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Abstract: The global food production for the worldwide population mainly depends on the huge
contributions of the agricultural sector. The cultivated crops of foods need various elements or
nutrients to complete their growth, and these are indirectly consumed by humans. During this
production, several environmental constraints or stresses may cause losses in the global agricultural
production. These obstacles may include abiotic and biotic stresses, which have already been studied
in both individual and combined cases. However, there are very few studies on multiple stresses. On
the basis of the myriad benefits of nanotechnology in agriculture, nanofertilizers (or nanonutrients)
have become promising tools for agricultural sustainability. Nanofertilizers are also the proper
solution to overcoming the environmental and health problems that can result from conventional
fertilizers. The role of nanofertilizers has increased, especially under different environmental stresses,
which can include individual, combined, and multiple stresses. The stresses are most commonly the
result of nature; however, studies are still needed on the different stress levels. Nanofertilizers can
play a crucial role in supporting cultivated plants under stress and in improving the plant yield, both
quantitatively and qualitatively. Similar to other biological issues, many open-ended questions still
require further investigation: Is the right time and era for nanofertilizers in agriculture? Will the
nanofertilizers be the dominant source of nutrients in modern agriculture? Are nanofertilizers, and
particularly biological synthesized ones, the magic solution for sustainable agriculture? What are the
expected damages of multiple stresses on plants?

Keywords: salinity; drought; heat stress; nanofertilizers; combined stress

1. Introduction

Nowadays, food security faces a great challenge, which is persistently represented in
the rapid increase in the global population and the drastic changes in the climate [1]. This
food security mainly depends on the agricultural sector, and particularly on crop produc-
tion, which supplies the human diet with the major sources of the bioactive compounds for
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human nutrition [2,3]. This productivity faces different stresses, which may produce losses
of up to 50–70% in the case of abiotic stresses, and of up to 40–60% in the case of biotic
stresses [4]. The most common abiotic stresses include salinity, drought, flooding, and
heat stress, whereas bacteria, viruses, and fungi are the key biotic stresses. These stresses
can be mitigated in cultivated plants through the application of a variety of antistressors,
such as nitric oxide [5]; pyraclostrobin [6]; rhizobia, or plant-growth-promoting rhizobac-
teria (PGPR) [7,8]; melatonin [4]; strigolactones [9]; phytohormones [10]; and nutrients
such as silicon [11,12] and selenium [13], as well as their nanoforms [9,14]. Several stud-
ies have already been published on the individual stresses [6,9,15], but there are only a
few publications on combined stress (e.g., [1,14,16–18]), and very few articles on multiple
stresses [19].

Nanofertilizers are considered to be promising candidates for the fertilizer industry,
and they have the considerable potential to improve the retention of different nutrients for
optimal crop production [20]. Nanofertilizers may be crucial for plant nutrition and hu-
man health [2], particularly the current nanofertilizers, which are highly efficient (50–70%)
compared to traditional fertilizers (40–50%) in terms of the controlled release of the nutri-
ents [21]. These nanofertilizers can solve the main problem of traditional fertilizers (i.e.,
the high nutrient losses in the soil) by allowing the slow and sustained release of nutrients
over an extended period. They also have high reactivities because of their small sizes, high
surface areas, and increased productivity [22]. Several nutrients have been used through
soil and/or foliar application in cultivated plants (e.g., Cu, Mn, and Zn, which support
crop productivity [20]), as has been reported for the following studied crops: wheat [23],
maize [24], tomato [25], sweet basil [26], lettuce [27], cabbage [28], and strawberry [29].

Therefore, this review attempts to highlight nanofertilizers and their impacts on crop
production. The effects of the application of nanofertilizers on plants under stressful
conditions (i.e., individual, combined, and multiple stresses) are also investigated.

2. Nanofertilizers and Agriculture
2.1. Nanofertilizers for Crop Production

Nanotechnology can be defined as the science of the production of nanoparticles
through the modification and/or self-assembly of individual atoms, molecules, or molecu-
lar clusters, which are endowed with new or drastically different properties [30]. Nanotech-
nology has several applications in all sectors, including agriculture, industry, medicine,
pharmacology, etc. In the agriculture sector, nanotechnology applications can be broadly
classified into the following main sectors: (1) Crop production through the use of nanoher-
bicides/nanopesticides and nanomaterials to control the viral and fungal diseases of plants;
(2) Precision farming; and (3) Crop improvement using nanofertilizers and nanobiosen-
sors for soil/plant systems, and for the nanoremediation of soils, water, and the food
sector [31–33]. Although agro-nanotechnology has several benefits, nanomaterials may
also be associated with many risks, which include: (1) Safety issues that are due to the pen-
etration of the cells, which are small sizes; (2) The degradation of the nanomaterials and/or
nanocomposites under environmental conditions, with the release of the inserted nano-
materials into the environment; (3) A significant amount of leaching of the nanoparticles
into the agro-environment, which may cause nanotoxicity; and (4) The integration of many
nanoparticles into the human body via inhalation, ingestion, or cutaneous contact [33].

2.2. Nanofertilizers vs. Traditional Fertilizers

There are many problems that result from the intensive use of traditional or chemical
fertilizers that have led to many negative impacts on the agroecosystem, such as the low
efficiency of the nutrient use by crops, and the high losses of nutrients to groundwater,
especially NPK (by 40–70%, 80–90%, and 50–90%, respectively [34,35]). Thus, nanotechnol-
ogy has become an emerging approach in the revolution of agricultural systems through its
controlled-release manner of delivering nutrients to cultivated plants [36]. Nanofertilizers
are a type of fertilizer, and they are synthesized using physical, chemical, or biological meth-
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ods that are based on nanotechnology. The physical methods induce rapid synthesis, but
they produce many impurities; the chemical methods are precise in terms of the size of the
nanoparticles, but they may produce toxicity; and the biological methods are eco-friendly
and low toxic, but they induce slow synthesis [34]. These nanofertilizers can enhance
crop production by supplying one or more nutrients to the cultivated plants via smart
delivery, which results in sustained nutrient release, improved plant growth, high nutrient
uptake efficiency, and improved soil quality [37,38]. Compared to conventional fertilizers,
nanofertilizers have many distinguished attributes, such as high nutrient uptake efficiency,
controlled-release modes, effective durations of the nutrient release, and a reduced loss rate
of the fertilizer nutrients (Figure 1) [30]. These benefits of nanofertilizers may support their
role in the production of higher crop yields of high quality. The benefits also include the
lower-cost production and eco-friendly synthesis of nanofertilizers, which may reduce the
use of traditional fertilizers [39–41]. In addition, the management of crop nutrition could be
achieved by using nanofertilizers, which can improve the crop productivity, and enhance
the tolerance of these crops to biotic/abiotic stresses [42].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparison item Nano-fertilizers  Traditional-fertilizers 

