Optimization of Phenolic Compound Extraction from Brewers’ Spent Grain Using Ultrasound Technologies Coupled with Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. BSG Drying Process
2.3. Proximate Composition
2.4. Color Measurement
2.5. FTIR Analysis
2.6. Extraction of Phenolic Compounds from BSG by Ultrasound-Assisted Extraction
2.7. The RSM Model and the Optimization Procedure
2.8. Determination of Total Phenolic Content
2.9. Identification and Quantification of Phenols from BSG Extracts by HPLC-DAD
2.10. Determination of Antioxidant Activity
2.11. Statistical Analysis
3. Results and Discussion
3.1. Optimal Drying Process
3.2. Raw Material Characterization
3.2.1. Proximate Composition
3.2.2. Infrared Spectra of Raw Materials
3.3. Box–Behnken Design and Model Adequacy
3.4. Analysis of Response Surface, Optimization of Extracting Parameters, and Validation of the Model
3.5. Comparison of Polyphenol Content among Different Extraction Techniques
3.6. UAE Bioactive Compounds and Antioxidant Activity Characterization of Optimized Extraction
3.6.1. Bioactive Compounds and Antioxidant Activity Evaluation
3.6.2. HPLC Phenolic Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions- The European Green Deal. European Commission. 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 1 January 2022).
- European Commission. Directorate-General for Communication, Circular economy action plan: For a cleaner and more competitive Europe, Publications Office. 2020. Available online: https://data.europa.eu/doi/10.2779/717149 (accessed on 1 January 2022).
- Amoriello, T.; Ciccoritti, R. Sustainability: Recovery and Reuse of Brewing-Derived By-Products. Sustainability 2021, 13, 2355. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewer’s spent grain: Generation, characteristics and potential applications. J. Cer. Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Tišma, M.; Juric, A.; Bucic-Kojic, A.; Panjicko, M.; Planinic, M. Biovalorization of Brewers’ Spent Grain for the Production of Laccase and Polyphenols. J. Inst. Brew. 2018, 124, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Mussatto, S.I.; Roberto, I.C. Chemical charaterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. 2006, 81, 268–276. [Google Scholar] [CrossRef]
- Parek, I.; Khanvillar, A.; Naik, A. Barley-Wheat brewers’ spent grain: A potential source of antioxidant rich lipids. J. Food Process. Preserv. 2017, 41, 13244. [Google Scholar] [CrossRef]
- Nocente, F.; De Stefanis, E.; Ciccoritti, R.; Pucciarmati, S.; Taddei, F.; Campiglia, E.; Radicetti, E.; Mancinelli, R. How do conventional and organic management affect the healthy potential of durum wheat grain and semolina pasta traits? Food Chem. 2019, 297, 124884. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Jimenez, J.J.; Bartolome, B.; Gomez-Cordoves, C.; Nozal, M.J. Variability of brewer’s spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Farcas, A.C.; Socaci, S.A.; Mudura, E.; Dulf, F.V.; Vodnar, D.C.; Tofana, M.; Salant, L.C. Exploitation of Brewing Industry Wastes to Produce Functional Ingredients. In Brewing Technology; Kanauchi, M., Ed.; IntechOpen: London, UK, 2017. [Google Scholar]
- Nocente, F.; Taddei, F.; Galassi, E.; Gazza, L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. LWT-Food Sci. Technol. 2019, 114, 108421. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Bilbao, A.; Vilches, P.; Angulo, I.; Luis, J.; Fité, B.; Paseiro-Losada, P.; Cruz, J.M. Brewery waste as a potential source of phenolic compounds: Optimization of the extraction process and evaluation of antioxidant and antimicrobial activities. Food Chem. 2014, 145, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Nadolny, B.; Heineck, R.G.; Bazani, H.A.G.; Hemmer, J.V.; Biavatti, M.L.; Radetski, C.M.; Almerindo, G.I. Use of brewing industry waste to produce carbon-based adsorbent: Paracetamol adsorption study. J. Environ. Sci. Health A 2020, 55, 947–956. [Google Scholar] [CrossRef]
