [44]

Particle Swarm
Optimization [45]

Modified Sine-Cosine
Algorithm [44]

Particle Swarm
Optimization [45]

P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu)

1 1.19 1.1 1.14 1.15 1.27 1.2 1.15 1.16
2 1.2 1.06 1.22 1.12 1.21 1.17 1.17 1.13
3 1.23 0.97 0.97 0.94 1.28 1.19 1.06 1.03
4 1.41 1.11 1.03 0.97 1.27 1.13 0.97 1.05
5 1.3 1.13 1.43 0.91 1.29 1.17 1.45 0.9
6 1.21 1.06 1.17 0.89 1.23 1.2 1.17 0.99
7 1.22 1.08 1.18 0.9 1.25 1.13 1.26 0.86
8 1.09 1.07 1.07 1.07 1.2 1.15 1.15 0.98
9 1.07 0.93 1.09 0.98 1.13 1.13 1.1 1.06

10 1.2 1.07 1.15 0.92 1.16 1.1 1.17 1.1
11 1.17 1.12 1.11 1.18 1.2 1.23 1.14 1.15
12 1.16 1.13 1.11 1.19 1.17 1.21 1.08 1.15
13 2.07 1.15 2.07 1.2 1.89 1.2 2 1.14
14 1.03 1.17 0.97 1.21 1.15 1.23 1.28 1.15
15 1.12 1.21 1.06 1.26 1.18 1.17 1.15 1.24
16 1.12 1.23 1.1 1.17 1.17 1.2 1.1 1.22
17 1.07 1.02 0.9 0.87 1.02 1.16 0.92 0.84
18 1.13 1.25 1.08 1.2 1.23 1.28 1.15 1.15
19 1.12 1.96 1.11 2.04 1.1 1.39 1.1 1.22
20 1.18 1.36 1.19 1.6 1.28 1.3 1.18 1.54
21 1.18 1.23 1.2 1.37 1.27 1.19 1.18 1.15
22 1.13 1.36 2.1 1.5 1.19 1.28 2.07 1.35
23 0.98 1.12 2.01 1.6 1.2 1.26 1.37 1.15
24 0.99 1.11 1.97 1.16 1.13 1.19 1.17 1.23
25 0.97 1.32 1.96 1.38 1.07 1.3 1.16 1.26
26 1.02 1.33 1.97 1.39 1.12 1.3 1.18 1.25
27 1.17 1.11 2.12 1.18 1.14 1.14 1.17 1.24
28 1.16 0.96 1.87 1.02 1.21 1.19 1.21 1.09
29 1.17 1.07 1.94 1.14 1.39 1.17 1.67 1.11
30 1.51 1.11 1.84 1.15 1.41 1.1 1.26 1.08
31 1.17 1.12 1.93 1.17 1.6 1.19 1.18 1.22
32 1.38 1.13 1.63 1.21 1.65 1.29 1.17 1.2
33 1.23 1.24 1.43 1.31 1.43 1.28 1.17 1.15

Table 12. DG size comparison at the three best bus locations.

Load
Type

Bus
No.

Heuristic
Method

Genetic
Algorithm

Ant-Lion
Optimization

Algorithm [42]

Coyote
Optimizer [43]

Modified
Sine-Cosine

Algorithm [44]

Particle Swarm
Optimization

[45]

P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu) P (pu) Q (pu)

CPLF
17

0.89 0.9 0.78 0.71 0.98 0.96 0.84 0.79 0.98 0.96 0.84 0.79
CILF 0.84 0.98 0.76 0.7 0.93 1.07 0.84 0.77 0.93 1.07 0.84 0.77

CPLF
3

1.05 0.85 0.85 0.78 1.14 0.91 0.91 0.86 1.14 0.91 0.91 0.86
CILF 1.1 1.01 0.9 0.89 1.19 1.1 0.98 0.96 1.19 1.1 0.98 0.96

CPLF
4

1.23 0.99 0.91 0.81 1.32 1.05 0.97 0.89 1.32 1.05 0.97 0.89
CILF 1.09 0.95 0.81 0.91 1.18 1.04 0.89 0.98 1.18 1.04 0.89 0.98
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3. Positioning and Impact of D-STATCOM

The positioning and impact of D-STATCOM in the IEEE-33 bus system have to be
assessed for improving the power quality performance parameters such as THD and voltage
profile. The rating of D-STATCOM is 1 pu reactive power. In order to improve power
quality performance, control of D-STATCOM is decided by using the fuzzy logic controller.
In this article, only one D-STATCOM is used, so it has to be connected at that bus where
large distortions are present. In order to define the inputs and output of FLC, Equation (9)
is further used. Now, we differentiate Equation (9) to obtain the optimal solution.

