Climate Disasters and Subjective Well-Being among Urban and Rural Residents in Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Data
2.2. The Measurement of Key Variables
2.3. Econometric Analysis
3. Results
3.1. Descriptive Statistics
3.2. The Impact of Climate Disasters on Subjective Well-Being: A Pooled Model
3.3. The Impact of Climate Disasters on Subjective Well-Being: An Urban and Rural Model
3.4. Disaggregate Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.; Toiba, H.; Huang, W.-C. The impact of climate change adaptation strategies on income and food security: Empirical evidence from small-scale fishers in Indonesia. Sustainability 2021, 13, 7905. [Google Scholar] [CrossRef]
- Melillo, J.M.; Richmond, T.; Yohe, G. Climate change impacts in the United States. Third Natl. Clim. Assess. 2014, 52. Available online: https://www.nrc.gov/docs/ML1412/ML14129A233.pdf (accessed on 19 January 2022).
- Fang, J.; Lau, C.K.M.; Lu, Z.; Wu, W.; Zhu, L. Natural disasters, climate change, and their impact on inclusive wealth in G20 countries. Environ. Sci. Pollut. Res. 2019, 26, 1455–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Runkle, J.; Svendsen, E.R.; Hamann, M.; Kwok, R.K.; Pearce, J. Population health adaptation approaches to the increasing severity and frequency of weather-related disasters resulting from our changing climate: A literature review and application to Charleston, South Carolina. Curr. Environ. Health Rep. 2018, 5, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Lenderink, G.; Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Taherkhani, M.; Vitousek, S.; Barnard, P.L.; Frazer, N.; Anderson, T.R.; Fletcher, C.H. Sea-level rise exponentially increases coastal flood frequency. Sci. Rep. 2020, 10, 6466. [Google Scholar] [CrossRef] [PubMed]
- Yulianto, S.; Apriyadi, R.K.; Aprilyanto, A.; Winugroho, T.; Ponangsera, I.S.; Wilopo, W. Histori Bencana dan Penanggulangannya di Indonesia Ditinjau Dari Perspektif Keamanan Nasional. PENDIPA J. Sci. Educ. 2021, 5, 180–187. [Google Scholar] [CrossRef]
- Knez, I.; Butler, A.; Sang, Å.O.; Ångman, E.; Sarlöv-Herlin, I.; Åkerskog, A. Before and after a natural disaster: Disruption in emotion component of place-identity and wellbeing. J. Environ. Psychol. 2018, 55, 11–17. [Google Scholar] [CrossRef]
- Dasgupta, S.; Laplante, B.; Murray, S.; Wheeler, D. Sea-Level Rise and Storm Surges: A Comparative Analysis of Impacts in Developing Countries; World Bank Policy Research Working Paper: Washington, DC, USA, 2009. [Google Scholar]
- Djalante, R.; Garschagen, M.; Thomalla, F.; Shaw, R. Disaster Risk Reduction in Indonesia; Springer: Fujisawa, Japan, 2017. [Google Scholar]
- Nguyen, M.-H.; Le, D.P.; Vo, T.T. Vulnerability to Natural Disaster and Welfare Effect: A Case Study of Flood Risk in Vietnam’s North Central Region. J. Asian Afr. Stud. 2021, 56, 1879–1898. [Google Scholar] [CrossRef]
- Ullah, F.; Shah, S.A.A.; Saqib, S.E.; Yaseen, M.; Haider, M.S. Households’ flood vulnerability and adaptation: Empirical evidence from mountainous regions of Pakistan. Int. J. Disaster Risk Reduct. 2021, 52, 101967. [Google Scholar] [CrossRef]