- Kanauchi, O.; Mitsuyama, K.; Araki, Y. Development of a functional germinated barley foodstuff from brewers’ spent grain for the treatment of ulcerative colitis. J. Am. Soc. Brew. Chem. 2001, 59, 59–62. [Google Scholar]
- Assandri, D.; Pampuro, N.; Zara, G.; Cavallo, E.; Budroni, M. Suitability of Composting Process for the Disposal and Valorization of Brewer’s Spent Grain. Agriculture 2021, 11, 2. [Google Scholar] [CrossRef]
- Ferreira, S.; Monteiro, E.; Brito, P.; Castro, C.; Calado, L.; Vilarinho, C. Experimental Analysis of Brewers’ Spent Grains Steam Gasification in an Allothermal Batch Reactor. Energies 2019, 12, 912. [Google Scholar] [CrossRef] [Green Version]
- Jackowski, M.; Semba, D.; Trusek, A.; Wnukowski, M.; Niedzwiecki, L.; Baranowski, M.; Krochmalny, K.; Pawlak-Kruczek, H. Hydrothermal Carbonization of Brewery’s Spent Grains for the Production of Solid Biofuels. Beverages 2019, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Hejna, A.; Barczewski, M.; Skórczewska, K.; Szulc, J.; Chmielnicki, B.; Korol, J.; Formela, K. Sustainable upcycling of brewers’ spent grain by thermo-mechanical treatment in twin-screw extruder. J. Clean. Prod. 2021, 285, 124839. [Google Scholar] [CrossRef]
- Amoriello, T.; Fiorentino, S.; Vecchiarelli, V.; Pagano, M. Evaluation of spent grain biochar impact on hop (Humulus lupulus L.) growth by multivariate image analysis. Appl. Sci. 2020, 10, 533. [Google Scholar] [CrossRef] [Green Version]
- Amoriello, T.; Mellara, F.; Galli, V.; Amoriello, M.; Ciccoritti, R. Technological Properties and Consumer Acceptability of Bakery Products Enriched with Brewers’ Spent Grains. Foods. 2020, 9, 1492. [Google Scholar] [CrossRef] [PubMed]
- Estevez, A.; Padrell, L.; Inarra, B.; Orive, M.; San Martin, D. Brewery by-products (yeast and spent grain) as protein sources in gilthead seabream (Sparus aurata) feeds. Aquaculture 2021, 543, 736921. [Google Scholar] [CrossRef]
- Jackowski, M.; Niedźwiecki, Ł.; Mościcki, K.; Arora, A.; Saeed, M.A.; Krochmalny, K.; Pawliczek, J.; Trusek, A.; Lech, M.; Skřínský, J.; et al. Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective. Sustainability 2021, 13, 10480. [Google Scholar] [CrossRef]
- Fărcas, A.C.; Ancu, S.; Chi, M.S.; Pop, O.L.; Fogarasi, M.; Păucean, A.; Igual, M.; Michiu, D. Reintegration of Brewers Spent Grains in the Food Chain: Nutritional, Functional and Sensorial Aspects. Plants 2021, 10, 2504. [Google Scholar] [CrossRef]
- Arranz, J.I.; Sepúlveda, F.J.; Montero, I.; Romero, P.; Miranda, M.T. Feasibility Analysis of Brewers’ Spent Grain for Energy Use: Waste and Experimental Pellets. Appl. Sci. 2021, 11, 2740. [Google Scholar] [CrossRef]
- Bedo, S.; Rozbach, M.; Nagy, L.; Fehér, A.; Fehér, C. Optimised Fractionation of Brewer’s Spent Grain for a Biorefinery Producing Sugars, Oligosaccharides, and Bioethanol. Processes 2021, 9, 366. [Google Scholar] [CrossRef]
- Naibaho, J.; Korzeniowska, M.; Wojdyło, A.; Figiel, A.; Yang, B.; Laaksonen, O.; Foste, M.; Vilu, R.; Viiard, E. The Potential of Spent Barley as a Functional Food Ingredient: Study on the Comparison of Dietary Fiber and Bioactivity. Proceedings 2021, 70, 86. [Google Scholar]
