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Abstract: Dissolved oxygen (DO) concentration is an important water-quality parameter, and its
estimation is very important for aquatic ecosystems, drinking water resources, and agro-industrial
activities. In the presented study, a new support vector machine (SVM) method, which is improved
by hybrid firefly algorithm–particle swarm optimization (FFAPSO), is proposed for the accurate
estimation of the DO. Daily pH, temperature (T), electrical conductivity (EC), river discharge (Q) and
DO data from Fountain Creek near Fountain, the United States, were used for the model development.
Various combinations of pH, T, EC, and Q were used as inputs to the models to estimate the DO.
The outcomes of the proposed SVM–FFAPSO model were compared with the SVM–PSO, SVM–
FFA, and standalone SVM with respect to the root mean square errors (RMSE), the mean absolute
error (MAE), Nash–Sutcliffe efficiency (NSE), and determination coefficient (R2), and graphical
methods, such as scatterplots, and Taylor and violin charts. The SVM–FFAPSO showed a superior
performance to the other methods in the estimation of the DO. The best model of each method was
also assessed in multistep-ahead (from 1- to 7-day ahead) DO, and the superiority of the proposed
method was observed from the comparison. The general outcomes recommend the use of SVM–
FFAPSO in DO modeling, and this method can be useful for decision-makers in urban water planning
and management.

Keywords: water quality; dissolved oxygen concentration; estimation; support vector machine;
firefly algorithm; particle swarm optimization

1. Introduction

Nowadays, the control of freshwater quality is a strategic priority for water resource
and management [1], and for a better reduction in water pollution [2]. The dissolved
oxygen concentration is an important water quality variable, and its fluctuation in response
to several chemical, biochemical, and physical factors has been well documented [3].
Currently, in situ measurements of DO concentrations, which are often accompanied by
other water quality variables, have facilitated the development and application of a large
number of numerical models for the better prediction of the DO in freshwater ecosystems.
Because of the effect of other variables, the DO modeling becomes nonlinear in nature, and
it is difficult to capture nonlinearity with simple models. However, models that are based
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on machine learning (ML) are the most widely used for modeling nonlinear variables,
and they have gained much popularity during the last few years [4–7]. In practice, the
calculated DO using numerical models has its own error. Thus, the research is heavily
oriented towards the development of algorithms that reduce the prediction errors and
that help in obtaining adequate predictive accuracies. In some case, the wrong selection
of the model’s parameters and the inadequate models’ calibrations following poor model
training significantly inflate the overall modeling error that is calculated between the
measured and the predicted data [8]. Ultimately, in order to reduce the prediction errors
and to improve the ML model performances, various attempts have been made by utilizing
algorithms that are capable of making better selections of the models’ parameters [9,10].
These algorithms can be classified into two categories: (i) Algorithms that improve the
models’ performances by maximizing the contribution of the input variables, which is
achieved by using preprocessing signal decomposition (PSD) algorithms (i.e., wavelet
transform and empirical mode decomposition, among others [11,12]), and (ii) Algorithms
that improve the generalization capabilities of the ML models by the correct choice of model
parameters, which is generally achieved by using metaheuristic optimization algorithms
(MOAs) (i.e., genetic algorithms, and particle swarm optimization (PSO)). While the use
of PSD has gained much popularity, especially for solving problems that are based on
long datasets, the number of developed algorithms is very limited compared to MOAs, for
which their increased use has attracted the attention of researcher’s worldwide, and the
number of developed algorithms is provided in an always increasing way [13].

Until now, the modeling of dissolved oxygen has included single and hybrid models.
In general, modeling using single models was formulated as an approximation function
that involves the inclusion of specific water-quality variables, while accepting the need to
select easily measured variables. While recognizing that this modeling strategy has the
advantage of having a simple and direct mathematical formulation, the poor generaliza-
tion capabilities, in some cases, and the extensive research to determine the best model
parameters using a hard trial-and-error process, alternative approaches that are based on
model optimization using MOAs, can be seen as complementary alternative approaches
that lead to the better selection of the model parameters. The literature review reveals
that several single models for DO prediction are available in the literature, such as: the
long short-term memory (LSTM) deep neural network model [14,15]; deterministic models
(i.e., MINLAKE2018) [16]; the linear dynamic system and filtering model [17]; the gated
recurrent unit (GRU) deep neural network model [18]; support vector regression (SVR) [19];
the stochastic vector auto regression (SVAR) model [20]; the radial basis function neural
network (RBFNN) [21]; the multilayer perceptron neural network (MLPNN) [22]; poly-
nomial chaos expansions (PCE) [23]; random forest regression (RFR) [24]; the extremely
randomized tree [25]; and multivariate adaptive regression splines (MARS) [26].