- Lamond, J.E.; Joseph, R.D.; Proverbs, D.G. An exploration of factors affecting the long term psychological impact and deterioration of mental health in flooded households. Environ. Res. 2015, 140, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Prettenthaler, F.; Kortschak, D.; Hochrainer-Stigler, S.; Mechler, R.; Urban, H.; Steininger, K.W. Catastrophe management: Riverine flooding. In Economic Evaluation of Climate Change Impacts; Springer: Berlin/Heidelberg, Germany, 2015; pp. 349–366. [Google Scholar]
- Calvo, R.; Arcaya, M.; Baum, C.F.; Lowe, S.R.; Waters, M.C. Happily ever after? Pre-and-post disaster determinants of happiness among survivors of Hurricane Katrina. J. Happiness Stud. 2015, 16, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Hamama-Raz, Y.; Palgi, Y.; Leshem, E.; Ben-Ezra, M.; Lavenda, O. Typhoon survivors’ subjective wellbeing—A different view of responses to natural disaster. PLoS ONE 2017, 12, e0184327. [Google Scholar] [CrossRef] [Green Version]
- Hudson, P.; Botzen, W.W.; Poussin, J.; Aerts, J.C. Impacts of flooding and flood preparedness on subjective well-being: A monetisation of the tangible and intangible impacts. J. Happiness Stud. 2019, 20, 665–682. [Google Scholar] [CrossRef]
- Rehdanz, K.; Welsch, H.; Narita, D.; Okubo, T. Well-being effects of a major natural disaster: The case of Fukushima. J. Econ. Behav. Organ. 2015, 116, 500–517. [Google Scholar] [CrossRef]
- Sam, A.S.; Kumar, R.; Kächele, H.; Müller, K. Vulnerabilities to flood hazards among rural households in India. Nat. Hazards 2017, 88, 1133–1153. [Google Scholar] [CrossRef]
- Zheng, H.; Ma, W. Click it and buy happiness: Does online shopping improve subjective well-being of rural residents in China? Appl. Econ. 2021, 53, 4192–4206. [Google Scholar] [CrossRef]
- Lohmann, P.; Pondorfer, A.; Rehdanz, K. Natural hazards and well-being in a small-scale island society. Ecol. Econ. 2019, 159, 344–353. [Google Scholar] [CrossRef]
- Tiefenbach, T.; Kohlbacher, F. Disasters, donations, and tax law changes: Disentangling effects on subjective well-being by exploiting a natural experiment. J. Econ. Psychol. 2015, 50, 94–112. [Google Scholar] [CrossRef]
- Conceição, P.; Bandura, R. Measuring Subjective Well Being; Office of Development Studies, United Nations Development Programme (UNDP): New York, NY, USA, 2008. [Google Scholar]
- Easterlin, R.A. Does economic growth improve the human lot? Some empirical evidence. In Nations and Households in Economic Growth; Elsevier: Amsterdam, The Netherlands, 1974; pp. 89–125. [Google Scholar]
- Sujarwoto, S. Does Happiness Pays? A Longitudinal Family Life Survey. Appl. Res. Qual. Life 2021, 16, 679–701. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Leng, C.; Nie, P. The relationship between happiness and consumption expenditure: Evidence from rural China. Appl. Res. Qual. Life 2021, 16, 1587–1611. [Google Scholar] [CrossRef]
- Dominko, M.; Verbič, M. The economics of subjective well-being: A bibliometric analysis. J. Happiness Stud. 2019, 20, 1973–1994. [Google Scholar] [CrossRef]
- Stutzer, A.; Frey, B.S. Reported Subjective Well-Being: A Challenge for Economic Theory and Economic Policy; CREMA Working Paper: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Cheng, G.; He, S.; He, Q.; Xie, X.; Tian, G.; Jiang, N.; Li, C.; Min, X.; Li, R.; Shi, Y. Gender and residence differences in the association between social support and subjective well-being among Chinese oldest-old: A national longitudinal study. Arch. Gerontol. Geriatr. 2022, 98, 104545. [Google Scholar] [CrossRef]
