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Abstract: Optimal charge scheduling of electric vehicles in solar-powered charging stations based on
day-ahead forecasting of solar power generation is proposed in this paper. The proposed algorithm’s
major objective is to schedule EV charging based on the availability of solar PV power to minimize
the total charging costs. The efficacy of the proposed algorithm is validated for a small-scale system
with a capacity of 3.45 kW and a single charging point, and the annual cost analysis is carried out by
modelling a 65 kWp solar-powered EV charging station The reliability and cost saving of the proposed
optimal scheduling algorithm along with the integration and the solar PV system is validated for
a charging station with a 65 kW solar PV system having charging points with different charging
powers. A comprehensive comparison of uncontrolled charging, optimal charging without solar PV
system, and optimal charging with solar PV system for different vehicles and different time slots are
presented and discussed. From the results, it can be realized that the proposed charging algorithm
reduces the overall charging cost from 10–20% without a PV system, and while integrating a solar
PV system with the proposed charging method, a cost saving of 50–100% can be achieved. Based
on the selected location, system size, and charging points, it is realized that the annual charging
cost under an uncontrolled approach is AUS $28,131. On the other hand, vehicle charging becomes
completely sustainable with net-zero energy consumption from the grid and net annual revenue of
AUS $28,134.445 can be generated by the operator. New South Wales (NSW), Australia is selected
as the location for the study. For the analysis Time-Of-Use pricing (ToUP) scheme and solar feed-in
tariff of New South Wales (NSW), Australia is adopted, and the daily power generation of the PV
system is computed using the real-time data on an hourly basis for the selected location. The power
forecasting is carried out using an ANN-based forecast model and is developed using MATLAB and
trained using the Levenberg–Marquardt algorithm. Overall, a prediction accuracy of 99.61% was
achieved using the selected algorithm.

Keywords: electric vehicles; plug-in electric vehicle; charge scheduling; time-of-use pricing; EV
charging infrastructure; solar charging of EVs; solar forecasting; EVs in Australia
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1. Introduction

In recent years, there is an increasing trend in the use of plug-in electric vehicles
(PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs) rather
than ICE vehicles, mainly due to environmental concerns and rapid depletion of fossil fuels.
Electrified transportation has reduced the reliance on petroleum imports for transportation,
thereby boosting energy security. EVs provide several distinct advantages from a financial
standpoint. To begin with, the electricity cost of operating an EV is much lower than the
fuel cost of operating a comparable ICEV over the same distance. Due to the durability
and simplicity of a battery-electric motor system against the IC engine and subsystems, the
periodic maintenance of EVs is far less. Since the current generation of EVs reached the
market, automotive battery technology has advanced at a fast pace [1].

The increased use of electric vehicles affects the power quality of the distribution
network, which includes voltage imbalance, off-nominal frequency problems, undesirable
distortion, network congestion, and other technical, economic, and security concerns [2–5].
Electric vehicles are considered high-power loads that have a direct impact on the power
distribution infrastructure, particularly distribution transformers, fuses, and cables. If
charging occurs during peak hours, the system will be overloaded, which leads to equip-
ment damage and protection relay trip. Adding an electric vehicle to the grid for fast
charging is equivalent to adding many houses to the grid. As the distribution networks are
constructed with specified numbers of households in mind, the addition of such massive
loads will cause serious network problems.

Implementing a scheduling algorithm for charging electric vehicles is one of the most
cost-effective ways to mitigate the negative impact of EVs on the power grid. Scheduling
algorithms provide an efficient manner of charging using the available infrastructure.
Different charging strategies are implemented to manage the time and frequency of EV
charging, such as un-controlled/un-coordinated, controlled/coordinated, delayed, and off-
peak charging [6]. Uncoordinated charging, uncontrolled charging, or dumb charging [7]
refers to charging without regard for when power is drawn from the grid. In a controlled
charging approach, EVs are charged at times when demand is low and/or charging cost is
less, such as after midnight. Several constraints are taken into account when formulating
scheduling algorithms. Vehicle profile, vehicle configuration, aggregator parameters, and
grid parameters are some of the most critical constraints. The vehicle profile contains
information about the vehicle, such as arrival and departure time, vehicle power rating, the
energy required, and state of charge (SOC), which are essential for charge scheduling [8].