Solubility and dispersion 
of mineral nutrients 

Improve solubility, reduced soil 
fixation & its absorption and 
increased nutrient 
bioavailability 

Lower bioavailability to 
plants based on large size 
of particle and less its 
solubility 

Nutrient uptake efficiency Increase fertilizer efficiency 
(50-70%), uptake of nutrients 
by root and reduced applied 
fertilizer doses 

Lower nutrient efficiency 
by roots (20-50% based 
applied nutrient) 

Controlled release modes High release rate and its pattern 
of nutrients due to its 
encapsulation or coating 

High release of nutrients 
may cause toxicity and 
ecological problem in soil 

Effective duration of 
nutrient release 

Long duration of nutrient supply 
into soil up to 50 days 

Short duration up to 10 
days depends on nutrient 

Loss rate of nutrients in 
applied fertilizers 

Reduce loss rate of nutrients 
into soil by leaching due to 
nano-structured formulation 

High loss rate by leaching 
and/or runoff process 

Figure 1. A comparison between traditional fertilizers and nanofertilizers. Sources: from Seleiman
et al. [22], Kalwani et al. [42], Belal and El-Ramady [43], and Rizwan et al. [44].

2.3. The Nanofertilizer Industry and Its Obstacles

However, the nanofertilizer industry faces many challenges, which represent impor-
tant and real obstacles. These risks include the release and reactivity of nanofertilizers,
which depend on the environmental factors and that can cause phytotoxicity effects, de-
pending on their doses and the durations of long-term exposure. This may lead to chronic
effects on health of consumers [30]. The physical and chemical methods of nanofertilizer
synthesis have recorded higher toxicities compared to the biological methods, which are
still under intensive investigations [39]. The studies that have recently been published on
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nanofertilizers include different points of view, such as: the crucial impacts on the soil,
the crop yield, and the entire environment [45]; the risks and benefits on the soil rhizo-
spheric and plant-associated microbial communities [42]; and the use of nanofertilizers for
sustainable agriculture, in addition to crop production enhancement under abiotic/biotic
stresses [34–36,38,41].

2.4. Nanofertilizers for the Mitigation of Stress on Plants

Nanofertilizers have a great ability to mitigate the abiotic/biotic stresses on cultivated
plants through many mechanisms because of their vast surface areas and their nanoscale
size. Nanofertilizers can improve the morphological, biochemical, and physiological
indices of cultivated plants, such as the photosynthetic rate and its efficiency, the nutrient
uptake efficiency, the regulation of phytohormones, and the enhancement of the plant
defense system (Figure 2) [41]. Therefore, the mechanisms of nanofertilizers on the crop
productivity under stress may include: a reduction in the oxidative stress, which leads to
an increase in the stress tolerance of the plants; the enhancement of several biochemical
activities in stressed plants (e.g., by increasing the contents of the proline, chlorophyll,
and relative water); the regulation of the salt toxicity; a reduction in the accumulation of
malondialdehyde and H2O2; and the maintenance of the ionic equilibrium, depending on
the type of stress [46]. The mechanisms of nanofertilizers mainly depend on the nanoactive
ingredients (the large specific surface areas), which could result in an acceptable reactivity,
which could increase the effective uptake of nutrient elements for the growth of cultivated
plants and their metabolisms. Nanofertilizers allow for the encapsulation of the nutrients
by nanomaterials, for the delivery of them as nanoparticles or emulsions, or for the release
of the nutrients in a controlled manner, as “smart” nanofertilizers [47].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applied Nano-Fertilizers  Stressful Plants  

• Increase protein damage 
• Increase DNA damage 
• Increase oxidative stress 
• Altered gene expression 
• Altered enzyme activities 

• High plant biomass 
• High pigment contents 
• High crop quality 
• High photosynthetic rate 
• High protein contents 

Mitigation stress by nanofertilizers 
• Decrease generation of ROS 
• Increase enzyme activities (CAT, POX, SOD) 
• Reduce oxidative stress (H2O2 and MDA) 
• Activating specific genes 
• Enhance photosynthetic pigments 
• Promote water & nutrient uptake 
• Regulation of plant hormones 
• Decreased plasma membrane damage  

and chlorophyll degradation 

Figure 2. The main problems that result from stresses on plants, the expected roles of applied
nanofertilizers, and the different mechanisms of the mitigation of stress on cultivated plants by
nanofertilizers. ROS: reactive oxygen species; CAT: catalase; POX: peroxidase; SOD: superoxide
dismutase; MDA: malondialdehyde.
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2.5. Nanofertilizers and Their Research Gap

It is well known that cultivated plants need many essential and beneficial nutrients
for their growth, which can be classified on the basis of their relative essentiality, their
function, and their mobility in plants and soils [40]. There are three groups of essential
mineral nutrients that uptake in ionic form from the soil solution. These groups include
(1) Essential and beneficial nutrients (based on their relative essentiality); (2) A group of
basic, accessary, regulatory, and catalyst nutrients (based on their physiological function);
and (3) A group of mobile, intermediate, or immobile nutrients (based on their mobility
in plants or soils). Further basic information about these essential nutrients is presented
in Table 1. These nutrients may exist as nanosized and as nanonutrients (i.e., in sizes that
range from 1 to 100 nm), and they can be naturally occurring or engineered. A “fertilizer”
can be defined as any natural or synthetic material that is applied through the soil (root
application) or the plant (foliar application) in order to supply the plant with nutrients. The
application of nanofertilizers to crops has been gaining immense attention worldwide. It
is worth mentioning that the sizes of the ions can be expressed from angstroms (10−10 m)
to picometers (10−12 m), whereas nanonutrients can be expressed on the nanometer scale
(10−9 m). Nanonutrients are 100 to 1000 times larger than their bulk ions, which protects
them from being lost by leaching or runoff, or from becoming fixed in the spaces in clay
lattices, which makes them more available to cultivated plants [40].

Table 1. List of basic information on essential nutrients, including their mobilities in soil and plants,
and their hydrated and crystal ionic radii.

Nutrient Element Symbol Uptake Form
Nutrient Mobility Ionic Radius (nm)

in Soil in Plants Crystal Hydrated

Nitrogen N NH4
+ and NO3

− Mobile Mobile 0.132 0.279 and 0.345, resp.
Phosphorus P H2PO4

−; HPO4
2− Immobile Intermediate 0.377 0.377

Potassium K K+ Intermediate Mobile 0.138 0.2798
Calcium Ca Ca2+ Intermediate Immobile 0.100 0.2422

Magnesium Mg Mg2+ Immobile Intermediate 0.072 0.2090
Sulfur S SO4

2− Mobile Intermediate 0.230 0.3815
Boron B H2BO3

− Mobile Immobile 0.244 0.261
Copper Cu Cu2+ Immobile Immobile 0.072 0.073

Chlorine Cl Cl− Mobile Mobile 0.180 0.181
Iron Fe Fe2+ Immobile Immobile 0.072 0.078

Nickel Ni Ni+2 Intermediate Mobile 0.067 0.069
Manganese Mn Mn2+ Mobile Immobile 0.080 0.083

Molybdenum Mo MoO4
− Intermediate Immobile 0.267 0.270

Zinc Zn Zn2+ Immobile Immobile 0.070 0.075

Source: combined from [40].