Several hybrid models that use MOAs for DO prediction have been proposed over
the last few years. Yang et al. [27] investigated the capabilities and robustness of new
hybrid models that were applied for predicting the daily DO in the Klamath River, Oregon,
the United States. They hybridized the MLPNN model by using three MOAs, namely,
the multi-verse optimizer (MVO), the black hole algorithm (BHA), and shuffled complex
evolution (SCE), were developed and compared: (i) The MVO–MLPNN; (ii) The BHA-
MLPNN; and (iii) The SCE–MLPNN. The three models were calibrated by using three
water-quality variables, namely, the water temperature (Tw), the pH, and the specific
conductance (SC). According to the obtained results, the SCE–MLPNN was more accu-
rate, and it exhibited a high correlation coefficient (R ≈ 0.877), compared to the values of
(R ≈ 0.845) and (R ≈ 0.874) that were obtained using the MVO–MLPNN and the BHA–
MLPNN, respectively. In a recently conducted investigation, Zhu et al. [28] used four
MOAs for optimizing the least squares support vector regression (LSSVR) model. The
MOAs that were used were as follows: the fruit fly optimization algorithm (FFA); the
particle swarm optimization (PSO) algorithm; the genetic algorithm (GA); and the im-
mune genetic algorithm (IGA). Hence, four hybrid models were proposed: (i) FFA–LSSVR;
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(ii) PSO–LSSVR; (iii) GA-LSSVR; and (iv) IGA-LSSVR. Numerical comparison between
models revealed that the FFA-LSSVR exhibited high predictive accuracies compared to
the PSO–LSSVR, GA-LSSVR, and IGA-LSSVR for which the mean absolute percentage
errors were ≈0.35%, ≈1.3%, ≈2.03% and ≈1.33%, respectively. Raheli et al. [29] compared
between hybrid FFA-MLPNN and single MLPNN in predicting monthly DO concentration
in the Langat River, Malaysia. Comparison between the hybrid and single models revealed
the superiority of the FFA-MLPNN (R ≈ 0.820, root mean square error, RMSE ≈ 0.497%)
compared to the values obtained using the single MLPNN (R ≈ 0.727, RMSE ≈ 0.606). In
another study, Deng et al. [30] used the PSO algorithm combined with the MLPNN for
developing a hybrid PSO-MLPNN model, which was used for predicting DO concentration
in an aquiculture pond, showing the superiority of the PSO-MLPNN compared to the
single MLPNN without providing numerical comparison. Song et al. [31] proposed a
new hybrid MOA called the improved sparrow search algorithm (ISSA) coupled LSTM
(ISSA-LSTM) for predicting weekly DO concentration in the Haihe River, China. The perfor-
mances of the ISSA-LSTM were compared to those of (SSA-LSTM), gray wolf optimization
algorithm (GWO) coupled LSTM (GWO-LSTM), and the whale optimization algorithm
(WOA) coupled LSTM (WOA-LSTM). A comparison of the models’ overall performances
revealed that the ISSA-LSTM was more accurate, exhibiting the high predictive accura-
cies and the greatest improvement in terms of mean absolute error (MAE) and RMSE,
compared to the standard LSTM, for which the decrease rate was ≈30.47% (SSA–LSTM),
≈36.22% (ISSA–LSTM), ≈21.34% (GWO–LSTM) and ≈19.08% (WOA–LSTM) in terms of
MAE, and ≈34.98% (SSA–LSTM), ≈37.27% (ISSA–LSTM), ≈19.53% (GWO–LSTM) and
≈17.88% (WOA–LSTM) in terms of RMSE, respectively. From the obtained results, it is clear
that the ISSA–LSTM was the most accurate and the GWO–LSTM was the poorest model.

A hybrid model combining the fractional grey seasonal model and the PSO algorithm
(PSO–FGSM) was proposed in [32]. The accuracies of the PSO–FGSM were compared
to those of the Holt–Winters model optimized using GWO (GWO–HW). These two hy-
brid models were applied and compared for forecasting monthly DO concentration in
the Huaihe River, China. The outcomes showed the superiority of the PSO–FGSM, which
had a MAPE ranging from ≈8.66% to ≈10.73%, compared to the values obtained us-
ing the GWO–HW, i.e., MAPE ranging from ≈10.29% to ≈13.20%. Cao et al. [33] used
the PSO algorithm for optimizing the softplus extreme learning machine (SELM), and
they applied the hybrid PSO–SELM for predicting DO concentration. According to the
obtained results, the PSO–SELM was more accurate and provided the best predictive ac-
curacies with Nash–Sutcliffe efficiency (NSE), RMSE and MAE equal to ≈0.952, ≈0.270
and ≈0.228 compared to the values obtained using ELM (NSE ≈ 0.908, RMSE ≈ 0.377,
MAE ≈ 0.333), MLPNN (NSE ≈ 0.903, RMSE ≈ 0.390, MAE ≈ 0.322), LSTM (NSE ≈ 0.887,
RMSE ≈ 0.416, MAE ≈ 0.336), and SVR (NSE ≈ 0.859, RMSE ≈ 0.466, MAE ≈ 0.391),
respectively. Dehghani et al. [34] employed the SVR model combined with four MOA
algorithms namely: (i) the algorithm of the innovative gunner (AIG), (ii) the black widow
optimization (BWO), (iii) social skidriver (SSD) optimization, and (iv) the chicken swarm
optimization (CSO). The four hybrid models, i.e., AIG–SVR, BWO–SVR, SSD–SVR, and
CSO–SVR were applied for predicting monthly DO concentration in the Cumberland
River, USA, using water temperature (Tw) and river discharge (Q). According to the ob-
tained results, the best prediction accuracies were obtained using the AIG–SVR (R ≈ 0.963,
NSE ≈ 0.864, RMSE ≈ 0.644, and MAE ≈ 0.568). It was also found that the hybrid models
improved the accuracies of the single SVR by 1.5% to 6.5%. Several other hybrid models for
DO concentration can be found in the literature, for example, MLPNN optimized genetic
algorithm (GA–MLPNN) [35], gene expression programming with PSO (PSO–GEP) [36],
and differential evolution (DE) optimized radial basis function (DE–RBFNN) [37].