The optimum EV charging schedule in the electricity market has been studied exten-
sively with a wide range of objectives. The EVs charging priority is set up in [9] based
on the difference in the EVs’ parking duration. The charging time of electric vehicles is
scheduled in [10] to increase the utilization rate of the feeder terminal load while reduc-
ing power loss in the distribution network. The multi-agent system is used in [11] to
schedule EV charging in order to achieve peak shaving and three-phase equilibrium. To
reduce the voltage drop and power loss during EV charging, a real-time load management
system is proposed in [12]. An intelligent technique for controlling EV charging loads
in a controlled market in response to Time-Of-Use pricing (ToUP) is represented in [13].
Effective EV charging methods in the day-ahead market from several aspects has been
formulated in [14]. In [15], optimum EV charging operation for both day-ahead and real-
time scheduling has been analyzed. The impact of PEV penetration on the load profile of
the distribution network was investigated in [16], with different models of vehicles and
charging methods being considered. In [17], an intelligent charge scheduling algorithm
(ICSA) is described with the inclusion of Henry gas solubility optimization (HGSO) to
reduce the charging station operator’s total daily pricing. Using linear programming, [18]
developed a real-time optimization program based on an energy management model for
EV parking lots (EVPL), where the scheduling algorithm provides a peak load limitation
centered demand response (DR) program to increase the EVPL’s load factor. A global
intelligent technique for finding optimal cooperation charging/discharging techniques
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for EVs based on particle swarm optimization (PSO) is investigated in [19]. A centralized
charging method for EVs by using the battery swapping setup by using both PSO and
genetic algorithm is presented in [20], which considers the optimal charging priority and
charging. A day-ahead electric vehicle charge scheduling using an aggregative game model
is presented in [21]. The heuristic algorithm-based optimal charge scheduling of EV is
discussed in [22]. EV charging scheduling based on various configurations is represented
in [23,24].

The cost of charging is the prime factor that encourages customers to use electric
vehicles. The charging station is an important part of the electric vehicle industry’s op-
eration [25]. The operating cost, specifically the charging cost of EVs, is not only a key
criterion for vehicle purchasers to choose EVs over ICVs, but it is also the primary means
for operators to cover the expenses of charging infrastructure investment [26]. Energy
service providers use time-dependent tariffs in a price-based demand response (PBDR)
program so that electricity cost, higher rate during peak demand periods and lower during
off-peak periods. Time-Of-Use pricing (ToUP), Real-Time Pricing (RTP), and Critical Peak
Pricing (CPP) are examples of time-based tariffs [27]. The hours in ToUP are separated into
various time blocks, each with a particular tariff. The prices in RTP are updated hourly
to match the actual wholesale cost of electricity. Electricity is costlier in CPP during peak
demand periods [19]. This time-dependent tariff, on the other hand, will not result in a shift
in loads. To schedule the load, efficient optimization procedures are required. Furthermore,
consumers should be aware that by utilizing these programs, they will be able to reduce
their electricity expenses.

With EVs in the picture, renewable energy utilization becomes more appealing. Park-
ing lot rooftops have a lot of potential for installing PV panels that can charge the vehicles
parked below as well as feed the grid in the event of excess generation [28], assisting in
the commercial deployment of RESs. By integrating the RESs and Energy Storage Systems
(ESS), a convex optimization problem of energy scheduling is developed in [29], while
taking into account the uncertainties of EV load and the real-time price market of grid
electricity in order to maximize renewable energy consumption through direct load con-
trol of EV charging. In [30], the paper illustrates a two-stage energy scheduling in office
buildings with PV systems and workplace EV charging. Based on a two-stage model, the
work reported in [31] examines the influence of high renewable sources and electric vehicle
penetration on generation scheduling and overall cost. A reliable, optimal week-ahead
generation scheduling technique for Plug-in Hybrid Electric Vehicles (PHEVs) is provided
in [32], which takes into account unpredictability in loads, renewable energy sources, and
PHEV charging behavior. An energy management scheme (EMS) is depicted in [33] for the
optimal charging and discharging of EVs in a distribution network with photovoltaic based
on solar energy and grid power availability. Table 1 summarizes some of the other charge
scheduling of EVs presented discussed in the literature. From the above discussion and also
from Table 1, it can be understood that the deep learning approaches and AI-based optimiza-
tion tools are used for the development of charge scheduling algorithms. The deep learning
and AI-based approaches guarantee accuracy in optimization. However, the tradeoff is
implementation complexity and processor requirement for algorithm development.