Let’s define E = Si − Sre f (27)

d(J)
dE

= 0 (28)
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Equation (27) enables us to differentiate J with respect to E as given in Equation (28).
After differentiating, Equation (29) is obtained:

e−
|E|2
2σ2 =

Sratedσ
√

2π∣∣∣C1Si + C2Sre f

∣∣∣2(Si − Sload)
(29)

By arranging the terms in Equation (29) and by taking log on both sides, the value of
E is obtained as given by Equation (30).

E =

√√√√√2σ2 log(

∣∣∣C1Si + C2Sre f

∣∣∣2(Si − Sload)∣∣∣Sratedσ
√

2π
∣∣∣ ) (30)

Equation (30) gives the optimal solution. Now, the inputs to FLC are error (E) and
change in error (∆E) which are shown in Equation (31) as:

∆E = E(t)− E(t− 1) (31)

The detailed structure of the D-STATCOM-based FLC controller is shown in
Figures 13 and 14. In Figure 13, distorted real and reactive power is measured and passes
through the PID controller which generates the measured complex power. The measured
complex power is compared with its reference value which produces error. The error
and derivative of error act as inputs to FLC. The actual design of FLC for D-STATCOM
switching is shown in Figure 14. The output of FLC is reference voltage which is compared
with reference value and generates pulses for switching the D-STATCOM. In the same
pattern, ∆E can be expressed in standard form.

In order to design rules of the fuzzy set, a 7 × 7 matrix is taken so that the model
will have more precise and better results. This means both inputs have seven membership
functions. Using Cramer’s product rule, FLC rule is designed as shown in Figure 15
and its surface view is shown in Figure 16. Tables 13 and 14 show the notification of
membership function for first input, as initial error E is around 0.12 and mapping of input
with output, respectively.
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Table 13. Mathematical notation of input and output.

E/∆E
NB NM NS ZS PS PM PB

0.15 0.40 0.65 0.9 0.65 0.40 0.15

NB 0.25 0.25 0.40 0.65 0.9 0.65 0.40 0.25
NM 0.50 0.50 0.50 0.65 0.9 0.65 0.50 0.50
NS 0.75 0.75 0.75 0.75 0.9 0.75 0.75 0.75
ZS 1 1 1 1 1 1 1 1
PS 0.75 0.75 0.75 0.75 0.9 0.75 0.75 0.75
PM 0.50 0.50 0.50 0.65 0.9 0.65 0.50 0.50
PB 0.25 0.25 0.40 0.65 0.9 0.65 0.40 0.25

Table 14. Mapping of output with input.

E/∆E NB NM NS ZS PS PM PB

NB NM NS ZS PS PM PB PM
NB NB NM NS ZS PS PM PB
NM NM NM NS ZS PS NM NM
NS NS NS NS ZS NS NS NS
ZS ZS ZS ZS ZS ZS ZS ZS
PS PS PS PS ZS PS PS PS
PM PM PM NS ZS PS PM PM

From Tables 13 and 14, it can be demonstrated that, under certain parameters, a precise
control of objectives can be achieved using fuzzy observations, mapping, and control, if the
observations become sufficiently accurate as the goal is approached.

The seven membership functions corresponding to the first input are shown in
Equation (32) and these seven membership functions are taken from x1 to x7. The seven
membership functions are chosen in order to have better and more precise results. The
nature of the membership function is triangular and input is split into seven membership
functions. Each membership function from x1 to x7 is assigned with values in the numerator
as shown in Equation (32).

E =
0.03
x1

+
0.06
x2

+
0.09
x3

+
0.12
x4

+
0.09
x5

+
0.06
x6

+
0.03
x7

(32)

Dividing Equation (32) by 0.12, Equation (33) is obtained as:

E =
0.25
x1

+
0.50
x2

+
0.75
x3

+
1
x4

+
0.75
x5

+
0.50
x6

+
0.25
x7

(33)
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Notification of membership function for the second input is given in Equation (34):

∆E =
0.15
x1

+
0.40
x2

+
0.65
x3

+
0.9
x4

+
0.65
x5

+
0.40
x6

+
0.15
x7

(34)

From the Cartesian product rule:

A = EB = ∆E, A U B = max (A or B)

Further membership function is taken as:

x1 = NB, x2 = NM, x3 = NS, x4 = ZS, x5 = PS, x6 = PM, x7 = PB

Table 15 gives the comparative analysis of voltage profile at different buses with
different existing techniques and D-STATCOM-based FLC for both CPLF and CILF load;
whereas computational expression of THD is given by Equation (35).