Nanofertilizers can be classified into the following groups:

1. Nanoscale input fertilizers, or nanoscale fertilizers: this category includes the nutrients
that already exist in nanofertilizers (nanoparticles, which contain nutrients), alone, or
in combination with other constituents;

2. Nanoscale additive fertilizers, or nanoscale additives, which are traditional fertilizers
with nanoscale additives. This category includes the application of nanoscale materials
or formulations to the existing traditional macroscale fertilizers; and

3. Nanoscale host fertilizers, or nanoscale coating, which is formed from traditional
fertilizers that have been coated or loaded with nanoparticles. This category in-
cludes nutrient or fertilizer supplements, which could be entrapped, adsorbed, or
encapsulated into any type of nanospace of the host material [40].
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2.6. Nanofertilizers and Phytotoxicity

There are research gaps that are related to nanofertilizer production, including with
regard to the energy use and the technology expense, as well as with regard to their
unknown interactions in the environment and their toxicities. There are several reports that
are based on the phytotoxicities of nanoparticles in crops, which are common, and which
result from the induction of the synthesis of reactive oxygen species (ROS) and the oxidative
damage from the use of many metal-oxide nanoparticles, such as AgO, CeO2, CuO, NiO,
TiO2, and ZnO (e.g., [41,46,48]). Most of the toxicity studies report on pesticides or many
salts, which are not conventionally used as fertilizers for the production of crops [40]. In
general, there are many features of the phytotoxicity and genotoxicity from the excessive
use of nanoparticles on plants that could be mentioned, such as chromosome fragmentation,
genetic mutation, ROS production, biomass reduction, and retarded growth (Figure 3) [48].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nano-toxic effects of nano-fertilizers in environment 

I. Toxic impacts on plants (phytotoxicity) 

II. Toxic impacts on soil and its rhizosphere 

III. Toxic impacts on humans/animals 

Inducing ROS; Oxidative damage; Plant metabolic 
disorders; Damage on morphological, biochemical, 
molecular and anatomical plant levels 

Inhibitory effects on soil microorganisms; Maybe toxic to a variety 
of life forms in soil; Toxic impacts mainly depend on type and 
applied dose, solubility; DNA damage due to ROS generation; 
Maybe reduce soil microbial functions and their counts 

Induced cytotoxic action; Generating oxidative stress; Change genes expression; 
Damaging mitochondria; Smaller-sized NPs are more cytotoxic than larger ones; 
Adverse impacts on the reproductive health and hormone secretion in animals 

Figure 3. Different suggested mechanisms of toxic impacts of nanofertilizers/nanoparticles on plants,
soil, and human or animals, which, in general, focus on the cytotoxicity and genotoxicity. ROS:
reactive oxygen species. Sources for Part I: Verma et al. [41] and Zhang et al. [49]; source for Part II:
Kalwani et al. [42]; and source for Part III: Bhardwaj et al. [40].

Recently, several studies have been published that report on the nano-phytotoxicities of
different plants, such as Capsicum annuum [50], Lycium barbarum L. [51], Solanum lycopersicum
L. [52], Oryza sativa L. [53], Pisum sativum L. [54], and Hordeum vulgare L. [55], whereas
there are only a few studies that focus on this phenomenon with regard to the use of
nanofertilizers, such as Bhardwaj et al. [40], Kalwani et al. [42], and Zhang et al. [49]. The
ecotoxicological implications of nanofertilizers on other agro-ecosystems besides plants
has been investigated in detail, such as the soil and its rhizosphere [42]. The expected
toxic effects of nanofertilizers on the food chain and, subsequently, on human health,
especially under higher doses, still requires more studies, which should use different crops
and different kinds of nanofertilizers. However, many published works report on the
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accumulation of nanoparticles in soil/plant systems and their potential effects on human
health, such as Rajput et al. [56], Toksha et al. [45], and Babu et al. [38].

2.7. Nanofertilizers and Climate Change

It is well known that nutrients can be lost from agricultural fields through the leaching
process and/or through gaseous emissions, which may lead to environmental pollution and
climate change. These environmental issues may be mitigated by applying nanofertilizers,
even under stress [57]. There are a few studies that have been published on the impact
of applied nanofertilizers on reducing gas emissions to the atmosphere (such as [58,59]).
Nanoparticles are the most important adsorbents in soil, and they can affect the nutrient
transportation, the organic matter fixation, and the precipitation of the new mineral phase.
In the future, the presence of nanoparticles in intact soil formations will be crucial. Fur-
thermore, nanoparticles have direct effects on plants, which include increased enzyme
activity, better seed germination, increased plant tolerance to adverse conditions, increased
carbon sequestration and nitrogen fixation, and increased photosynthetic and respiratory
activities [60]. Therefore, the role of nanofertilizers in mitigating climate change is an urgent
global concern. Further studies are needed to answer many questions with regard to the
role of nanofertilizers in the promotion of crop production under stress and climate change,
such as: What is the role of nanofertilizers in increasing the plant’s ability to tolerant climate
change? What is the expected scenario of increasing the temperature, which leads to heat
stress, on this role of nanofertilizers? Is there a certain scenario that belongs to each kind of
nanofertilizer for each climatic zone?

3. Application of Nanofertilizers

The intensive global production of foods requires the correct and proper amount
of applied nutrients. However, the primary sources of nutrients were, for a long time,
the chemical forms of the nutrients, which caused an environmental crisis. Nowadays,
the organic, bio-, and nanoforms of these nutrients are applied at an ascent rate to re-
place the chemical forms of the nutrients [61]. Nanofertilizers may achieve sustainability
in agriculture through their high use efficiency and by minimizing the pollution of the
environment [62]. These nanofertilizers, as nanofertilizers, may also improve the crop
productivity by increasing the bioavailability of these nutrients in the soil, as well as their
uptake by cultivated plants. The advantage is the self-regulated, time-controlled, and
spatially targeted delivery of the active ingredients [63]. Nanofertilizers can be defined
as a type of fertilizer that contains nutrients in the nanoscale form, and/or nutrients in
encapsulation, which can systematically release different nutrients to targeted plants [27].
Nanofertilizers represent any applied nanomaterials for which the nutrients are converted
into the nanoscale, and that act as plant nutritional mediators that mainly provide nu-
trients to the plant in order to support its growth [63,64]. These nanofertilizers can be
encapsulated through nanocoating nanoporous polymeric materials, which are supplied
in the nanoforms of emulsions, or as slow-release fertilizer particles [63]. Recently, many
studies have focused on nanofertilizers from different perspectives, such as: nanofertilizers
and their role as plant-growth-promoters in agriculture [62]; plant nanonutrients and their
transport in soils [65]; the application of nanomaterials as fertilizers [66]; reducing the dis-
persion rate of nano-ZnO fertilizer in the environment by entrapping it in the biodegradable
polymer beads of alginate and polyvinyl alcohol [67]; coating potassium ferrite nanopar-
ticles on di-ammonium phosphate fertilizer to improve the nutrient use efficiency of this
fertilizer [68]; and using zero-valent iron (Fe3O4) and Fe2O3 nanoparticles as Fe fertilizers
on rice [69]. These studies confirm the potential for using these nanofertilizers for different
cases of crop production under various environmental stresses, as is presented in Table 2.
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Table 2. A survey on the recently published studies on some nanofertilizers for crop production.