- Diener, E.; Lucas, R.E.; Oishi, S. Subjective well-being: The science of happiness and life satisfaction. Handb. Posit. Psychol. 2002, 2, 63–73. [Google Scholar]
- Diener, E.; Suh, E.M.; Lucas, R.E.; Smith, H.L. Subjective well-being: Three decades of progress. Psychol. Bull. 1999, 125, 276. [Google Scholar] [CrossRef]
- Nie, P.; Ma, W.; Sousa-Poza, A. The relationship between smartphone use and subjective well-being in rural China. Electron. Commer. Res. 2021, 21, 983–1009. [Google Scholar] [CrossRef]
- Anna, Z.; Yusuf, A.A.; Alisjahbana, A.S.; Ghina, A.A. Are fishermen happier? Evidence from a large-scale subjective well-being survey in a lower-middle-income country. Mar. Policy 2019, 106, 103559. [Google Scholar] [CrossRef]
- Knight, J.; Lina, S.; Gunatilaka, R. Subjective well-being and its determinants in rural China. China Econ. Rev. 2009, 20, 635–649. [Google Scholar] [CrossRef] [Green Version]
- Ngamaba, K.H. Determinants of subjective well-being in representative samples of nations. Eur. J. Public Health 2017, 27, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, B.; Wolfers, J. Subjective well-being and income: Is there any evidence of satiation? Am. Econ. Rev. 2013, 103, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Brereton, F.; Clinch, J.P.; Ferreira, S. Happiness, geography and the environment. Ecol. Econ. 2008, 65, 386–396. [Google Scholar] [CrossRef]
- Fujita, F.; Diener, E.; Sandvik, E. Gender differences in negative affect and well-being: The case for emotional intensity. J. Personal. Soc. Psychol. 1991, 61, 427. [Google Scholar] [CrossRef]
- Stack, S.; Eshleman, J.R. Marital status and happiness: A 17-nation study. J. Marriage Fam. 1998, 60, 527–536. [Google Scholar] [CrossRef]
- Zhu, Z.; Ma, W.; Leng, C. ICT adoption, individual income and psychological health of rural farmers in China. Appl. Res. Qual. Life 2020, 17, 71–91. [Google Scholar] [CrossRef]
- Binder, M.; Coad, A. “I’m afraid I have bad news for you…” Estimating the impact of different health impairments on subjective well-being. Soc. Sci. Med. 2013, 87, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Carrieri, V. Social Comparison and Subjective Well-Being: Does the Health of Others Matter? Bull. Econ. Res. 2012, 64, 31–55. [Google Scholar] [CrossRef] [Green Version]
- Sohn, K. Height and happiness in a developing country. J. Happiness Stud. 2016, 17, 1–23. [Google Scholar] [CrossRef]
- Danzer, A.M.; Danzer, N. The long-run consequences of Chernobyl: Evidence on subjective well-being, mental health and welfare. J. Public Econ. 2016, 135, 47–60. [Google Scholar] [CrossRef]
- Hommerich, C. Trust and subjective well-being after the great east Japan earthquake, tsunami and nuclear meltdown: Preliminary results. Int. J. Jpn. Sociol. 2012, 21, 46–64. [Google Scholar] [CrossRef]
- Berlemann, M.; Eurich, M. Natural hazard risk and life satisfaction–Empirical evidence for hurricanes. Ecol. Econ. 2021, 190, 107194. [Google Scholar] [CrossRef]
- Bowen, K.J.; Ebi, K.L. Health risks of climate change in the World Health Organization South-East Asia region. WHO South-East Asia J. Public Health 2017, 6, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiermeier, Q. Disaster toll tallied. Nature 2012, 481, 124–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzaroni, S.; van Bergeijk, P.A. Natural disasters’ impact, factors of resilience and development: A meta-analysis of the macroeconomic literature. Ecol. Econ. 2014, 107, 333–346. [Google Scholar] [CrossRef] [Green Version]