Jiang et al. [38] applied the wavelet–Lyapunov exponent model (WLME) for forecast-
ing DO concentration at weekly and 15 min intervals. The proposed WLME is the result
of a combination of the wavelet decomposition, chaos theory and Lyapunov exponent’s
models. It was found that the WLME was more accurate compared to the standalone
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MLPNN and the autoregressive moving average (ARMA) exhibits an average relative
error (ARE) of 2.35%. Huang et al. [39] introduced a hybrid model composed of deep
auto–regression recurrent neural network (DeepAR) and the variational mode decompo-
sition (VMD), which are used as a preprocessing signal decomposition. In addition, the
sparrow swarm algorithm (SSA) was used for model parameters’ optimization. The hybrid
model, i.e., VMD-DeepAR-SSA, was compared to the standalone Bayesian and Bootstrap
and it exhibited a prediction interval coverage probability (PICP) of 0.950. Li et al. [40]
proposed the hybrid models by combining the LSTM and the temporal convolutional
network (TCN), i.e., the LSTM-TCN, for predicting DO concentration, and reported its
high performances with MAE, RMSE, and R2 of 0.236, 0.342 and 0.94, respectively. Yang
and Liu [41] adopted the complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN) as preprocessing signal decomposition for decomposing water
quality variables, which are used as inputs for the LSTM model applied for predicting
DO concentration. They carried out an analysis looking at comparative performances
between the proposed CEEMDAN–LSTM and, respectively, the RBFNN, the recurrent
neural network (RNN), GRU, CEEMDAN–RBFNN, CEEMDAN–RNN, CEEMDAN–GRU,
VMD–LSTM, and wavelet transform LSTM (WT–LSTM). Obtained results revealed that the
best prediction accuracies were obtained using the CEEMDAN–LSTM with MAE, RMSE,
and MAPE of 0.102, 0.121 and 0.0149, respectively. Moghadam et al. [42] compared deep
recurrent neural network (DRNN), the SVM and the MLPNN models for predicting DO at
(t + 1), (t + 3) and (t + 7) time=horizons. It was found that the DRNN was more accurate
compared to the other models and the forecasting accuracies decreased by increasing the
forecasting horizon. Song and Yao [43] introduced a new modeling framework for better
prediction of DO concentration by combining three different paradigms, namely deep
extreme learning machine (DELM), synchro-squeezed wavelet transform and sparrow
search algorithm (SSA), i.e., the SWT–SSA–DELM. Results obtained using the proposed
model was compared to those obtained using ELM, SWT–ELM, SSA–ELM, SWT–SSA–ELM,
DELM, SWT–DELM, SSA–DELM, and finally SWT–SSA–DELM. It was found that the SWT–
SSA–DELM was more accurate exhibiting very low MAE (≈0.131) and RMSE (≈0.171)
and very high R (≈0.982) and NSE (≈0.965) values. Recently, a hybrid model based on
extreme gradient boosting (XGBoost), improved sparrow search algorithm (ISSA) and
LSTM model, i.e., the XGBoost-ISSA–LSTM was proposed by Wu et al. [44] for multi steps
ahead forecasting of DO concentration. It was found that, in one hand, high forecasting
accuracies can be obtained and in the other hand, the performance of the model decreased
by increasing the forecasting horizon. In addition, a comparative study among several other
hybrid models revealed that the XGBoost-ISSA-LSTM was more accurate compared to
XGBoost-RFR, XGBoost-MLPNN, XGBoost-RNN, XGBoost-GRU, LSTM, XGBoost-LSTM,
XGBoost-PSO-LSTM, and XGBoost-SSA-LSTM.

Our motivation is to introduce a new hybrid model for better prediction of DO
concentration in rivers, using SVR optimization based on firefly algorithm particle swarm
optimization (FFAPSO–SVR). The proposed FFAPSO–SVR was compared to the SVR,
FFA–SVR and PSO–SVR, while hybridizing the SVR and LSSVR using MOA was reported
in the literature [28,34]. To the best of our knowledge, combining the FFA and PSO to
provide a single algorithm coupled with the SVR model has never reported in the literature,
therefore constituting the major motivation of our study. The rest of the paper is organized
as follows: Section 2 describes the case study and briefly describes each model applied in
this study. Section 3 presents the main results and discusses their relevance. Finally, the
main conclusions drawn from this study are presented in Section 4.

2. Materials and Methods
2.1. Case Study

The study area is situated in the Fountain Creek basin near Fountain, Colorado, USA,
as shown in Figure 1. The study station adopted in this study is operated by USGS with
operational id of Station No: 07106000 (38.36◦ N latitude and 104.40◦ E longitude). The
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selected station covers a gross area of 1763.78 km2 with gauge datum of 5353 ft. above
sea level. This region has a subtropical monsoon climate with large spatial and temporal
variability. Dissolved oxygen (DO) plays a vital role in determining the water quality of site.
Therefore, the DO of this station was selected to analyze the water quality of this site. To
model DO, daily time series data of DO, pH, T, EC and Q were obtained from the website of
USGS for the duration of 1 January 1995 to 31 January 2011. So as to improve the modeling
procedure and data quality, unrecorded dates of some variables were excluded from the
study. Therefore, a total of 4637 sample data points of 5 selected variables (DO, pH, T,
EC and Q) was adopted. Out of 4637 sample data points, 80 percent of data (3727) were
used as the training dataset for selected machine learning models, while the remaining
20 percent of data (910) were adopted as the testing dataset. For the training dataset, the
maximum–minimum values are 13.1–5.8, 24.6–0, 1280–287, 2530–32 and 12.2–5.2 for the pH,
T, EC, Q and DO variables, whereas the corresponding values for the testing are 12.7–6.3,
23.1–0, 1290–425, 844–39 and 11.1–5.9, respectively. Standard deviation and skewness
values of training datasets are 1.60–0.19, 6.45–0.12, 139.7–1.35, 178.7–5.27 and 1.42–0.21
for the pH, T, EC, Q and DO variables, respectively, while the corresponding statistics are
1.39–0.02, 6.44–0.21, 115.9–1.04, 65.5–4.25 and 1.30–0.06 for the testing datasets, respectively.
As can be clearly seen, the Q variable has the highest skewed distribution in both training
and testing datasets, followed by the EC data. The pH and DO data are very close to
normal distribution.
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2.2. Support Vector Machine (SVM)

Model support vector machines (SVM) have been applied in many scientific areas
of research in the last decade. This is due to their theoretical and applied benefits, which
validate their development, presentation and classification. The major contribution of
this model is to find the hyperplane that finely divides the data points, which is vital for
determining a decision boundary with an extreme geometric margin. This is applicable to
signal processing, pattern recognition, and non-linear regression [45–47]. Vladimir Vapnik
developed the SVM in 1995 (AT and T Bell Laboratory) to predict future phenomena with
statistical learning analysis [45]. SVM is applied to estimate exact non-linear relationships
between input and output variables, helping to solve the real-life problems which are based
on non-linear classification. The structure of the SVM model is shown in Figure 2.
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Consider input vector data as X = {rk} ∈ Rd and Y = {sk} ∈ R is as output vector
data, which are merged to prepare the training data set as {(r1, s1), (r2, s2), . . . , (rN , sN) }
with sk ∈ {−1,+1} as for class tags and Y(X) = sign