- Mussatto, S.I. Brewer’s spent grain: A valuable feedstock for industrial applications. J. Sci. Food Agric. 2014, 94, 1264–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikram, S.; Zhang, H.; Ming, H.; Wang, J. Recovery of major phenolic acids and antioxidant activity of highland barley brewer’s spent extracts. J. Food Process Preserv. 2020, 44, 14308. [Google Scholar] [CrossRef]
- Crowley, D.; O’Callaghan, Y.; McCarthy, A.L.; Connolly, A.; Fitzgerald, R.J.; O’Brien, N.M. Aqueous and enzyme-extracted phenolic compounds from brewers’ spent grain (BSG): Assessment of their antioxidant potential. J. Food Biochem. 2017, 41, 12370. [Google Scholar] [CrossRef]
- Teixeira, J.; Gaspar, A.; Garrido, E.M.; Garrido, J.; Borges, F. Hydroxycinnamic acid antioxidants: An electrochemical overview. BioMed Res. Int. 2013, 2013, 251754. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind. Crop Prod. 2007, 25, 231–237. [Google Scholar] [CrossRef]
- Bartolome, B.; Faulds, C.; Williamson, G. Enzymic release of ferulic acid from barley spent grain. J. Cereal Sci. 1997, 25, 285–288. [Google Scholar] [CrossRef]
- Moreira, M.M.; Morais, S.; Carvalho, D.O.; Barros, A.A.; Delerue-Matos, C.; Guido, L.F. Brewer’s spent grain from different types of malt: Evaluation of the antioxidant activity and identification of the major phenolic compounds. Food Res. Int. 2013, 54, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Meneses, N.G.T.; Martins, S.; Teixeira, J.A.; Mussatto, S.I. Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewer’s spent grains. Sep. Purif. Technol. 2013, 108, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Guido, L.F.; Moreira, M.M. Techniques for extraction of brewer’s spent grain polyphenols: A review. Food Bioprocess. Technol. 2017, 10, 1192–1209. [Google Scholar] [CrossRef] [Green Version]
- Bonifácio-Lopes, T.; Boas, A.A.; Coscueta, E.R.; Costa, E.M.; Silva, S.; Campos, D.; Teixeira, J.A.; Pintado, M. Bioactive extracts from brewer’s spent grain. Food Funct. 2020, 11, 8963–8977. [Google Scholar] [CrossRef] [PubMed]
- Andres, A.I.; Petron, M.J.; Lopez, A.M.; Timon, M.L. Optimization of Extraction Conditions to Improve Phenolic Content and In Vitro Antioxidant Activity in Craft Brewers’ Spent Grain Using Response Surface Methodology (RSM). Foods 2020, 9, 1398. [Google Scholar] [CrossRef] [PubMed]
- Ameer, K.; Shahbaz, H.M.; Kwon, J.H. Green Extraction Methods for Polyphenols from Plant Matrices and Their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 295–315. [Google Scholar] [CrossRef] [Green Version]
- Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Phenolic Acids from Plants: Extraction and Application to Human Health. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 58, pp. 389–417. [Google Scholar]
- Alonso-Riaño, P.; Sanz Diez, M.T.; Blanco, B.; Beltrán, S.; Trigueros, E.; Benito-Román, O. Water Ultrasound-Assisted Extraction of Polyphenol Compounds from Brewer’s Spent Grain: Kinetic Study, Extract Characterization, and Concentration. Antioxidants 2020, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- International Association for Cereal Science and Technology. ICC Standard Methods (Methods No. 104/1, 105/2, 110/1, 136); ICC: Vienna, Austria, 2003. [Google Scholar]
- Lee, S.C.; Prosky, L.; DeVries, J.W. Determination of total, soluble, and insoluble, dietary fibre in foods-enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study. J. Assoc. Off. Anal. Chem. 1992, 75, 395–416. [Google Scholar]