Nanofertilizer Crop (Scientific Name) Main Findings Reference

CeO2 NPs and nanofertilizers
(N, P, K, Zn, Fe)

Cabbage (Brassica
oleracea var. capitata L.)

CeO2 NPs enhanced the uptake of NPK nanofertilizer;
increased head weight by three times, compared to
control plants.

[28]

Nano-vermicompost Tomato (Solanum
lycopersicon L.)

Improved tomato growth and photosynthetic
performance under drought stress. [25]

Nanoboron, nanosilica, and
nanozinc

Wheat (Triticum
aestivum L.)

Nano-Zn increased the protein (%) in wheat grains;
nanosilica reduced the damage caused by drought; [23]

Nano-urea-amorphous
calcium phosphate (NUACP)

Cucumber (Cucumis
sativus L.)

NUACP has NUE of 69%, compared to urea (49%);
NUACP + 50% reduced N content of urea, resulted in
the same biomass.

[70]

Nano-liposome-
containing Fe2+

Sweet basil (Ocimum
basilicum L.)

Increased total leaf area, and chlorophyll, ferrous, and
essential oil contents of plants, compared to the
FeSO4 fertilizer.

[26]

Nanoscale zero-valent iron
(nZVI)

Rice (Oryza sativa L. cv.
Gobindobhog)

Priming rice with nZVI (10–80 mg L−1) enhances
yield; promoted the distribution of nutrients in grains
and their contents.

[71]

Hydroxyapatite nanoparticles Maize (Zea mays L.) This nanophosphate fertilizer improved growth and
physiological properties of maize. [24]

Nano-Zn fertilizer Strawberry (Fragaria ×
ananassa Duch.)

Nano-Zn improved crop yield and its quality
compared to conventional Zn sources (i.e., ZnSO4, Zn
EDTA, ZnO).

[29]

NPK nanofertilizers Potato (Solanum
tuberosum L.)

NPK nanofertilizers significantly improved potato
yield and its parameters compared to NPK
chemical fertilizers.

[72]

Cu(OH)2 nanofertilizer Alfalfa (Medicago
sativa L.)

Cu(OH)2 nanowire was considered as a potential
nanofertilizer at 80 and 280 mg kg−1 because it
prompted growth.

[73]

Nano-NPK + nanochelated-Fe
Dragon’s Head
(Lallemantia iberica
(Fischer and Meyer)

Nanofertilizers improved yield components and
antioxidant traits during winter cultivation compared
to control.

[74]

ZnO nanoparticles (18 nm) Wheat (Triticum
aestivum L.)

Nano-ZnO modulated drought effects; increased
growth and content of Zn, S, and Mg in grains. [75]

ZnO NPs (67 nm and
250 mg L−1)

Cucumber (Cucumis
sativus L.)

Applied Bacillus subtilis combined with ZnO NPs
controlled powdery mildew disease as an alternative
to fungicide.

[76]

Nanochelated fertilizer (N, P,
K, Fe, Zn, Mn)

Peppermint (Mentha x
piperita L.)

This nanofertilizer is reported to be an alternative and
eco-friendly strategy in peppermint oil production. [77]

Boron nanofertilizer Lettuce (Lactuca sativa);
zucchini (Cucurbita pepo)

Foliar spray of B-nano fertilizer increased the biomass
by 58 and 66%, compared to control (B for lettuce
and zucchini).

[78]

(A) nano-Ca and Mg; (B)
nano-Zn-Fe-Mn

Chili pepper (Capsicum
annuum)

Nanofertilizers promoted uptake of nutrients;
improved photosynthetic pigments and cell
membrane stability under salinity stress.

[79]

FePO4 nanoparticles
Cucumber (Cucumis
sativus L.) and maize
(Zea mays L.)

FePO4 NPs are an efficient source of P and Fe
compared to their bulk forms and are a new and
promising class of fertilizers.

[80]

Mn–Zn ferrite nanoparticles
(Mn0.5Zn0.5Fe2O4)

Squash (Cucurbita
pepo L.)

Nanoferrite produced the highest increase (of about
50%) as an appropriate fertilizer at 30 ppm, and was
synthesized at 180 ◦C.

[81]

CuO nanoparticles Green onion
(Allium fistulosum)

Nano-CuO (150 mg kg−1) increased root Ca, Fe (86
and 71%), and bulb Ca, Mg (74 and 108%), compared
with control and enhanced allicin content in scallion.

[82]

ZnO NPs (zinc
oxide nanoparticles) Soybean (Glycine max L.)

ZnO NPs promoted seed yield up to 160 mg kg−1;
may consider nanofertilizer for enriching Zn-deficient
soil with Zn.

[83]

Notes: (A) Lithovit®: a nanofertilizer made from limestone, which is rich in Ca and Mg, found in carbonate form;
(B) a nano-chelated ZFM, which is rich in micronutrients, such as zinc (Zn), Mn, Fe, Mg, Ca, nitrogen (N) source
(amino-acids), and ascorbic acid; NUE: nutrient use efficiency; nanochelated fertilizer: N (total N, 20%); P (P2O5,
25%); K (K2O, 23%); Fe (FeO, 10%); Zn (ZnO, 20%), and Mn (MnO, 25%).
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Recently, several products that are based on nanotechnology have been developed
for utilization in the agricultural sector. These agro-nanotechnological products may
include: nanofertilizers; biofertilizers; nano-biofertilizers; nano-pesticides; agricultural
nano-sensors; nanomaterials for storage grains; harvested agricultural product protection;
and food packaging [84]. There are several applications of nanotechnology in the fertilizer
sector, which may include slow-release [20,85] or controlled-release fertilizers [86] (e.g.,
polymer-coated fertilizers [87] and hydroxyapatite nanoparticle-coated urea [24]), and the
coating technology in fertilizers that use biopolymers [88] (e.g., chitosan and thermoplastic
starch [84]). Nanofertilizers can be classified into different types, such as nutrient-based
nanofertilizers (i.e., macro- and micro-nanofertilizers, nutrient-loaded nanofertilizers, and
plant growth stimulators [34]); action-based nanofertilizers (e.g., controlled-release fertil-
izers and magnetic or nanocomposite fertilizers); and nanofertilizers that are based on
the quantity that is applied (e.g., nanoscale fertilizers, nanoscale coating fertilizers, and
nanocarriers) [84]. Many methods can be used for the delivery of nanofertilizers to plants,
which include: in vitro methods, which include in vitro culture media [89]; aeroponics and
hydroponics [90]; and in vivo methods, which include soil and foliar applications [19,61].
There is a promising race in the production of different nanofertilizers globally that includes
many nutrients, such as phosphate [24], copper [91], magnesium [92], iron [26], zinc [23],
silicon [23], selenium [14,93], and sulfur [94].