[
wTX + b

]
as linear classifier, here

N denotes as number of samples. The training data set is divided into two parts, as
discussed below: {

wTrk + b ≥ +1, i f sk = +1
wTrk + b ≤ −1, i f sk = −1

(1)

It can be further written as:
Y[wTX + b] ≥ 1
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The base of the SVM model is the theory of convex optimization; it takes the La-
grangian optimality properties to discover the constrained optimization. The solution
of this problem is obtained using dual space of Lagrange multipliers with the following
resulting classifier:

s(r) = sign

[
N

∑
k=1

αkskrT
k r + b

]
(2)

Additionally, in this SVM classifier, additional slack variable is used to formulate the
current problem and the following modified set of inequalities are [45]:

Y[wTX + b] ≥ 1− ξ, where ξ = {ξ1, ξ2, . . . , ξN }

This new SVM formulation is used to estimate both linear and non-linear function. For
the classical SVM style and least square type of SVM is used to consider the equality kind
of constraints [48,49]. To reduce the lengthy task of determining the solutions to complex
problems, SVM reformulation is used. The primal space is as,

s(r) = sign[wTr + b] (3)

Here, b is real constant and the non-linear classification the dual space is of the form,

s(r) = sign

[
N

∑
k=1

αkskK(r, rk) + b

]
(4)

where α1, α2, . . . , αN are positive real constants, and b is a real constant. In general,
K(r, rk) = 〈ϕ(rk), ϕ(r)〉, 〈·, ·〉 is the inner product, and ϕ(r) is the non-linear map from
original space to higher-dimensional space. The SVM model for functional estimation takes
the form

s(r) =
N

∑
k=1

αkskK(r, rk) + b (5)

K(r,rk) is a kernel function satisfying Mercer condition, such as Gaussian, polynomial
or sigmoid kernels. It is defined as

K(r, rk) = Φ(r)TΦ(rk) (6)

Here, RBF (radial basis function) has two parameters α and γ which are width and
regularization constant. Although, the SVM model provides the ultimate results, it has
many shortcomings. The main shortcoming is the descriptor’s selection.

2.3. SVM–FFA (Firefly Algorithm)

Biological systems are very much inspired to develop most of the meta-heuristic
algorithms, FFA is one of those which is inspired from natural phenomena. This natural
algorithm looks for the optimal solution of the problem by modeling the behavior of a set of
fireflies and assigning a relevant value corresponding to the location fitness of each firefly
as a model for firefly luciferin by updating the location of the fireflies in the successive
iterations of the algorithm. The major two phases of this model are light intensity and
formulation of attractiveness for each iteration of the updating phase. So, in this section, the
fireflies move toward other fireflies with higher light intensity in their neighborhood. That
is why the successive iterations provide the set moves towards a better solution [50–52].

The major FFA rules are as below:

(a) Unisex fireflies;
(b) Increase in attractiveness of the fireflies;
(c) All fireflies have unique brightness.
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The major tasks of the FFA model are brightness and objective function deviation with
respect to different distances.

I(r) = I0e(−γr2) (7)

here I depicts the brightness at distance r from a firefly, I0 is starting brightness, γ is light
absorption. β is introduced to represent the next attractiveness at distance r from the firefly
and β0 is attractiveness at distance r = 0 as

β(r) = β0e(−γr2) (8)

rij = ‖xi + xj‖ =

√√√√ d

∑
k=1

(
xi,k − xj,k

)
(9)

this rij is the Cartesian distance between two fireflies i and j and the movement of firefly i
as attracted to another brighter firefly j can be represented as below

∆xi = β0e(−γr2)
(
xj − xi

)
+ α ∈i (10)

The next movement of firefly i is updated as below

xi+1
i = xi + ∆xi (11)

The SVM model is used to select the proper parameter for the next iteration of firefly,
which helps to determine the optimal SVM parameters. The working flow of the SVM–FFA
model is shown in Figure 3.
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2.4. SVM–Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a very popular method, inspired by the social
behavior of natural living creatures. The method focuses on specific kinds of animals
that unequivocally move in groups and share in the experience of other members, for
instance, feathered animals racing to a food source. This is related to an advanced look for
answers regarding non-direct conditions in a genuine esteemed pursuit space. Kennedy
and Eberhart developed this PSO as the new model for global optimization in 1995 [53,54].

In PSO, every particle i has two vectors, namely a velocity vector and a position vector.
The apprise process works according to the preceding best position and the entire swarm
preceding best position. The particle i adjusts its velocity vector vi and position vector xi as
per the below given equations:

vn+1 = ωvn + c1r1(pn − xn) + c2r2

(
pn

g − xn
)

(12)

xn+1 = xn + βvn (13)

where vn and xn are the present velocity and position of the particle, r1 and r2 are two
independently uniformly distributed arbitrary variables with a range, pn depicts the best
preceding position of the particle i, pn

g shows the best position among all particles in
the population.

This algorithm has become very famous in many areas of research in just a few years
due to its adaptability to all optimization problems by having a selection of particles
that move around a hunt space. An exact answer can be obtained by any particle in the
neighborhood. To evaluate the distance between the particles, the Euclidian algorithm is
used, which is important for the development of particles’ communication. The topological
neighborhoods inconsequential to the area are used for the famous model gbest. Here,
swarm is used to acquire the input data. It will be more effective when PSO properties are
combined with the SVM model. The basic working flow of the SVM–PSO model is shown
in Figure 4 [55,56].
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2.5. Proposed New Hybrid Model (Support Vector Machines Tuned with Firefly Algorithm Particle
Swarm Optimization (SVR–FFAPSO))

The tuning parameter λ plays a vital role in obtaining the optimal results from the
penalized support vector machine with L1-norm. In this process of penalization, λ governs
the transaction between the number of selected descriptors and classification. So, it is very
important to select a suitable value of λ. If the value is small, then it leads to overfitting the
data as the large numbers of descriptors will not be removed. To choose wisely the value of
λ, the data-driven cross-validation approach is used in the literature. However, it identifies
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many irrelevant descriptors as the number of a descriptor is large, it is also time-consuming.
To overcome this problem, metaheuristics algorithms play an important role. By using
the hybridization, many different metaheuristics algorithms can be clubbed into a single
framework, take favors of the used algorithms and then yield a more favorable performance
than using a single algorithm. PSO is most widely used, but it requires leaving the local
optima to circumvent premature convergence. Additionally, in PSO, the problem becomes
more complex as the variable size increases. On the other hand, FFA is a competent local
searching methodology but the major drawback of becoming trapped in local minimum is
due to the intensity of the light for attraction.