- Amoriello, T.; Mellara, F.; Amoriello, M.; Ceccarelli, D.; Ciccoritti, R. Powdered seaweeds as a valuable ingredient for functional breads. Eur. Food Res. Technol. 2021, 247, 2431–2443. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Silva Junior, M.M.; Felix, C.S.A.; Da Silva, D.L.F.; Santos, A.S.; Santos Neto, J.H.; De Souza, C.T.; Cruz Junior, R.A.; Souza, A.S. Multivariate optimization techniques in food analysis—A review. Food Chem. 2019, 273, 3–8. [Google Scholar] [CrossRef]
- Bas, D.; Boyac, I.H. Modelling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Ciccoritti, R.; Taddei, F.; Gazza, L.; Nocente, F. Influence of kernel thermal pre-treatments on 5-n-alkylresorcinols, polyphenols and antioxidant activity of durum and einkorn wheat. Eur. Food Res. Technol. 2021, 247, 353–362. [Google Scholar] [CrossRef]
- Ritchey, J.G.; Waterhouse, A. A Standard Red Wine: Monomeric Phenolic Analysis of Commercial Cabernet Sauvignon Wines. Am. J. Enol. Vitic. 1999, 50, 91–99. [Google Scholar]
- Mathias, T.R.S.; Alexandre, V.M.; Cammarota, M.C.; De Mello, P.P.; Sérvulo, E.F. Characterization and determination of brewer’s solid wastes composition. J. Inst. Brew. 2015, 121, 400–404. [Google Scholar] [CrossRef] [Green Version]
- Waters, D.M.; Jacob, F.; Titze, J.; Arendt, E.K.; Zannini, E. Fibre, protein and mineral fortification of wheat bread through milled and fermented brewer’s spent grain enrichment. Eur. Food Res. Technol. 2012, 235, 767–778. [Google Scholar] [CrossRef]
- Celus, I.; Brijs, K.; Delcour, J.A. The effects of malting and mashing on barley protein extractability. J. Cereal Sci. 2006, 44, 203–211. [Google Scholar] [CrossRef]
- Lynch, K.M.; Steffen, E.J.; Arendt, E.K. Brewers’ spent grain: A review with an emphasis on food and health. J. Inst. Brew. 2016, 122, 553–568. [Google Scholar] [CrossRef]
- Ktenioudaki, A.; Chaurin, V.; Reis, S.; Gallagher, E. Brewer’s spent grain as a functional ingredient for breadsticks. Int. J. Food Sci. Technol. 2012, 47, 1765–1771. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, A.I.; Amorim, C.; Tavares, T.; Teixeira, J.A. Chromium (III) biosorption onto spent grains residual from brewing industry: Equilibrium, kinetics and column studies. IJEST 2015, 12, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Tarley, C.R.T.; Arruda, M.A.Z. Biosorption of heavy metals using rice milling by-products. Characterisation and application for removal of metals from aqueous effluents. Chemosphere 2004, 54, 987–995. [Google Scholar] [CrossRef]
- Patrignani, M.; Del Sol Gonzalez-Forte, L. Characterisation of melanoidins derived from Brewers’ spent grain: New insights into their structure and antioxidant activity. Int. J. Food Sci. Technol. 2020, 56, 384–391. [Google Scholar] [CrossRef]
- Sun, X.F.; Xu, F.; Sun, R.C.; Fowler, P.; Baird, M.S. Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr. Res. 2005, 340, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, R.; Jaiswal, S.; Abu-Ghannam, N.; Jaiswal, A.K. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresour. Technol. 2018, 248, 272–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Yilmaz, M.; Karaaslan, M.; Vardin, H. Optimization of extraction parameters on the isolation of phenolic compounds from sour cherry (Prunus cerasus L.) pomace. J. Food Sci. Technol. 2015, 52, 2851–2859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant and free radical scavenging activities of whole wheat and milling fractions. Food Chem. 2007, 101, 1151–1157. [Google Scholar] [CrossRef]