4. Crop Response to Applied Nanofertilizers under Individual Stress

In nature, plants may be exposed to one or more stresses (i.e., biotic and abiotic
stresses), either individually or in combination, which ultimately cause losses in the crop
yields. These stresses include abiotic stresses, such as drought, salinity, flooding, water
deficits, and low and high temperatures (cold and heat stress), as well as biotic stresses,
such as diseases or the pathogens of viruses, bacteria, and fungi [95]. These plants can face
individual or multiple stresses during their lifecycles, as is reported by several studies [96].
Many antistressors, such as nanofertilizers, have been applied in order to support plant
growth under stress, particularly nanoselenium for salinity stress [97], nano-silicon for
drought [98], and nano-copper for salinity stress [99], which can increase the plant tolerance
against abiotic and biotic stresses (Figure 4; [22]). Plant nutrients have a prominent role in
ameliorating several stresses, as is cited by many researchers, such as Ahmed et al. [100].
Several reports confirm the significant role of plant nutrients under different stress condi-
tions, such as salinity stress [33], heat stress [101], heat and drought [102], and drought [103].
Several studies have been published on the individual stresses on cultivated plants and
their different applied antistressors, as drought and heat stress are prevalent nowadays
in different parts of our globe. Because of climate change, heat stress has become a very
important stress nowadays, and it is becoming an increasing concern worldwide [104].
Table 3 compares the role of nanofertilizers in mitigating plant growth under some of the
individual stresses, such as water deficits, drought, and heat stress. The main biological
activities of plants generally depend on the temperature that surrounds them, which affects
the germination of the seeds, the growth and development, as well as photosynthesis and
the reproduction process [105]. In terms of the individual stresses on plants, the following
recommended recent reviews investigate heat stress [104]; salinity stress [105]; drought
stress [103]; the interplay between plants and nanoparticles [106]; nanoparticle-induced
stress and toxicity in plants [107]; and the role of miRNA in the regulation and adaptation
of the stress in plants [108].
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Table 3. Role of nanofertilizers on cultivated plants under different individual abiotic stresses.

Abiotic Stress Crop
(Scientific Name)

Experiment Details
(Nanonutrient Type) Main Findings Reference

Drought (for 7, 14,
and 21 days) Maize (Zea mays L.)

Pots (zero-valent
copper NPs at 69.4 µM,
30–40 nm)

Nano-Cu NPs regulated protective
mechanism of maize and are
associated with drought tolerance.

[91]

Drought (irrigated at
4, 8, and 12 days)

Feverfew (Tanacetum
parthenium L.)

Greenhouse (nano-Si at
1.5 and 3.0 mM)

Foliar-applied 1.5 mM glycine nano-Si
was the best mitigator of the adverse
effects of drought.

[109]

Water stress (100, 75,
and 50% ETc)

Sugar beet (Beta
vulgaris L.)

Field experiment
(nano-Si applied at 1
and 2 mM)

Nano-Si protected plants during water
stress by enhancing GB, antioxidants,
and flavonols, such as quercetin

[110]

Water stress (‡)
(irrigated after 60, 90,
and 120 mm)

Coriander
(Coriandrum
Sativum L.)

Field experiment (SiO2
NPs, 20–35 nm at
1.5 mM)

Foliar-applied SiO2 NPs alleviated the
adverse effects of water stress and
essential oil yields of coriander.

[111]

Salt stress (75, 150,
and 225 mM NaCl)

Rosemary
(Rosmarinus
officinalis L.)

Soilless culture system
(nano-Zn, 10–30 nm;
and nano-Fe, 20 nm;
both at 3 mg L−1)

Foliar-applied nano-Fe and -Zn
increased total phenolic and total
flavonoid contents; growth and
salt tolerance.

[112]

Salt stress (100 or
200 mM NaCl)

Wheat (Triticum
aestivum L.)

Pot experiments (S NPs
at 100 µM, 23 nm)

S NPs mediated salt tolerance by
regulating metabolic activity and
decreasing oxidative stress.

[113]

Drought (hold
watering till soil
water content is 45%)

Maize (Zea mays L.)
Pot experiments
(nano-ZnO, at 20 nm,
100 mg L−1)

ZnO NPs promoted the synthesis of
melatonin and activated enzymatic
antioxidants, which alleviated damage
in chloroplast due to drought.

[114]

Soil zinc deficiency
(0.2 mg kg−1) Maize (Zea mays L.) Field experiment (SiO2

NPs, 30 nm, 2 mM)

SiO2-NP + Zn (0.4%) increased the
grain yield of maize by 37%, and
linoleic acid, compared to control.

[115]

Calcareous soil (22%
CaCO3)

Common bean
(Phaseolus vulgaris L.)

Pot experiments (0.1 g
L−1 nano-P,
4.92–8.62 nm)

Integrative application of soil PSB +
foliar nano-P improved plant growth
and antioxidative defense system.

[116]

Arsenic stress
(20-µM As)

Soybean (Glycine
max L.)

Pot experiment (ZnO
NPs, at 50 and 100 mg
L−1)

ZnO NPs alleviated As-toxicity in
plants by restricting the As-uptake,
modulating antioxidant enzymes
and AGC.

[117]

Cadmium stress
(10 mg Cd kg−1 soil)

Cowpea (Vigna
unguiculata L.)

Screen house
(nano-TiO2 at 100 and
200 mg L−1)

Foliar-applied nano-TiO2 promoted
total chlorophyll content and
protected plants from Cd toxicity.

[118]

Notes: ETc: crop evapotranspiration (100, 75, and 50% ETc); GB: glycine betaine; AGC: ascorbate-glutathione
cycle; PSB: phosphate-solubilizing bacteria; ‡ irrigated after 60, 90, and 120 mm of evaporation from Class A pan.