In this study, a new hybrid model named FFAPSO method developed in [57], is
utilized. In this new algorithm, FFA is embedded in PSO to make it more powerful by
improving the exploration and exploitation of the PSO model. The main steps of the
FFAPSO method are demonstrated in [57]. In this section, the hybrid FFAPSO method
is used to obtain the optimal values of the SVM parameters (ε, C, and γ). This proposed
hybridization is used to find the value of parameters, the L1-norm. The basic working flow
of the SVM–FFAPSO model is shown in Figure 5, and summarized in the following steps:

Step 1: Define the range of SVM searching parameters.
Step 2: Generate initial parameter population (set of individuals).
Step 3: Split dataset into two sets (training and testing sets).
Step 4: Train SVM model using k-fold cross validation on training dataset.
Step 5: Calculate the fitness value of each individual in the population according to

the root mean square error (RMSE).
Step 6: Find the global best individual (gbest) and local best individual (pbest).
Step 7: Update the position of each individual using FFAPSO as follows: If fitness of

the individual ≤ gbest, update position using FFA algorithm. Otherwise, update position
using PSO algorithm.

Step 8: Repeat step 5–7 until reach the maximum number of iterations.
Step 9: Output the optimal set of parameters (gbest) found at the end of the iteration.

Then, train the SVM model with these parameters.
Step 10: Predict the output of data in testing dataset part by SVM model.

2.6. Model Performance Evaluation Matrices

The outcomes of the SVM, SVM–PSO, SVM–FFA and SVM–FFAPSO models were
assessed by the following comparison criteria:

RMSE : Root Mean Square Erro =
1
N

N

∑
i=1

[(DO0)i − (DOC)i]
2 (14)

MAE : Mean Absolute Error =
1
N

N

∑
i=1
|(DO0)i − (DOC)i| (15)

R2 : Determination Coe f f icient =

 ∑N
t=1
(

DO0 − DO0
)(

DOc − DOc
)√

∑N
t=1 (DO0 − DO0)

2
(DOc − DOc)

2

2

(16)

NSE : Nash− Suutcli f f e = 1− ∑N
i=1 [(DO0)i − (DOc)i]

2

∑N
i=1 [(DO0)i − DO0]

2 ,−∞ < NSE ≤ 1 (17)

where DOc is computed DO, DO0 is observed DO, DO0 is average of the measured or
observed DO and, N is data quantity. These indexes are adopted due to their successful
usage in the literature [58–62].
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3. Application and Results

In the present study, the SVM hyperparameters were tuned by following the sugges-
tion by Sudheer et al. (2014). The parameters C, γ, and ε were searched in the exponential
space C ∈

(
10−5, 105), γ ∈

(
0, 101) and ε ∈

(
0, 101). Table 1 sums up brief information

about the set parameters for the implemented method and algorithms. Data split rule of
80–20% was used before applying the machine learning methods. Forty populations and
100 iterations were set for all algorithms. They were run 25 times and their averages were
recorded. Several combinations of four variables (T, pH, EC and Q) were used as input to
the models to estimate daily DO.
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Table 1. Parameter setting of the optimization algorithms used in the study.

SVM

C 10
γ 0.1
ε 0.01
Kernel type Radial basis function (RBF)

PSO
Cognitive component (c1) 1.49445
Social component (c2) 1.49445
inertia weight 0.5–0.9

FFA
Initial value of randomization
parameter (α) 0.5

Absorption coefficient (γ) 1.0

FFAPSO As in both PSO and FFA

All algorithms
Population 25
Number of iterations 100
Number of runs for each algorithm 25

Table 2 shows the training and testing outcomes of the standard SVM method in
respect of RMSE, MAE, R2 and NSE. As can be seen from the table, 15 possible input
combinations were evaluated using SVM. As expected, the SVM model having all four
variables produced the lowest errors (RMSE = 0.316 mg/L, MAE = 0.237 mg/L for training
and RMSE = 0.223 mg/L, MAE = 0.176 mg/L for testing) and the highest R2 (R2 = 0.951 for
training, R2 = 0.978 for testing) and NSE (NSE = 0.95 for training and NSE = 0.97 for testing).

Table 2. The comparison of SVM model in DO estimation.

No. of
Inputs

Input
Combinations

Training Testing

RMSE MAE R2 NSE RMSE MAE R2 NSE

1

T 0.631 0.456 0.802 0.802 0.360 0.274 0.931 0.923
pH 0.391 0.311 0.942 0.924 0.331 0.282 0.961 0.935
EC 1.383 1.177 0.05 0.05 1.302 1.134 0.022 0.009
Q 1.417 1.206 0.002 0.002 1.296 1.14 0.006 0.004

2

T, pH 0.379 0.297 0.93 0.929 0.362 0.285 0.955 0.922
T, EC 0.634 0.456 0.801 0.8 0.36 0.275 0.927 0.92
T, Q 0.647 0.47 0.793 0.792 0.357 0.272 0.931 0.924

pH, EC 0.356 0.279 0.942 0.937 0.32 0.263 0.965 0.939
Q, EC 1.372 1.167 0.065 0.065 1.33 1.133 0.078 0.053
pH, Q 0.394 0.306 0.94 0.923 0.317 0.269 0.961 0.94