- Viacava, G.E.; Roura, S.I.; Agüero, M.V. Optimization of critical parameters during antioxidants extraction from butterhead lettuce to simultaneously enhance polyphenols and antioxidant activity. Chemometr. Intell. Lab. 2015, 146, 47–54. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Esclapez, M.D.; Garcia-Perez, J.V.; Mulet, A.; Carcel, J.A. Ultrasound-assisted extraction of natural products. Food Eng. Rev. 2011, 3, 108–120. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawson, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry. Innov. Food Sci. Emerg. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Virot, M.; Tomao, V.; Le Bourvellec, C.; Renard, C.M.C.G.; Chemat, F. Towards the industrial production of antioxidants from food processing by-products with ultrasound-assisted extraction. Ultrason. Sonochem. 2010, 17, 1066–1074. [Google Scholar] [CrossRef] [PubMed]
- Pingret, D.; Fabiano-Tixier, A.S.; Le Bourvellec, C.; Renard, C.M.; Chemat, F. Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J. Food Eng. 2012, 111, 73–81. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, Y.; Wang, Y.; Shi, T.; Zhang, L.; Chen, Y.; Xie, M. Comparison of (poly) phenolic compounds and antioxidant properties of pomace extracts from kiwi and grape juice. Food Chem. 2019, 271, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Inns, E.L.; Buggey, L.A.; Booer, C.; Nursten, H.E.; Ames, J.M. Effect of modification of the kilning regimen on levels of free ferulic acid and antioxidant activity in malt. J. Agric. Food Chem. 2011, 59, 9335–9343. [Google Scholar] [CrossRef]
- Maillard, M.N.; Berset, C. Evolution of antioxidant activity during kilning: Role of insoluble bound phenolic acids of barley and malt. J. Agric. Food Chem. 1995, 43, 1789–1793. [Google Scholar] [CrossRef]
- Martini, D.; Ciccoritti, R.; Nicoletti, I.; Nocente, F.; Corradini, D.; D’Egidio, M.G.; Taddei, F. From seed to cooked pasta: Influence of traditional and non-conventional transformation processes on total antioxidant capacity and phenolic acid content. Int. J. Food Sci. Nutr. 2018, 69, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, F.; Salem-Bekhit, M.M.; Haq, N.; Siddiqui, N.A. Solubility and thermodynamics of ferulic acid in different neat solvents: Measurement, correlation and molecular interactions. J. Mol. Liq. 2017, 236, 144–150. [Google Scholar] [CrossRef]
Run | X1 | X2 | X3 | X1 (%) | X2 (min) | X3 (°C) | TPCexp (mgGAE/g d.w.) | TPCRSM (mgGAE/g d.w.) |
---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | 0 | 50 | 50 | 75 | 3.10 ± 0.02 | 3.13 |
2 | 1 | −1 | 0 | 80 | 50 | 75 | 3.05 ± 0.01 | 3.01 |
3 | −1 | 1 | 0 | 50 | 70 | 75 | 2.79 ± 0.03 | 2.87 |
4 | 1 | 1 | 0 | 80 | 70 | 75 | 2.87 ± 0.02 | 2.87 |
5 | −1 | 0 | −1 | 50 | 60 | 70 | 2.01 ± 0.01 | 1.94 |
6 | 1 | 0 | −1 | 80 | 60 | 70 | 2.33 ± 0.02 | 2.35 |
7 | −1 | 0 | 1 | 50 | 60 | 80 | 3.53 ± 0.02 | 3.55 |
8 | 1 | 0 | 1 | 80 | 60 | 80 | 2.92 ± 0.05 | 3.03 |
9 | 0 | −1 | −1 | 65 | 50 | 70 | 2.81 ± 0.06 | 2.89 |
10 | 0 | 1 | −1 | 65 | 70 | 70 | 2.73 ± 0.03 | 2.76 |
11 | 0 | −1 | 1 | 65 | 50 | 80 | 4.10 ± 0.08 | 4.11 |
12 | 0 | 1 | 1 | 65 | 70 | 80 | 3.89 ± 0.03 | 3.84 |
13 | 0 | 0 | 0 | 65 | 60 | 75 | 3.77 ± 0.07 | 3.75 |
14 | 0 | 0 | 0 | 65 | 60 | 75 | 3.77 ± 0.07 | 3.75 |
15 | 0 | 0 | 0 | 65 | 60 | 75 | 3.77 ± 0.07 | 3.75 |
Temperature (°C) | Moisture (g/100 g) | Time (h) | TPC (mg GAE/g d.w.) |
---|---|---|---|
50 | 7.7 ± 0.2 | 48 | 2.3 ± 0.2 a |
60 | 3.7 ± 0.2 | 24 | 2.1 ± 0.2 a |
70 | 1.9 ± 0.1 | 18 | 1.6 ± 0.1 b |
Corn | Barley Malt | BSG | |
---|---|---|---|
Moisture (g/100 g) | 13.1 ± 0.2 | 6.3 ± 0.1 | 82.9 ± 0.9 |
Protein (g/100 g d.w.) | 6.7 ± 0.1 | 10.4 ± 0.5 | 26.9 ± 0.5 |
Ash (g/100 g d.w.) | 0.40 ± 0.01 | 2.17 ± 0.01 | 3.63 ± 0.02 |
Lipids (g/100 g d.w.) | 1.7 ± 0.1 | 3.4 ± 0.1 | 10.7 ± 0.1 |