Table 16 gives the comparative analysis of THD (%) of real power different buses with
different existing techniques and D-STATCOM-based FLC for both CPLF and CILF load.

THD =

√
1
g2 − 1 (35)

where ‘g’ is distortion factor which is defined as ratio of rms fundamental harmonic value
to rms value of voltage.

Table 15. Voltage (pu) comparisons at different buses with D-STATCOM-based FLC and exist-
ing methods.

Bus No. Load
Type

D-STATCOM-
Based FLC

Harmony Search
Algorithm [4]

Ant Colony
Algorithm [9]

Big-Bang–Crunch
Method [30]

1
CPLF 0.86 0.81 0.78 0.74
CILF 0.87 0.82 0.79 0.75

2
CPLF 0.86 0.81 0.78 0.74
CILF 0.85 0.8 0.79 0.75

3
CPLF 0.87 0.82 0.81 0.77
CILF 0.86 0.81 0.8 0.76

4
CPLF 0.85 0.8 0.78 0.74
CILF 0.87 0.82 0.8 0.76

5
CPLF 0.86 0.81 0.77 0.73
CILF 0.85 0.8 0.79 0.75

6
CPLF 0.85 0.8 0.79 0.75
CILF 0.9 0.85 0.83 0.79

7
CPLF 0.9 0.85 0.83 0.79
CILF 0.91 0.86 0.84 0.8

8
CPLF 0.91 0.86 0.83 0.79
CILF 0.91 0.86 0.82 0.78

9
CPLF 0.91 0.86 0.84 0.8
CILF 0.91 0.86 0.84 0.8

10
CPLF 1 0.98 0.97 0.93
CILF 1.01 0.99 0.97 0.93

11
CPLF 0.9 0.85 0.82 0.78
CILF 0.92 0.87 0.85 0.81

12
CPLF 0.76 0.71 0.87 0.83
CILF 0.79 0.74 0.72 0.68
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Table 15. Cont.

Bus No. Load
Type

D-STATCOM-
Based FLC

Harmony Search
Algorithm [4]

Ant Colony
Algorithm [9]

Big-Bang–Crunch
Method [30]

13
CPLF 0.8 0.75 0.73 0.69
CILF 0.81 0.76 0.74 0.7

14
CPLF 0.79 0.74 0.72 0.68
CILF 0.8 0.75 0.74 0.7

15
CPLF 0.8 0.75 0.73 0.69
CILF 0.74 0.69 0.65 0.61

16
CPLF 0.89 0.84 0.81 0.77
CILF 0.9 0.85 0.83 0.79

17
CPLF 0.99 0.97 0.94 0.9
CILF 0.98 0.95 0.9 0.86

18
CPLF 0.95 0.9 0.89 0.85
CILF 0.93 0.88 0.86 0.81

19
CPLF 0.97 0.92 0.91 0.87
CILF 0.95 0.9 0.87 0.83

20
CPLF 0.96 0.91 0.89 0.85
CILF 0.9 0.85 0.83 0.79

21
CPLF 0.91 0.86 0.84 0.8
CILF 0.93 0.88 0.81 0.77

22
CPLF 0.94 0.89 0.84 0.8
CILF 0.76 0.71 0.7 0.66

23
CPLF 0.75 0.7 0.69 0.65
CILF 0.74 0.69 0.68 0.64

24
CPLF 0.73 0.68 0.67 0.63
CILF 0.72 0.67 0.66 0.62

25
CPLF 0.71 0.66 0.64 0.6
CILF 0.7 0.65 0.64 0.6

26
CPLF 0.71 0.66 0.64 0.6
CILF 0.69 0.64 0.63 0.59

27
CPLF 0.7 0.65 0.62 0.58
CILF 0.71 0.66 0.64 0.6

28
CPLF 0.72 0.67 0.65 0.61
CILF 0.72 0.67 0.64 0.6

29
CPLF 0.72 0.67 0.65 0.61
CILF 0.75 0.7 0.69 0.65

30
CPLF 0.76 0.71 0.7 0.66
CILF 0.76 0.71 0.7 0.66

31
CPLF 0.81 0.76 0.74 0.7
CILF 0.77 0.72 0.71 0.67

32
CPLF 0.78 0.73 0.72 0.68
CILF 0.79 0.74 0.73 0.69

33
CPLF 0.8 0.75 0.74 0.7
CILF 0.78 0.73 0.72 0.68
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Table 16. THD (%) of real power comparison at different buses with D-STATCOM-based FLC and
existing methods.