- Åström, C.; Orru, H.; Rocklöv, J.; Strandberg, G.; Ebi, K.L.; Forsberg, B. Heat-related respiratory hospital admissions in Europe in a changing climate: A health impact assessment. BMJ Open 2013, 3, e001842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascal, M.; Sweeney, J.; Cullen, E.; Schwartz, J.; Goodman, P. Heatwaves and mortality in Ireland, planning for the future. Irish Geogr. 2013, 46, 203–211. [Google Scholar] [CrossRef]
- Raju, E.; da Costa, K. Governance in the Sendai: A way ahead? Disaster Prev. Manag. Int. J. 2018, 27, 278–291. [Google Scholar] [CrossRef]
- Raju, E.; Boyd, E.; Otto, F. Stop blaming the climate for disasters. Commun. Earth Environ. 2022, 3, 1. [Google Scholar] [CrossRef]
Variables | Definition and Measurement | Mean | Std. Dev |
---|---|---|---|
Climate disaster | The number of disasters experienced in the last five years (time) | 2.4042 | 5.3389 |
Happiness | Self-reported happiness from 1 = very happy to 5 = very unhappy | 2.9809 | 0.5421 |
Life satisfaction | Self-reported life satisfaction from 1 = very unsatisfied to 5 = very satisfied | 3.2446 | 0.8403 |
Age | Age of respondent (years) | 37.1716 | 14.5600 |
Gender | 1 for female; 0 for male | 0.5228 | 0.4995 |
Marital status | 1 for married; 0 otherwise | 0.7253 | 0.4464 |
Child | 1 if the respondent has a child under 15; 0 for otherwise | 0.5414 | 0.4983 |
Family members | The number of family members (person) | 4.4336 | 1.9474 |
No education | 1 if the respondent has no formal education; 0 for otherwise | 0.0281 | 0.1654 |
Primary education | 1 if the last formal education level is primary; 0 otherwise | 0.3241 | 0.4681 |
Junior education | 1 if the last formal education level is junior high; 0 otherwise | 0.2097 | 0.4071 |
Senior education | 1 if the last formal education level is secondary (senior high); 0 otherwise | 0.1904 | 0.3927 |
Associate’s degree | 1 if the last formal education level is associate’s degree; 0 otherwise | 0.0316 | 0.1751 |
University education | 1 if the last formal education level is a bachelor, master or PhD; 0 otherwise | 0.0726 | 0.2595 |
Health report | Self-reported personal health from 1 = unhealthy to 4 very healthy | 2.8964 | 0.6743 |
Income | Total household income (IDR/month) | 1,047,927 | 1,042,036 |
Television | 1 if the respondent owns a TV; 0 otherwise | 0.9257 | 0.2622 |
Mobile phone | 1 if the respondent owns a mobile phone; 0 otherwise | 0.7202 | 0.4489 |
Private transportation | 1 if the respondent owns a private vehicle; 0 otherwise | 0.7519 | 0.4319 |
Saving | 1 if the respondent has financial savings; 0 otherwise | 0.2582 | 0.4377 |
Observation | 7110 |
Variables | Urban (3813) | Rural (3297) | Mean Differences |
---|---|---|---|
Climate disaster | 2.4427 | 2.3597 | 0.0830 |
Happiness | 2.9982 | 2.9609 | 0.0373 |
Life satisfaction | 3.2662 | 3.2196 | 0.0466 ** |
Age | 36.5125 | 37.9339 | −1.4214 *** |
Gender | 0.5313 | 0.5129 | 0.0184 |
Marital status | 0.6892 | 0.7671 | −0.0778 *** |
Child | 0.5266 | 0.5584 | −0.0318 *** |
Family members | 4.5083 | 4.3473 | 0.1610 *** |
No education | 0.0181 | 0.0397 | −0.0216 *** |
Primary education | 0.2547 | 0.4043 | −0.1497 *** |
Junior education | 0.1922 | 0.2299 | −0.0377 *** |
Senior education | 0.2177 | 0.1589 | 0.0587 *** |
Associate’s degree | 0.0422 | 0.0194 | 0.0228 *** |