TDF (g/100 g d.w.) | 3.3 ± 0.4 | 16.8 ± 0.1 | 50.8 ± 0.9 |
TPC (mg GAE/g d.w.) | 1.55 ± 0.16 | 6.54 ± 0.17 | 3.16 ± 0.03 |
L* | 89.62 ± 0.09 | 82.70 ± 0.29 | 54.11 ± 0.65 |
a* | −0.49 ± 0.07 | 1.50 ± 0.04 | 6.34 ± 0.05 |
b* | 37.89 ± 0.69 | 14.34 ± 0.35 | 21.36 ± 0.35 |
Main Peak (cm−1) | Wave Number Range (cm−1) | Raw Material | Typical Band |
---|---|---|---|
3272 3288 3284 | 3290–3250 | BSG Corn Malt | cellulose, lignin or hemicellulose H stretching vibration of OH groups primary amines N–H stretching |
2921 2905 2915 | 2930–2900 | BSG Corn Malt | cellulose, lignin or hemicellulose C–H stretching vibrations in aliphatic chains |
2852 | 2880–2840 | BSG | Lipid –carbohydrate (CH2) and (CH2) stretching |
1964, 1983, 2044 and 2160 2179, 2044 1953, 1962, 2044 and 2162 | 2200–1940 | BSG Corn Malt | Isocyanate asym. stretch N=C=O |
1742 and 1633 1746 and 1635 1744 and 1648 | 1750–1620 | BSG Corn Malt | Carbonyl group C=O stretching |
1536 1534 1542 | 1550–1530 | BSG Corn Malt | Lignin aromatic ring C-C bonds |
1334 1338 | 1340–1320 | Corn Malt | C-O Stretching, O-H bending vibration presence of alcohol |
1238 | 1240–1200 | BSG | aryl-alkyl ether bonds (CAOAC) |
1032 1148,1077, 998 1148, 1075 1017 | 1120–980 | BSG Corn Malt | Carbohydrate (C-O-C) of polysaccharides |
930, 859 848 | 979–800 | Corn Malt | Out of plane C-H bending of polysaccharides |
Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value | Significance | |
---|---|---|---|---|---|---|
X1 | 0.02519 | 1 | 0.02519 | 4.423 | 0.0427 | * |
X2 | 0.23029 | 1 | 0.23029 | 40.438 | <0.0001 | *** |
X3 | 7.79274 | 1 | 7.79274 | 1368.403 | <0.0001 | *** |
X12 | 5.91159 | 1 | 5.91159 | 1038.072 | <0.0001 | *** |
X22 | 0.02622 | 1 | 0.02622 | 4.605 | 0.0389 | * |
X32 | 1.01581 | 1 | 1.01581 | 178.375 | <0.0001 | *** |
X1 X2 | 0.01141 | 1 | 0.01141 | 2.004 | 0.1657 | ns |
X1 X3 | 0.65492 | 1 | 0.65492 | 115.004 | <0.0001 | *** |
X2 X3 | 0.01292 | 1 | 0.01292 | 2.269 | 0.1410 | ns |
Residual | 0.19932 | 35 | 0.00570 | |||
Lack of fit | 0.09316 | 3 | 0.03105 | 5.361 | 0.0321 | |
Pure error | 0.10615 | 32 | 0.00332 | |||
Total SS | 15.52326 | 44 | ||||
R2 | 0.987 | |||||
Radj2 | 0.984 | |||||
AAD | 0.370 |
TPC (mg GAE/g d.w.) | DPPH (mg TE eq/g d.w.) | ABTS (mg TE eq/g d.w.) | |
---|---|---|---|
BSG | 4.1 ± 0.1 | 0.42 ± 0.01 | 5.82 ± 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iadecola, R.; Ciccoritti, R.; Ceccantoni, B.; Bellincontro, A.; Amoriello, T. Optimization of Phenolic Compound Extraction from Brewers’ Spent Grain Using Ultrasound Technologies Coupled with Response Surface Methodology. Sustainability 2022, 14, 3309. https://doi.org/10.3390/su14063309
Iadecola R, Ciccoritti R, Ceccantoni B, Bellincontro A, Amoriello T. Optimization of Phenolic Compound Extraction from Brewers’ Spent Grain Using Ultrasound Technologies Coupled with Response Surface Methodology. Sustainability. 2022; 14(6):3309. https://doi.org/10.3390/su14063309
Chicago/Turabian StyleIadecola, Rosamaria, Roberto Ciccoritti, Brunella Ceccantoni, Andrea Bellincontro, and Tiziana Amoriello. 2022. "Optimization of Phenolic Compound Extraction from Brewers’ Spent Grain Using Ultrasound Technologies Coupled with Response Surface Methodology" Sustainability 14, no. 6: 3309. https://doi.org/10.3390/su14063309
APA StyleIadecola, R., Ciccoritti, R., Ceccantoni, B., Bellincontro, A., & Amoriello, T. (2022). Optimization of Phenolic Compound Extraction from Brewers’ Spent Grain Using Ultrasound Technologies Coupled with Response Surface Methodology. Sustainability, 14(6), 3309. https://doi.org/10.3390/su14063309