Bus No. Load
Type

D-STATCOM-
Based FLC

Harmony Search
Algorithm [4]

Ant Colony
Algorithm [9]

Big-Bang–Crunch
Method [30]

1
CPLF 6.81 7.81 8.21 8.82
CILF 6.82 7.82 7.91 8.52

2
CPLF 7.81 8.81 9.12 9.73
CILF 6.8 7.8 7.91 8.52

3
CPLF 7.71 8.71 9.11 9.72
CILF 6.81 7.81 8.81 9.42

4
CPLF 6.8 7.8 9.11 9.72
CILF 6.82 7.82 8.11 8.72

5
CPLF 6.81 7.81 8.1 8.71
CILF 8.9 9.9 9.21 9.82

6
CPLF 6.8 7.8 9.17 9.78
CILF 8.5 8.5 9.12 9.73

7
CPLF 8.4 8.4 9.14 9.75
CILF 6.86 7.86 8.98 9.59

8
CPLF 6.86 7.86 9.12 9.73
CILF 6.86 7.86 8.65 9.26

9
CPLF 7.5 8.5 8.88 9.49
CILF 7.4 8.4 8.78 9.39

10
CPLF 5.2 9.12 9.89 10.5
CILF 6.3 9.65 9.65 10.26

11
CPLF 7.6 8.6 8.89 9.5
CILF 7.5 8.5 8.92 9.53

12
CPLF 6.71 7.71 7.87 8.48
CILF 7.1 8.1 8.55 9.16

13
CPLF 7.6 8.6 8.77 9.38
CILF 7.7 8.7 8.88 9.49

14
CPLF 7.1 8.1 8.9 9.51
CILF 7.5 8.5 8.87 9.48

15
CPLF 6.75 7.75 7.87 8.48
CILF 6.69 7.69 7.99 8.6

16
CPLF 6.84 7.84 7.98 8.59
CILF 6.85 7.85 8.02 8.63

17
CPLF 6.2 7.25 9.02 9.63
CILF 7.3 7.95 8.22 8.83

18
CPLF 6.9 7.9 7.99 8.6
CILF 6.91 7.91 7.95 8.56

19
CPLF 6.92 7.92 8.25 8.86
CILF 6.9 7.9 8.65 9.26

20
CPLF 6.91 7.91 8.14 8.75
CILF 6.85 7.85 9.02 9.63

21
CPLF 6.86 7.86 9.22 9.83
CILF 6.88 7.88 8.99 9.6

22
CPLF 6.89 7.89 8.55 9.16
CILF 6.71 7.71 8.42 9.03

23
CPLF 6.7 7.7 8.11 8.72
CILF 6.69 7.69 7.87 8.48
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Table 16. Cont.

Bus No. Load
Type

D-STATCOM-
Based FLC

Harmony Search
Algorithm [4]

Ant Colony
Algorithm [9]

Big-Bang–Crunch
Method [30]