3

T, pH, EC 0.326 0.245 0.948 0.947 0.225 0.179 0.97 0.961
T, pH, Q 0.432 0.336 0.914 0.907 0.366 0.288 0.942 0.92
T, EC, Q 0.648 0.478 0.792 0.791 0.404 0.32 0.93 0.903

pH, Q, EC 0.356 0.278 0.942 0.937 0.304 0.234 0.966 0.945

4 T, pH, EC, Q 0.316 0.237 0.951 0.95 0.223 0.176 0.978 0.97

According to the combinations with one input, the pH-based SVM model has the
highest accuracy, followed by the T-based model and EC- and Q-based models, which have
very low accuracy. It can be said that the pH has the highest influence on DO, followed
by the T variable, whereas the Q has the least effect on DO, followed by the EC variable.
From double-input combinations, however, it is observed that the SVM models with pH,
Q and pH, EC have almost the same accuracy and they perform superior to the other
alternatives in estimating DO in the test stage. This implies that the EC and Q also have
considerable influence on DO estimation when they were used together with pH variable.
However, Q or EC variables does not considerably improve the SVM accuracy when they
were used with the T input. As expected, the combination of Q, EC produced the worst
results. Examining the triple input combinations indicates that the SVM model with T, pH
and EC provides the highest accuracy (RMSE = 0.225 mg/L, MAE = 0.179 mg/L, R2 = 0.97
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and NSE = 0.961) and it is followed by the pH, Q and EC inputted model. From the all
the input combinations considered, it can be said that only the use of one- or two- input
combinations may give missing information about the effect of a variable on daily DO. All
the possible combinations should be evaluated to decide the impact of each variable in the
estimation of DO.

A comparison of SVM–PSO models with different input cases is presented in Table 3
for estimating daily DO concentration. For this method, the four-inputted model has the
best accuracy with the best RMSE, MAE, R2 and NSE scores in the simulation (training)
and estimation (testing) stages (0.308 mg/L, 0.231 mg/L, 0.954, 0.954 for training and
0.219 mg/L, 0.172 mg/L, 0.978, 0.973 for testing). Here, parallel results were also acquired
from the different combinations of single, double and triple inputs. Compared to the
single SVM method, the hybrid SVM–PSO considerably improves the estimation accuracy,
especially for the limited input cases; for example, improvement for the best one input
(pH variable) SVM model is 4.5%, 15%, 0.42% and 0.64%, with respect to RMSE, MAE, R2

and NSE and the corresponding improvements for the best double input (pH and Q) SVM
model are 3.15%, 11.5%, −0.62% and −0.43% in the test stage, respectively.

Table 3. The comparison of SVM–PSO model in DO estimation.

No. of
Inputs

Input
Combinations

Training Testing

RMSE MAE R2 NSE RMSE MAE R2 NSE

1

T 0.628 0.453 0.805 0.804 0.345 0.26 0.936 0.927
pH 0.344 0.267 0.94 0.94 0.316 0.24 0.965 0.941
EC 1.381 1.176 0.051 0.051 1.298 1.131 0.02 0.002
Q 1.414 1.201 0.007 0.007 1.295 1.139 0.007 0.002

2

T, pH 0.313 0.235 0.951 0.951 0.205 0.157 0.98 0.975
T, EC 0.631 0.456 0.801 0.801 0.359 0.274 0.93 0.923
T, Q 0.629 0.457 0.803 0.803 0.351 0.266 0.933 0.927

pH, EC 0.34 0.261 0.943 0.943 0.303 0.232 0.966 0.945
Q, EC 1.331 1.114 0.121 0.121 1.321 1.127 0.083 0.039
pH, Q 0.341 0.262 0.942 0.942 0.307 0.238 0.967 0.944

3

T, pH, EC 0.317 0.238 0.942 0.942 0.225 0.177 0.972 0.967
T, pH, Q 0.314 0.235 0.952 0.952 0.221 0.173 0.975 0.971
T, EC, Q 0.629 0.455 0.804 0.804 0.355 0.269 0.93 0.925

pH, Q, EC 0.341 0.263 0.942 0.942 0.301 0.231 0.966 0.946

4 T, pH, EC, Q 0.308 0.231 0.954 0.954 0.219 0.172 0.978 0.973

The training and testing outcomes of the SVM–FFA methods with different input
cases are reported in Table 4. Like the previous two methods, here also the model
with full input variables performed the best (RMSE = 0.299 mg/L, MAE = 0.225 mg/L,
R2 = 0.956, NSE = 0.956 for training and RMSE = 0.204 mg/L, MAE = 0.157 mg/L, R2 = 0.981,
NSE = 0.975 for testing) in the simulation and estimation of daily DO. Comparison with the
standard SVM and hybrid SVM–PSO methods clearly reveals that the FFA tuning consider-
ably improves the accuracy of the SVM method in estimating daily DO. By employing this
algorithm, the performance of one input (pH variable) SVM increased by 9.1%, 17.7%, 0.52%
and 1.18% in respect to RMSE, MAE, R2 and NSE, the corresponding improvements are
3.8%, 12.3%, 0.83% and 0.74% for the double input (pH and Q) SVM and for the triple input
SVM, they are 3.11%, 4.47%, 0.82% and 1.14%, respectively. The improvements obtained in
RMSE, MAE, R2 and NSE, respectively are 4.75%, 3.33%, 0.10% and 0.53% for one input
SVM–PSO, 0.65%, 0.84%, 0.21% and 0.32% for double input SVM–PSO and 3.11%, 3.39%,
0.62% and 0.52% for triple input SVM–PSO models in the test stage.
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Table 4. The comparison of SVM–FFA model in DO estimation.

No. of
Inputs

Input
Combinations

Training Testing

RMSE MAE R2 NSE RMSE MAE R2 NSE

1

T 0.624 0.444 0.807 0.807 0.344 0.259 0.939 0.93
pH 0.341 0.263 0.942 0.942 0.301 0.232 0.966 0.946
EC 1.38 1.175 0.051 0.053 1.295 1.129 0.022 0.003
Q 1.411 1.204 0.005 0.005 1.293 1.138 0.018 0.002

2

T, pH 0.308 0.231 0.953 0.953 0.209 0.162 0.979 0.974
T, EC 0.63 0.455 0.803 0.803 0.358 0.273 0.931 0.924
T, Q 0.626 0.453 0.806 0.806 0.341 0.258 0.938 0.931

pH, EC 0.338 0.256 0.946 0.946 0.301 0.23 0.968 0.946
Q, EC 1.329 1.11 0.123 0.123 1.327 1.132 0.075 0.048
pH, Q 0.338 0.259 0.943 0.943 0.305 0.236 0.969 0.947