Several researchers have already discussed the individual stresses on plants, which
are, specifically, a high temperature (heat stress), soil salinity, and drought, and which
are associated with oxidative stress. The crop loss due to abiotic stresses is about 50%,
where the crop loss due to drought is 10%, the crop loss due to heat stress is 20%, and
the crop loss due to other abiotic stresses is 20% [103]. The main effects of drought stress
may represent damage to the soil biota and to the cultivated plants, which creates osmotic
stress, which limits the mobility of the nutrients because of the soil heterogeneity, and
reduces the access of the nutrients to the plant roots [103]. The main features of cultivated
plants under drought may include molecular, morphological, and physiological effects,
which reduce nearly all of the biological processes and the yields of the plants (for more
details, kindly read [103]). The primary responses of cultivated plants under drought
stress may include drought avoidance, drought escape, and drought tolerance. Drought
stress could be mitigated by using PGPR and nanofertilizers. Recently, researchers have
looked to next-generation sequencing for the genetic improvement of the production of
crops, such as potatoes under drought conditions [119]. The production of crops under



Sustainability 2022, 14, 3480 11 of 22

stress, such as drought, salinity, heat stress, and others, still requires more studies on the
adaptive responses.

 

Figure 4. The impact of applied nanofertilizers might be crucial in the mitigation of several stresses,
especially salinity, drought, and heat stress, among others. The role of nanofertilizers under stress
needs much effort on the part of researchers for novel approaches, especially under multiple stresses,
which represent the typical environmental conditions under which we seek global food security.
There are several open-ended questions with regard to nanofertilizers and their applications that still
need to be answered.

5. Combined Stress and Applied Nanofertilizers

After several studies on the effects of individual stresses on cultivated plants, many
studies have begun to investigate combined stress, which is more representative of the
reality of nature [120,121]. This combined stress may include abiotic stress, such as drought;
biotic stress, such as bacterial infection (Pseudomonas syringae) [122]; or two different abiotic
stresses, such as salinity and heat stress [14]. The damage of this combined stress depends
on the duration and the type of stress, the type of plant and its growing stages, the soil and
its amendments, and the type of growth medium [123]. The most common case studies of
combined stress include soil salinity and heat stress [14;18], salinity and drought [124–129];
drought and heat stress [57,130,131]; and soil salinity and heavy metal stress [132,133].
Nanofertilizers have already been applied to stressed plants, such as nano-Se to cucumber
under salinity and heat stress [14,18], and SiO2 NPs to common beans under soil salinity
and heavy metal stress [133]. More applied amendments for the support of cultivated
plants under combined stresses are presented in Table 4.
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Table 4. Some published studies on combined stresses that have been issued during recent years.

Crop (Scientific Name) Combined Stress (Details) Main Findings Reference

Cucumber (Cucumis
sativus L.)

Soil salinity (4.49 dS m−1) and
heat stress (>35 ◦C).

Grafting is a powerful agronomic practice that
improved productivity under this
combined stress.

[18]

Cucumber (Cucumis
sativus L.)

Soil salinity (4.49 dS m−1) and
heat stress (>35 ◦C).

Nano-Se (25 mg L−1), Si (200 mg L−1), and H2O2
(20 mmol l−1) were active antistressors in
mitigating these stresses.

[14]

Cucumber (Cucumis
sativus L.) and tomato
(Solanum lycopersicum L.)

Salinity (2.5–7.5 dS m−1) and
drought (irrigated at 40–100%
FC).

Desert-adapted fungus mediated the plant’s
tolerance as an adapted endophyte in an
agricultural system.

[128]

Barley (Hordeum
vulgare L.)

Salinity (150 mM NaCl) and
drought (withholding water
in pots at 60% FC).

Rubisco activase A contributed to combined
stress tolerance as a central node in overlapping
gene network.

[134]

Sunflower (Helianthus
annuus L.)

U and Cd stress (soil treated
with 15 mg U and 15 mg Cd
kg−1 soil for 30 d; seedlings
were transferred to pots).

Applying PGRs (i.e., 6-BA, IAA, GA3, and
24-EBL) promoted plant growth and
photosynthesis, and alleviated toxicity of U and
Cd stress.

[135]

Pistachio (Pistacia spp.)

Salinity (from 7.57 to 24.63 dS
m−1) and drought (irrigated
at 40–100% FC) for 60 d in two
separated experiments.

Mycorrhizal fungi enhanced tolerance of
pistachio rootstocks by increasing biomass,
minerals, and chlorophyll content, and
decreasing oxidant content.

[127]

Common bean (Phaseolus
vulgaris L.)

Soil salinity (soil EC = 7.8 dS
m−1) and heavy metal stress
(Cd, Pb and Ni).

Foliar bio-SiO2 NPs (2.5 and 5.0 mmol L−1)
alleviated combined stress by better growth and
yield due to enhancing the antioxidant
defense systems.

[133]

Lentil (Lens culinaris L.)
Drought (irrigated 20% PEG
6000 for 3 d) and heat stress
(40 ◦C for 4 h).

Regulating the response to these stresses is
linked to multiple genes, which are related to the
antioxidant activity.

[131]

Yellowhorn (Xanthoceras
sorbifolium L.)

Drought (by withdrawing
water †) and heat stress
(35/25 ◦C day/night for 3, 6, 9
d from stress).

This plant mitigated combined drought and heat
stress through the modulation of ROS
homeostasis and stomatal closure.

[136]

Maize (Zea mays L.)
Drought (by withholding
water supply) and Cr stress
(Cr-VI, 10 mg L−1) for 7 d.

Applied salicylic acid and the polyamine
spermidine may boost maize tolerance to
studied stresses by enhancing antioxidant
enzyme activities.

[137]

Tomato (Lycopersicon
esculentum L.)

Salinity (150 mM NaCl) and
drought (irrigated at
50–100% FC).

Both stresses changed the compositions of
mineral nutrients by decreasing Ca, Fe, N, P, K
and Zn contents, but increased contents of B, Na,
and Cl.

[129]

Mustard (Brassica juncea)
Salinity (120 mM NaCl) and
drought (withholding water)
for 6 days.

Silicon can postpone premature leaf senescence
through modulation of ion homeostasis and
antioxidative defense.

[125]

Barley (Hordeum
vulgare L.)

Salinity (200 mM NaCl) and
potassium deficit.

100 ppm 24-epibrassinolide alleviated the
adverse effects of combined stress. [17]

Hypericum ericoides
Salinity stress (from 50 to
350 mM NaCl) and drought
(PEG 8000) for 30 d.

Seeds of H. ericoides could germinate well under
moderate salinity (150 to 250 mM) and high
drought stress.

[126]

Spearmint (Mentha
spicata L.)

Salinity (150 mM NaCl) and
copper stress (60 µM Cu).

In hydroponics, under studied stress, decreased
N, K, and Zn (in leaves), and Ca, K, P, and Mg
(in roots).

[132]

Lettuce (Lactuca sativa L.)
Salinity (2–10% NaCl) and
drought (5–20%
PEG-6000) stress).

Plant growth yeast strain, CAM4, as Rhodotorula
mucilaginosa as biofertilizer promoted
the growth.

[124]

Tomato (Solanum
lycopersicum L.)

Drought (50% of field capacity
for 7 d) and heat stress (42 ◦C
for 6 h).