University education | 0.0981 | 0.0431 | 0.0550 *** |
Health report | 2.8870 | 2.9072 | −0.0203 |
Income | 1,176,854 | 90,0186 | 27,6668 *** |
Television | 0.9504 | 0.8972 | 0.0533 *** |
Mobile phone | 0.7712 | 0.6612 | 0.1100 *** |
Private transportation | 0.7776 | 0.7222 | 0.0554 *** |
Saving | 0.2985 | 0.2117 | 0.0867 *** |
Variable | Happiness | Life Satisfaction | ||
---|---|---|---|---|
(Coefficient) | (Coefficient) | |||
Climate disaster | −0.0039 | (0.0030) | −0.0058 | (0.0026) ** |
Age | −0.0088 | (0.0013) *** | −0.0042 | (0.0012) *** |
Gender | 0.0634 | (0.0311) ** | 0.1745 | (0.0272) *** |
Marital status | 0.3454 | (0.0449) *** | 0.0125 | (0.0395) |
Child | −0.0087 | (0.0396) | −0.0815 | (0.0347) ** |
Family members | 0.0169 | (0.0085) ** | 0.0136 | (0.0075) * |
No education | −0.0267 | (0.1042) | 0.1606 | (0.0921) * |
Primary education | −0.0452 | (0.0534) | 0.0128 | (0.0463) |
Junior education | −0.0629 | (0.0531) | 0.0898 | (0.0458) ** |
Senior education | 0.0247 | (0.0538) | −0.0073 | (0.0464) |
Associate’s degree | 0.0718 | (0.0971) | −0.0648 | (0.0838) |
University education | 0.0679 | (0.0724) | 0.0089 | (0.0626) |
Health report | 0.2952 | (0.0228) *** | 0.2515 | (0.0200) *** |
Income | 3.93 × 10−8 | (1.63 × 10−8) ** | 4.60 × 10−8 | (1.43 × 10−8) *** |
Television | 0.1428 | (0.0574) ** | 0.1690 | (0.0510) *** |
Mobile phone | 0.1085 | (0.0403) *** | 0.0413 | (0.0352) |
Private transportation | 0.1638 | (0.0365) *** | 0.1292 | (0.0320) *** |
Saving | 0.2061 | (0.0364) *** | 0.1336 | (0.0315) *** |
Cut 1 | −0.9955 | (0.1257) | −0.9960 | (0.1107) |
Cut 2 | 0.0511 | (0.1225) | 0.1046 | (0.1079) |
Cut 3 | 2.5202 | (0.1263) | 1.3259 | (0.1088) |
Cut 4 | 2.8559 | (0.1125) | ||
Log likelihood | −4879.9547 | −8035.1091 | ||
LR chi2(18) | 527.4700 | 358.0100 | ||
Prob > chi2 | 0.0000 | 0.0000 | ||
Pseudo R2 | 0.0513 | 0.0218 |
Variables | Happiness | Life Satisfaction | ||
---|---|---|---|---|
(Coefficient) | (Coefficient) | |||
Climate disaster | −0.0002 | (0.0042) | −0.0044 | (0.0035) |
Age | −0.0069 | (0.0018) *** | −0.0020 | (0.0016) |
Gender | 0.0603 | (0.0421) | 0.1673 | (0.0372) *** |
Marital status | 0.3109 | (0.0594) *** | −0.0295 | (0.0529) |
Child | −0.0361 | (0.0540) | −0.0828 | (0.0478) * |
Family members | 0.0187 | (0.0114) * | 0.0231 | (0.0101) ** |
No education | −0.0009 | (0.1656) | 0.1621 | (0.1471) |
Primary education | −0.0674 | (0.0711) | 0.0741 | (0.0626) |
Junior education | −0.0906 | (0.0691) | 0.1510 | (0.0605) ** |
Senior education | 0.0341 | (0.0668) | −0.0553 | (0.0582) |
Associate’s degree | 0.0191 | (0.1167) | −0.1149 | (0.1014) |
University education | 0.1444 | (0.0860) * | −0.0313 | (0.0752) |
Health report | 0.2715 | (0.0312) *** | 0.2587 | (0.0276) *** |
Income | 8.04 × 10−9 | (1.88 × 10−8) | 3.39 × 10−8 | (1.65 × 10−8) ** |
Television | 0.1196 | (0.0943) | 0.1039 | (0.0838) |
Mobile phone | 0.1330 | (0.0575) * | 0.1134 | (0.0511) ** |
Private transportation | 0.1889 | (0.0515) *** | 0.1474 | (0.0457) ** |
Saving | 0.1638 | (0.0470) *** | 0.1573 | (0.0412) *** |
Cut 1 | −0.9958 | (0.1738) | −0.9339 | (0.1553) |
Cut 2 | 0.0103 | (0.1695) | 0.2347 | (0.1507) |
Cut 3 | 2.4125 | (0.1741) | 1.4479 | (0.1522) |
Cut 4 | 2.9770 | (0.1571) | ||
Log likelihood | −2677.6730 | −4261.0885 | ||
LR chi2(18) | 243.8400 | 187.1400 | ||
Prob > chi2 | 0.0000 | 0.0000 | ||
Pseudo R2 | 0.0435 | 0.0215 |