3

T, pH, EC 0.31 0.233 0.952 0.952 0.218 0.171 0.978 0.972
T, pH, Q 0.311 0.234 0.952 0.952 0.222 0.174 0.978 0.974
T, EC, Q 0.618 0.441 0.811 0.811 0.343 0.259 0.935 0.93

pH, Q, EC 0.34 0.26 0.943 0.943 0.298 0.23 0.967 0.947

4 T, pH, EC, Q 0.299 0.225 0.956 0.956 0.204 0.157 0.981 0.975

Table 5 sums up the training and testing outcomes of the hybrid SVM–HFPSO
(SVM–FFAPSO) methods for different input cases. The best DO estimates were acquired
from the four-input model (T, pH, EC and Q) having the lowest RMSE (0.202 mg/L),
MAE (0.155 mg/L) and the highest R2 (0.985) and NSE (0.977). There is a slight difference
between the four-input SVM–HFPSO and SVM–FFA models, whereas the difference be-
tween these methods is considerable for the limited input cases. For example, relative
differences in RMSE and MAE for the best one-input are 5.32% and 5.17%, while they are
5.50% and 3.51% for the triple input in the test stage, respectively. The new hybrid method
(SVM–HFPSO) improved the best single SVM method by 13.9%, 22%, 0.52% and 1.83%
with respect to RMSE, MAE, R2 and NSE, the corresponding improvements are 43%, 41%,
2.7%, 5.97% for the double input (T and pH) model and for the triple input model, they
are 8.4%, 7.8%, 0.93% and 1.46%, respectively. Compared to the SVM–PSO methods, the
improvements obtained in RMSE, MAE, R2 and NSE, respectively, are 9.8%, 8.3%, 0.1% and
1.17% for one input model and 8.4%, 6.78%, 0.72% and 0.83% for the triple input model in
the test stage.

The outcomes of the best standard SVM, SVM–PSO, SVM–FFA and SVM–HFPSO,
models having four inputs of T, pH, EC and Q, were further compared in multi-time step
daily DO estimating. Till now, we compared the four methods in estimating daily DO at
time t (for the current day). Table 6 compares the optimal models for estimating daily DO
from t + 1 (time step i) to t + 7 (time step vii). It is clear from the table that implementing
PSO, FFA and FFAPSO in tuning hyperparameters of SVM method improves its accuracy
in estimating multi-time step daily DO concentration.

Table 5. The comparison of SVM–FFAPSO model in DO estimation.

No. of
Inputs

Input
Combinations

Training Testing

RMSE MAE R2 NSE RMSE MAE R2 NSE

1

T 0.621 0.441 0.809 0.809 0.338 0.255 0.941 0.932
pH 0.339 0.261 0.943 0.943 0.285 0.22 0.966 0.952
EC 1.378 1.17 0.058 0.058 1.291 1.127 0.025 0.008
Q 1.4 1.181 0.027 0.026 1.29 1.125 0.019 0.01
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Table 5. Cont.

No. of
Inputs

Input
Combinations

Training Testing

RMSE MAE R2 NSE RMSE MAE R2 NSE

2

T, pH 0.294 0.222 0.957 0.957 0.206 0.167 0.981 0.977
T, EC 0.623 0.451 0.807 0.807 0.354 0.27 0.934 0.927
T, Q 0.618 0.442 0.81 0.81 0.339 0.256 0.939 0.933

pH, EC 0.334 0.246 0.949 0.949 0.3 0.228 0.97 0.949
Q, EC 1.327 1.107 0.126 0.126 1.315 1.119 0.093 0.069
pH, Q 0.335 0.256 0.946 0.946 0.303 0.233 0.972 0.949

3

T, pH, EC 0.309 0.232 0.952 0.952 0.206 0.165 0.979 0.975
T, pH, Q 0.295 0.224 0.954 0.954 0.212 0.161 0.98 0.976
T, EC, Q 0.616 0.44 0.812 0.812 0.34 0.257 0.936 0.931

pH, Q, EC 0.335 0.256 0.944 0.944 0.295 0.223 0.972 0.949

4 T, pH, EC, Q 0.293 0.22 0.957 0.957 0.202 0.155 0.985 0.977

Table 6. Multi-time step estimating using best SVM based models (T, pH, EC, Q).

Model Time Scale Time Step
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

Best SVM Daily

I 0.511 0.379 0.870 0.870 0.378 0.285 0.915 0.920
Ii 0.625 0.463 0.806 0.806 0.479 0.359 0.864 0.868
Iii 0.678 0.508 0.772 0.772 0.520 0.396 0.839 0.846
Iv 0.704 0.526 0.754 0.754 0.527 0.406 0.835 0.844
V 0.725 0.545 0.739 0.739 0.540 0.420 0.827 0.842
Vi 0.746 0.565 0.724 0.724 0.557 0.437 0.815 0.830
Vii 0.764 0.581 0.710 0.710 0.586 0.461 0.795 0.811

Best
SVM–PSO

Daily

I 0.511 0.378 0.871 0.871 0.378 0.284 0.917 0.923
Ii 0.622 0.462 0.808 0.808 0.480 0.360 0.866 0.869
Iii 0.673 0.504 0.775 0.775 0.517 0.394 0.841 0.847
Iv 0.700 0.523 0.757 0.757 0.523 0.401 0.837 0.846
V 0.719 0.541 0.743 0.743 0.535 0.414 0.830 0.843
Vi 0.739 0.560 0.729 0.729 0.550 0.432 0.820 0.832
Vii 0.756 0.576 0.716 0.716 0.585 0.459 0.798 0.816

Best
SVM–FFA

Daily

I 0.500 0.371 0.876 0.876 0.367 0.278 0.920 0.925
Ii 0.619 0.459 0.810 0.810 0.469 0.358 0.867 0.873
Iii 0.673 0.504 0.775 0.775 0.513 0.390 0.843 0.848
Iv 0.698 0.522 0.758 0.758 0.529 0.410 0.834 0.846
V 0.717 0.539 0.744 0.744 0.528 0.407 0.832 0.845
Vi 0.737 0.559 0.730 0.730 0.546 0.427 0.823 0.835
Vii 0.751 0.572 0.720 0.720 0.581 0.456 0.802 0.819