24
CPLF 6.68 7.68 7.98 8.59
CILF 6.67 7.67 7.84 8.45

25
CPLF 6.66 7.66 7.92 8.53
CILF 6.65 7.65 7.83 8.44

26
CPLF 6.66 7.66 7.8 8.41
CILF 6.64 7.64 7.75 8.36

27
CPLF 6.65 7.65 7.79 8.4
CILF 6.66 7.66 7.85 8.46

28
CPLF 6.67 7.67 7.87 8.48
CILF 6.67 7.67 7.9 8.51

29
CPLF 6.67 7.67 7.75 8.36
CILF 6.7 7.7 7.98 8.59

30
CPLF 6.69 7.69 7.87 8.48
CILF 6.61 7.61 7.9 8.51

31
CPLF 6.66 7.66 7.96 8.57
CILF 6.72 7.72 7.92 8.53

32
CPLF 6.73 7.73 7.93 8.54
CILF 6.65 7.65 7.95 8.56

33
CPLF 6.5 7.5 7.84 8.45
CILF 6.73 7.73 7.83 8.44

Now, a suitable location for D-STATCOM at a particular bus has to be decided. From
Figures 9 and 10, it can be inferred that voltage profile and THD (%) of the real power at bus
10 are found to be worst with existing methods such as harmony search algorithm [4], ant
colony algorithm [9], and big-bang–crunch method [30] for both CPLF and CILF. Therefore,
D-STATCOM is placed at bus 10. Figures 17 and 18 show the voltage (pu) comparisons
at bus 10 for CPLF and CILF. It is also observed that switching of D-STATCOM with FLC
improves its voltage profile and THD (%). This means that switching of D-STATCOM with
FLC helps to improve the performance parameters in comparison to existing methods. The
comparison of voltage profile and THD (%) of real power at bus 10 with existing techniques
and D-STATCOM-based FLC is shown in Tables 17 and 18 and its graphical comparison is
shown in Figures 19 and 20.
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4. Result Summary

This article shows location and sizing of three DGs for CPLF and CILF types of
load using GA and heuristic PDF method. The location of the DGs was obtained based
on three different parameters such as line power losses, accuracy, and sensitivity. The
application of GA method shows that all three parameters of DG placement are improved
in comparison with the heuristic PDF method as well as existing methods such as ant-lion
optimization algorithm, coyote optimizer, modified sine-cosine algorithm, and particle
swarm optimization. It is also observed that after obtaining optimal location for DG
placement at bus 17, optimal sizing for DG has been determined among all buses and the
most optimal solution turns out to be at bus 17 in terms of minimum real and reactive
power. It is found that determination of size of DG is quite satisfactorily observed under
GA in comparison to the heuristic PDF method, ant-lion optimization algorithm, coyote
optimizer, modified sine-cosine algorithm, and particle swarm optimization. Subsequently,
bus 3 and bus 4 are the second and third best locations for placement of DGs with optimal
size. Now, positioning of D-STATCOM on the IEEE 33 bus system is assessed in such a
way that the bus with the worst performance in terms of THD and voltage profile has to be
detected. On the basis of the analysis performed, bus 10 is found to be most suitable for
locating the D-STATCOM. Afterwards, in order to improve the THD and voltage profile,
switching of D-STATCOM is performed through FLC, consequently showing superiority
over other existing methods. The current research will provide considerable expertise
and also acts as a guide for researchers, including utility engineers, regarding problems
to be addressed in order to optimize the size and position of DG units within electrical
power systems. The metaheuristic computation approaches recently unveiled could be
implemented for optimal design and fitting of DG in network delivery in future.

5. Conclusions

This article presents the optimal location and sizing of three DGs in the IEEE 33 bus
test system by using the heuristic PDF method and GA for CPLF and CILF. Associated bus
locations are examined for analysis of the impact of optimal placement and size of DG. The
optimal locations of DGs are selected in terms of performance parameters such as line power
losses, sensitivity, and accuracy while sizing of DG is obtained in terms of real and reactive
power. It is evident that the parameters such as voltage profile, line power loss, accuracy,
sensitivity, THD, etc. are improved with the GA method as compared to the heuristic PDF
method and other existing methods such as the ant-lion optimization algorithm, coyote
optimizer, modified sine-cosine algorithm, and particle swarm optimization. It is also
confirmed that determining DG size is resolved quite satisfactorily with the GA method
in terms of real power and reactive power, rather than heuristic PDF and other existing
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methods. Further positioning of D-STATCOM is being decided on the basis of bus having
the worst voltage profile and THD (%) of real power. The D-STATCOM is controlled
with FLC which gives improved voltage and less THD of real power in comparison to
existing techniques.
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Abbreviations

DG Distributed generator δi Load angle
CPLF Constant power load flow θi Impedance angle at ‘i’ bus
CILF Constant impedance load flow θj Impedance angle at ‘j’ bus
FLC Fuzzy logic controller ε Tolerance limit
GA Genetic Algorithm yr Initial code of string

D-STATCOM Distribution static compensator λ
Difference between measured and
reference power

THD Total harmonic distortion σ Standard deviation
PDF Probability distribution method E Error
PWM Pulse width modulation NB Negative big
Sij Complex power between 2 buses i & j NM Negative medium
Pij Real power between 2 buses i & j NS Negative small
Qij Reactive power between 2 buses i & j PB Positive big
Sloss Complex power loss PM Positive medium
Gij Conductance between i & j bus PS Positive small
Bij Susceptance between ‘i’ & ‘j’ bus ZS Zero
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