Variables | Happiness | Life Satisfaction | ||
---|---|---|---|---|
(Coefficient) | (Coefficient) | |||
Climate disaster | −0.0080 | (0.0043) * | −0.0079 | (0.0038) ** |
Age | −0.0111 | (0.0020) *** | −0.0070 | (0.0018) *** |
Gender | 0.0574 | (0.0466) | 0.1769 | (0.0401) *** |
Marital status | 0.3970 | (0.0693) *** | 0.0725 | (0.0603) |
Child | 0.0223 | (0.0592) | −0.0792 | (0.0511) |
Family members | 0.0155 | (0.0132) | 0.0002 | (0.0114) |
No education | 0.0193 | (0.1425) | 0.1764 | (0.1241) |
Primary education | 0.0006 | (0.0851) | −0.0306 | (0.0724) |
Junior education | −0.0143 | (0.0857) | 0.0286 | (0.0726) |
Senior education | 0.0190 | (0.0911) | 0.0731 | (0.0771) |
Associate’s degree | 0.2164 | (0.1742) | 0.0454 | (0.1498) |
University education | −0.1232 | (0.1345) | 0.1161 | (0.1144) |
Health report | 0.3305 | (0.0338) *** | 0.2446 | (0.0292) *** |
Income | 1.42 × 10−7 | (3.51 × 10−8) *** | 9.25 × 10−8 | (3.02 × 10−8) *** |
Television | 0.1415 | (0.0737) * | 0.1980 | (0.0650) *** |
Mobile phone | 0.0729 | (0.0571) | −0.0314 | (0.0491) |
Private transportation | 0.1413 | (0.0522) *** | 0.1191 | (0.0450) *** |
Saving | 0.2600 | (0.0580) *** | 0.1057 | (0.0493) ** |
Cut 1 | −0.9386 | (0.1901) | −1.0898 | (0.1643) |
Cut 2 | 0.1603 | (0.1856) | −0.0481 | (0.1610) |
Cut 3 | 2.7301 | (0.1922) | 1.1901 | (0.1619) |
Cut 4 | 2.7287 | (0.1672) | ||
Log likelihood | −2184.4583 | −3756.8766 | ||
LR chi2(18) | 307.3400 | 197.2600 | ||
Prob > chi2 | 0.0000 | 0.0000 | ||
Pseudo R2 | 0.0657 | 0.0256 |
Category | Urban | Rural | ||||||
---|---|---|---|---|---|---|---|---|
Happiness (Coefficient) | Life Satisfaction (Coefficient) | Happiness (Coefficient) | Life Satisfaction (Coefficient) | |||||
Household income quantile 1 | 0.002 | (0.009) | −0.021 | (0.008) *** | −0.004 | (0.005) | −0.009 | (0.004) ** |
Household income quantile 2 | 0.002 | (0.006) | −0.002 | (0.005) | −0.033 | (0.014) ** | −0.002 | (0.012) |
Household income quantile 3 | −0.012 | (0.009) | −0.009 | (0.008) | −0.007 | (0.009) | −0.009 | (0.008) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.S.; Andriatmoko, N.D.; Saeri, M.; Subagio, H.; Malik, A.; Triastono, J.; Oelviani, R.; Kilmanun, J.C.; da Silva, H.; Pesireron, M.; et al. Climate Disasters and Subjective Well-Being among Urban and Rural Residents in Indonesia. Sustainability 2022, 14, 3383. https://doi.org/10.3390/su14063383
Rahman MS, Andriatmoko ND, Saeri M, Subagio H, Malik A, Triastono J, Oelviani R, Kilmanun JC, da Silva H, Pesireron M, et al. Climate Disasters and Subjective Well-Being among Urban and Rural Residents in Indonesia. Sustainability. 2022; 14(6):3383. https://doi.org/10.3390/su14063383
Chicago/Turabian StyleRahman, Moh Shadiqur, Novil Dedy Andriatmoko, Moh Saeri, Herman Subagio, Afrizal Malik, Joko Triastono, Renie Oelviani, Juliana C. Kilmanun, Helena da Silva, Marietje Pesireron, and et al. 2022. "Climate Disasters and Subjective Well-Being among Urban and Rural Residents in Indonesia" Sustainability 14, no. 6: 3383. https://doi.org/10.3390/su14063383
APA StyleRahman, M. S., Andriatmoko, N. D., Saeri, M., Subagio, H., Malik, A., Triastono, J., Oelviani, R., Kilmanun, J. C., da Silva, H., Pesireron, M., Senewe, R. E., & Yusuf, Y. (2022). Climate Disasters and Subjective Well-Being among Urban and Rural Residents in Indonesia. Sustainability, 14(6), 3383. https://doi.org/10.3390/su14063383