Arbuscular mycorrhizal (Septoglomus constrictum)
increased tolerance of tomato to studied stress. [130]

Abbreviations: PEG: polyethylene glycol; PGRs: plant-growth regulators; 6-BA: 6-benzylaminopurine; GA3:
gibberellin-A3; IAA: indole acetic acid; 24-EBL: 24-epibrassinolide; FC: field capacity. †: by withdrawing water
until the weight of the soil reached 40% of the weight of the control soil.
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A distinguished shift in the molecular responses of plants could be noticed under
combined stresses, compared with plants that had already been exposed to the same
stresses independently. These responses to the individual and combined stressors have
been identified at the gene expression level for several genes, with intersecting responses
to these stressors [122]. However, several plant responses to the individual or combined
stresses are still not known. Thus, the simultaneous occurrence of combined stresses
(e.g., bacterial pathogen and drought stress) could reduce the plant growth to a greater
degree compared to the impact of these stresses individually [16,121]. Transcriptomic and
physiological studies on combating these combined stresses show increasing evidence that
plants can merge both of the overlapping responses to the individual stresses, as well as
the certain specific responses to the combined stresses [120,122]. In terms of the application
of two or more nanofertilizers to cultivated plants, there has recently been an increase in
concern about the combined application of nanofertilizers; however, this strategy still needs
more investigations in order to emphasize the economic and environmental benefits of
this application, such as combining nano-CuO and nano-ZnO [138], or selium and copper
nanofertilizers [139,140].

6. Applied Nanofertilizers under Multiple Stresses

Recently, there has been an urgent need for studies on environmentally stressed plants
that closely imitate the field conditions (i.e., combinations of stresses instead of individual
stresses), as there are serious challenges facing the global crop productivity [141]. This
requires the development of different strategies for making agriculture more resilient while
reducing the negative impacts of the combination of drought and heat stress on crop pro-
ductivity. These strategies may include many practices and superior crop varieties, and they
may include the application of biofertilizers, which have the potential to improve the plant
tolerance to the combined stresses [130]. The effects of multiple stresses largely depend
on the plant age; on the inherent stress-resistance of the plant, or the susceptibility of its
nature; as well as on the severity of the stresses. The plant responses under combined stress
comprise the morphophysiological, generic, and molecular features that result from these
stresses [141]. Under salinity, drought, and chilling stresses, osmo-protectants may accumu-
late, which is due to the induction of the osmotic effect on stressed plants. In general, ROS
production may occur under almost all abiotic stress conditions. Moreover, it is well known
that salt and heat stress commonly impact the transport and compartmentation of the ions
in plants, whereas a physiological water deficit in plants is created because of drought and
salinity stress, as well as a decrease in the CO2 diffusion in the chloroplast because of the
reduction in the stomatal opening, which leads to a reduction in the metabolism of the
carbon [141]. Under drought and heat stress, tea plants have resistance to these stresses
through the accumulation of metabolites, such as caffeine, catechins, and theanine [142].

Day by day, there is an increase in the number of investigations into the different
stresses on plants and their resilience, such as their responses to drought, submergence
and flooding [143], and to chilling, freezing, and heat stress [144]. Recently, more themes
have been discussed with regard to the multiple stresses on plants, such as the role of
plant natriuretic peptides in maintaining the salt and water balance in the plant [145].
Multiple stresses occur during the deficiency and toxicity of boron in plants [19]: in the
natural variations in the multiple abiotic stresses in a hyper-seasonal edaphic savanna [146];
and in the potential of a transcriptomic analysis under various stresses [142]. Aside from
the nanofertilizers, several materials have been confirmed in their roles in mitigating the
combined stresses for higher plant productivity, as is reported by many researchers, such
as Lamaoui et al. [147] and Ashraf et al. [148]. The use of nanofertilizers under multiple
stresses is still in the infancy period, as far as we know, and its management is very difficult
in the agricultural sector because it depends on several soil and environmental factors. A
comparison of the different kinds of stresses on cultivated plants under the application
of nanofertilizers is briefly presented in Figure 5. In this figure, the stresses could be
classified into main 3 categories: individual, combined and multiple stresses. Concerning
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the individual stresses, they include many stresses like salinity [112], drought [91], heavy
metals [117], water stress [111], nutrient deficiency [115], which could mitigate this stress
through applying following nanonutrients such as nano Cu/CuO [82], nano Se [14], nano
Zn/ZnO [114], nano Si/SiO2 [149], nano Fe2O3/FeO [55], and nano S [113]. Regarding the
combined stresses, it may include drought and heat stress [136], drought and salinity [134],
salinity and heat stress [18], salinity and heavy metals (HMs) [133], also drought and
HMs [137]. The second category could be ameliorated using nanonutrients such as applied
nano-Si for drought and salinity [150], nSe for salinity and heat stress [14], nSi for salinity
and drought [125], nSi for salinity and HMs [133], nZn for drought and heat stress [151],
nZn for drought and HMs [152]. Concerning the multiple stresses, no published materials
are available on using nanofertilizers for such cases.
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Figure 5. A comparison of the common stresses on cultivated plants, including individual, combined,
and multiple stresses, and the role of applied nanofertilizers under such conditions. Numbers refer
to the citations in the reference list.
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The study of multiple stresses can be noticed on the model plant of Arabidopsis thaliana,
as reported by Wang et al. [153], whereas there are few studies that have been published
that remark on the higher plants, one being [19] by García-Sánchez et al. In order to
study multiple stresses, it is essential to conduct experiments in the field or at commercial
levels, and novel agronomic strategies are needed to manage the growth of crops under
simultaneous combined stresses in order to increase their resilience to climate change,
which may exacerbate the incidences of several abiotic stresses [19].

7. Conclusions

This review focuses on nanofertilizers, their potential, and their role for plants under
different kinds of stresses. Nanofertilizers are an essential source of fertilizers, which can
improve the crop production, compared to traditional chemical fertilizers. Nanofertilizers
have many advantages, which include their slow/controlled delivery of nutrients, and
their abilities to reduce the loss of nutrients in soils by adsorption or fixation, increase
the bioavailability of nutrients, extend the effective duration of the nutrient release in the
soil, and increase the efficient use of nutrients. On the other hand, nanofertilizers have
some problems because of their high reactivity and variability, and their phytotoxicity
to plants. There are also human health risks, such as safety concerns for agricultural
workers and consumers. Nanofertilizers should definitely be evaluated very carefully
before marketing in order to examine not only their advantages for plant growth, but
also their potential limitations in terms of the environment and human health. A genuine
relationship between nanofertilizers and the plant stresses, in their individual or combined
states, has been reported in the published literature; however, there are only a few studies
that have been published on multiple stresses. The cited studies confirm the positive role
of nanofertilizers on crop production under single and/or combined stress; however, their
role under multiple stresses requires more effort and investigation. These investigations
may answer some of the following open-ended questions, such as when can the farmer use
the nanofertilizers as a direct potential alternative strategy to traditional chemical fertilizers
at the field level? What are the negative impacts of these different types of nanofertilizers
on the living organisms in the soil, as well as on humans and livestock, particularly under
higher applied doses? What is the fate and the accumulation of nanofertilizers under higher
applied doses in the food chain under different levels of stress? What is the expected role
of nanofertilizers under climate change on the basis of different scenarios, and what is
the expected adaptive behavior of the cultivated crops under such stresses? All of these
open-ended questions should be considered for future research.
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macro-elements of Lallemantia iberica (M.B.) Fischer & Meyer, as affected by winter (late autumn) sowing, chemical and nano-
fertilizer sources. Acta Physiol. Plant 2021, 43, 29. [CrossRef]