Best SVM–
FFAPSO

Daily

I 0.495 0.365 0.878 0.878 0.362 0.275 0.922 0.927
Ii 0.613 0.454 0.813 0.813 0.469 0.355 0.869 0.875
Iii 0.661 0.492 0.783 0.783 0.507 0.387 0.847 0.853
Iv 0.690 0.515 0.763 0.763 0.521 0.402 0.839 0.850
V 0.706 0.529 0.752 0.752 0.519 0.401 0.840 0.844
Vi 0.725 0.546 0.739 0.739 0.536 0.420 0.829 0.838
Vii 0.742 0.564 0.727 0.727 0.562 0.441 0.808 0.823

The ranges of the RMSE, MAE, NSE and R2 for the standard SVM are 0.378–0.586 mg/L,
0.285–0.461 mg/L, 915–0.795 and 0.920–0.811 from time step i to vii, while the correspond-
ing ranges are 0.378–0.585 mg/L, 0.284–0.459 mg/L, 917–0.798, 0.923–0.816 for the SVM–
PSO, 0.367–0.581 mg/L, 0.278–0.456 mg/L, 920–0.802, 0.925–0.819 for the SVM–FFA and
0.362–0.562 mg/L, 0.275–0.441 mg/L, 922–0.808, 0.927–0.823 for the SVM–FFAPSO, respec-
tively. By implementing the hybrid SVM–FFAPSO, the observed improvements in RMSE,
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MAE, NSE and R2 of the standard SVM are 26.4%, 24.1%, 13.8% and 15.9% in estimating
7-day ahead (time step vii or t + 7) DO concentration in the test stage, respectively.

Figure 6 compares the testing outcomes of the optimal SVM–based models via scatter
diagrams. It is evident from the fit line equations and R2 values, the SVM–FFAPSO has
less scattered estimates compared to other models and its performance is followed by
the hybrid SVM–FFA and SVM–PSO. The Taylor diagram provided in Figure 7 tell us
that the hybrid SVM–FFAPSO model has closer standard deviation to the observed DO
concentration and it has the lowest RMSE and the highest correlation.
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the observed DO values.
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Figure 9 illustrates the scatterplot comparison of the SVM–based models’ outcomes in
estimating 7-day ahead DO concentration. As seen from the fit line equations and determi-
nation coefficient values in the figure, the hybrid SVM–FFAPSO keeps its superiority in
estimating t + 7 DO with slope coefficient and bias values closer to 1 and 0 and higher R2

compared to other three models. Hybrid SVM–FFA and SVM–PSO also have better fore-
casting performance than the standard SVM model, as evident from the fit line equations
closer to the ideal line equation (y = x) and higher R2. It is clearly observed from the Taylor
diagram given in Figure 10 that the hybrid SVM–FFAPSO model has superior accuracy
over other models with respect to RMSE, correlation and standard deviation. The hybrid
SVM–FFAPSO has closer standard deviation to the observed one and higher correlation and
lower RSME compared to the SVM–FFA, SVM–PSO and standard SVM models. Figure 11
shows that the similarity between the distributions of the SVM–FFAPSO and observed
values is higher compared to the other SVM–based models in estimating 7-day ahead DO
concentration. It is clearly seen from the figure that the mean and median values of the
hybrid SVM–FFAPSO are closer to the observed one and distribution of the estimates in
the upper and lower parts (with respect to mean or medium) are more resembling the
distributions of the target DO values. Comparison of Figures 5–7 clearly indicates that
increasing the time lag to 7 considerably decreased the models’ accuracy in estimating
DO concentration.
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Singh et al. [63] predicted the DO of the Gomti River, India using neural networks
and they found correlation coefficient, R of 0.76 from the best model in the test stage.
Ranković et al. [64] modeled the DO of the Gruza Reservoir, Serbia, considering the inputs
of pH, temperature, nitrates, chloride and total phosphate. They obtained an R of 0.874 for
the best model in the test stage. Heddam [65] used GRNN for modeling the DO of the Upper
Klamath River, USA and they used T, pH, SC and SD as inputs. The correlation coefficient
(R) of the best model (GRNN) was found to be 0.984 in the test stage. Elkiran et al. [66]
investigated the accuracy of an ensemble method involving ANFIS, SVM and ARIMA in
modeling DO of the Yamuna River, India using inputs BOD, COD, discharge, pH, Ammonia
and water temperature. The best models produced a mean R of 0.969 from three stations
considered in their study. In our study, the best SVM–FFAPSO model provided R of 0.992 in
modeling DO of Fountain Creek, which indicates the good accuracy of the proposed model.

4. Conclusions

In this study, the viability of a new hybrid method, SVM–FFAPSO, was investigated
for predicting DO concentration for multiple time steps. The outcomes of the model
were compared with the standard SVM and hybrid SVM–FFA and SVM–PSO models.
Various combinations of daily pH, T, EC and Q data acquired from Fountain Creek near
Fountain, USA were used as inputs to the models to estimate 1-day to 7-day ahead DO.
The implemented methods were assessed based on RMSE, MAE, NSE, R2 and graphical
inspections (scatterplots, Taylor and violin charts). Analysis outcomes showed that the
SVM–FFAPSO outperformed the other methods in estimating DO in all time steps. Tuning
SVM hyperparameters using FFA, PSO and FFAPSO improved the accuracy of the standard
SVM method in forecasting multi-time step daily DO concentration. The proposed hybrid
SVM–FFAPSO improved the estimation accuracy of the standard SVM with respect to
the RMSE, MAE, NSE and R2 by 13.9%, 22%, 0.52% and 1.83% in estimating 1-day ahead
DO concentration in the test stage, respectively. The corresponding improvements were,
respectively, obtained as 26.4%, 24.1%, 13.8% and 15.9% in estimating 7-day ahead DO
concentration. The outcomes recommended the employment of hybrid SVM–FFAPSO in
DO modeling.
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