Though RES is one of the promising solutions to avoid grid issues and make EV
charging more sustainable, there exist some challenges. The power generation of solar PV
systems depends on environmental conditions, mainly irradiation and temperature. Due to
the variability of irradiation and temperature in nature, the power generated by the solar
PV system is intermittent. Figure 1 shows the daily power generation of a 65 KW solar PV
system for random days 1 May 2020–30 April 2021 in New South Wales, Australia. From
the figure, it can be realized that power generated by a solar PV system varies over time
and also from season to season. The fluctuating nature of RES, which is solar power in
this case, affected by time, weather, location, and other factors, causes voltage stability
and resilience problems for the power system. An effective prediction analysis should be
carried out to understand the energy generation behavior of RES.
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Table 1. EV Scheduling methods by integration of RES.

Reference Year Renewable
Energy Type Algorithm/Method Remarks

[34] 2019 Solar energy Elitism simulated
annealing

The charging demand of each electric vehicle can be satisfied
with minimum electricity cost.

[35] 2019 Solar energy Particle Swarm
Optimization (PSO)

The analysis is performed on a real low-voltage distribution
network with real load data, and the results indicate that
under a proper charging schedule both the voltage profile
and the energy losses of the DN could be improved.

[36] 2020 Solar energy Integer Linear
Programming (ILP)

This article considers a photovoltaic (PV)-powered station
equipped with an energy storage system (ESS), which is
assumed to be capable of assigning variable charging rates
to different EVs to fulfil their demands inside their declared
deadlines at minimum price.

Sustainability 2022, 14, x FOR PEER REVIEW 4 of 19 
 

charging schedule both the voltage profile and 

the energy losses of the DN could be im-

proved. 

[36] 2020 Solar energy 
Integer Linear Programming 

(ILP) 

This article considers a photovoltaic (PV)-pow-

ered station equipped with an energy storage 

system (ESS), which is assumed to be capable 

of assigning variable charging rates to different 

EVs to fulfil their demands inside their de-

clared deadlines at minimum price.  

Though RES is one of the promising solutions to avoid grid issues and make EV 

charging more sustainable, there exist some challenges. The power generation of solar PV 

systems depends on environmental conditions, mainly irradiation and temperature. Due 

to the variability of irradiation and temperature in nature, the power generated by the 

solar PV system is intermittent. Figure 1 shows the daily power generation of a 65 KW 

solar PV system for random days 1 May 2020–30 April 2021 in New South Wales, Aus-

tralia. From the figure, it can be realized that power generated by a solar PV system varies 

over time and also from season to season. The fluctuating nature of RES, which is solar 

power in this case, affected by time, weather, location, and other factors, causes voltage 

stability and resilience problems for the power system. An effective prediction analysis 

should be carried out to understand the energy generation behavior of RES.  

 

Figure 1. Power generated by a 65 kW PV system on different days during a year. 

In the context of solar-powered EV charging stations, for effective scheduling of EV 

charging with minimized cost, knowing the power generation of the solar PV system in 

advance is a mandate. To know about the power generation behavior of the PV system, 

effective prediction of the weather data must be carried out. The following subsection de-

scribes the day ahead forecasting. Since the prime focus of this paper is the EV charge 

schedule, a brief review of forecasting methods and the predicted results are presented.  

Numerous tools and techniques are adopted in literature to predict the weather pa-

rameters such as solar radiation, temperature, and wind speed to estimate power genera-

tion of renewable energy systems. Soft computing and bio-inspired approaches such as 

an artificial neural network (ANN), genetic algorithm (GA), particle swarm optimization 

(PSO), and the learning approaches such as a support vector machine (SVM), long short-

Term memory recurrent neural networks (LSTM) are used for prediction [37,38]. ANN is 

the most commonly adopted approach for prediction due to its reliability and suitability 

for multidimensional spaces over empirical methods [39,40]. This is one of the five classes 

of the nonlinear model-based approach, which uses gradient descent-based learning [41]. 

Figure 1. Power generated by a 65 kW PV system on different days during a year.

In the context of solar-powered EV charging stations, for effective scheduling of EV
charging with minimized cost, knowing the power generation of the solar PV system in
advance is a mandate. To know about the power generation behavior of the PV system,
effective prediction of the weather data must be carried out. The following subsection
describes the day ahead forecasting. Since the prime focus of this paper is the EV charge
schedule, a brief review of forecasting methods and the predicted results are presented.