62. Sarkar, N.; Chaudhary, S.; Kaushik, M. Nano-fertilizers and Nano-pesticides as Promoters of Plant Growth in Agriculture. In
Plant-Microbes-Engineered Nano-particles (PM-ENPs) Nexus in Agro-Ecosystems, Advances in Science, Technology & Innovation; Singh,
P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2021;
pp. 153–163. [CrossRef]

63. Mishra, D.; Khare, P. Emerging Nano-agrochemicals for Sustainable Agriculture: Benefits, Challenges and Risk Mitigation. In
Sustainable Agriculture Reviews 50; Singh, V.K., Singh, R., Lichtfouse, E., Eds.; Springer Nature Switzerland AG: Cham, Switzerland,
2021; Volume 50, pp. 235–257. [CrossRef]

64. El-Ramady, H.; Abdalla, N.; Alshaal, T.; El-Henawy, A.; Elmahrouk, M.; Bayoumi, Y.; Shalaby, T.; Amer, M.; Shehata, S.; Fári,
M.; et al. Plant nano-nutrition: Perspectives and challenges. In Nanotechnology, Food Security and Water Treatment. Environmental
Chemistry for a Sustainable World; Gothandam, K., Ranjan, S., Dasgupta, N., Ramalingam, C., Lichtfouse, E., Eds.; Springer: Cham,
Switzerland, 2018; pp. 129–161. [CrossRef]

65. Durgam, M.; Mailapalli, D.R. Transport of Nano-plant Nutrients in Lateritic Soils. In Climate Impacts on Water Resources in India,
Water Science and Technology Library; Pandey, A., Mishra, S.K., Kansal, M.L., Singh, R.D., Singh, V.P., Eds.; Springer Nature
Switzerland AG: Cham, Switzerland, 2021; Volume 95, pp. 97–107. [CrossRef]

66. Gomes, M.H.F.; Duran, N.M.; Carvalho, H.W.P. Challenges and perspective for the application of nanomaterials as fertilizers. In
Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement; Jogaiah, S., Singh,
H.B., Fraceto, L.F., De Lima, R., Eds.; Woodhead Publishing: Kidlington, UK, 2021; pp. 331–359. [CrossRef]

67. Knijnenburg, J.T.N.; Kasemsiri, P.; Amornrantanaworn, K.; Suwanree, S.; Iamamornphan, W.; Chindaprasirt, P.; Jetsrisuparb, K.
Entrapment of nano-ZnO into alginate/polyvinyl alcohol beads with different crosslinking ions for fertilizer applications. Int. J.
Biol. Macromol. 2021, 181, 349–356. [CrossRef]

68. Saleem, I.; Maqsood, M.A.; Rehman, M.Z.; Aziz, T.; Bhatti, I.A.; Ali, S. Potassium ferrite nanoparticles on DAP to formulate
slow-release fertilizer with auxiliary nutrients. Ecotoxicol. Environ. Saf. 2021, 215, 112148. [CrossRef]

69. Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A.J.; Ma, C.; Bai, T.; Hao, Y.; Rui, Y. Physiological impacts of zero valent iron,
Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 2021, 269, 116134. [CrossRef]

70. Carmona, F.J.; Dal Sasso, G.; Ramírez-Rodríguez, G.B.; Pii, Y.; Delgado-López, J.M.; Guagliardi, A.; Masciocchi, N. Urea-
functionalized amorphous calcium phosphate nanofertilizers: Optimizing the synthetic strategy towards environmental sustain-
ability and manufacturing costs. Sci. Rep. 2021, 11, 3419. [CrossRef]

71. Guha, T.; Mukherjee, A.; Kundu, R. Nano-Scale Zero Valent Iron (nZVI) Priming Enhances Yield, Alters Mineral Distribution and
Grain Nutrient Content of Oryza sativa L. cv. Gobindobhog: A Field Study. J. Plant Growth Regul. 2021, 41, 710–733. [CrossRef]
[PubMed]

72. Abd El-Azeim, M.M.; Sherif, M.A.; Hussien, M.S.; Tantawy, I.A.A.; Bashandy, S.O. Impacts of nano- and non-nanofertilizers on
potato quality and productivity. Acta Ecol. Sin. 2020, 40, 388–397. [CrossRef]

http://doi.org/10.1016/j.eti.2019.100325
http://doi.org/10.1007/s00128-020-02850-9
http://doi.org/10.1007/s42729-021-00640-8
http://doi.org/10.1016/j.jhazmat.2021.127999
http://doi.org/10.1016/j.aoas.2020.08.001
http://doi.org/10.17268/sci.agropecu.2021.005
http://doi.org/10.3389/fenvs.2021.635114
http://doi.org/10.21608/ejss.2021.107134.1480
http://doi.org/10.1007/s11738-020-03169-y
http://doi.org/10.1007/978-3-030-66956-0_10
http://doi.org/10.1007/978-3-030-63249-6_9
http://doi.org/10.1007/978-3-319-70166-0_4
http://doi.org/10.1007/978-3-030-51427-3_9
http://doi.org/10.1016/B978-0-12-820092-6.00013-6
http://doi.org/10.1016/j.ijbiomac.2021.03.138
http://doi.org/10.1016/j.ecoenv.2021.112148
http://doi.org/10.1016/j.envpol.2020.116134
http://doi.org/10.1038/s41598-021-83048-9
http://doi.org/10.1007/s00344-021-10335-0
http://www.ncbi.nlm.nih.gov/pubmed/33649694
http://doi.org/10.1016/j.chnaes.2019.12.007


Sustainability 2022, 14, 3480 19 of 22

73. Cota-Ruiz, K.; Ye, Y.; Valdes, C.; Deng, C.; Wang, Y.; Hernández-Viezcas, J.A.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. Copper
nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant
molecular responses and spectroscopic studies. Sci. Total Environ. 2020, 742, 140572. [CrossRef] [PubMed]

74. Ghasemi, V.M.; Moghaddam, S.S.; Rahimi, A.; Pourakbar, L.; Popović-Djordjević, J. Winter Cultivation and Nano Fertilizers
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