Numerous tools and techniques are adopted in literature to predict the weather param-
eters such as solar radiation, temperature, and wind speed to estimate power generation of
renewable energy systems. Soft computing and bio-inspired approaches such as an artifi-
cial neural network (ANN), genetic algorithm (GA), particle swarm optimization (PSO),
and the learning approaches such as a support vector machine (SVM), long short-Term
memory recurrent neural networks (LSTM) are used for prediction [37,38]. ANN is the
most commonly adopted approach for prediction due to its reliability and suitability for
multidimensional spaces over empirical methods [39,40]. This is one of the five classes of
the nonlinear model-based approach, which uses gradient descent-based learning [41]. A
variety of ANN-based models proposed for forecasting are discussed in detail in [37–39].
Hence, artificial neural network (ANN)-based forecast model is used in this paper.

In this paper, an optimized charge scheduling algorithm for a solar PV-powered
grid-connected PEV charging station is proposed. A proposed charging approach is an
uninterruptable approach. The main objective of the proposed approach is to minimize
the charging cost by optimizing the charging schedule by considering the PV generation.
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Day-ahead prediction of solar PV generation helps to optimize the scheduling accounting
for the PV generation. The main contributions of the paper are:

• Modelling of solar PV system for a PEV charging station.
• Day-ahead prediction of irradiation, temperature using ANN, and computation of

solar power generation.
• Development of optimal uninterruptible charge scheduling for PEVs considering solar

PV power generation.
• Validation of proposed algorithm using the different vehicle’s parameters.
• Cost comparison of the proposed algorithm with uncontrolled charging, optimal

scheduling without PV and with the integration of PV.
• Annual cost analysis and feasibility study of charging station with 65 kW solar PV

system under different scenarios.

The diagrammatic representation of the proposed system is given in Figure 2. The
proposed architecture comprised of a solar PV system, and the utility grid to power the
EV charging units. Based on the availability of solar power and the power required by the
charging stations at any instant, the grid will either supply power or receive the power
via a point of common coupling. The main objective of the proposed algorithm is to
reduce the overall charging cost of PEVs by scheduling the charging hours according to
the power generation of RES. The algorithm monitors the function of sub-components of
the charging infrastructure and schedules the charging of vehicles accordingly so that the
overall charging cost can be reduced along with proper utilization of power generated by
the solar PV system to make the charging sustainable and cost-effective.
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Figure 2. Diagrammatic representation of a proposed system.

The rest of the paper is organized as follows. Section 2 analyses the daily driving
behavior between home and office, the site selection of the proposed study and modelling
of a solar PV system as well as the day ahead forecasting of PV generation. Section 3
describes the development of the proposed scheduling algorithm based on an improved
placement algorithm. Section 4 analyzes the simulation results and charging cost obtained
under different approaches for single and large-scale charging stations. Lastly, Section 5
concludes the paper.

2. Analysis of Driving Behavior, Site Selection, PV System Modeling, and
Day-Ahead Forecasting

Based on the charging power and time taken to charge the batteries, EV charging
is mainly categorized as slow charging and fast charging. Slow charging is usually an



Sustainability 2022, 14, 3498 6 of 20

on-board charging with AC supply and for fast charging high power off-board charger
is used [42]. In slow charging, the rated charging power is 3 kW in most of cases. The
typical rate of fast chargers is 7 kW and 11 kW. DC fast charges with higher capacity are
also available. The battery capacity of Tata Nexon EV is 30.2 kWh [43]. In the case of Tata
Nexon EV, it takes nearly 9 h to fully charge (100%) the battery from 10% in slow charging
mode. Under fast charging mode, the same battery can be fully charged in approximately
4 h when connected 7 kW charger and it may take only 2.5 h to charge the vehicle when
connected to 11 kW fast charger.

2.1. Driving Behavior

As mentioned earlier, the EV loads are unpredictable, and the uncertainty of these
loads will cause several issues to the utility grid. However, optimal scheduling will help to
overcome the grid-related issues and also to reduce the overall charging cost. The daily
travel characteristics, i.e., the commuting of vehicles from home to office and office during
a day based on the U.S. NHTS dataset are analyzed in [44]. The travel pattern of vehicles is
shown in Figure 3a. Likewise, the vehicle mobility pattern in the office parking of Beijing
University, China presented in [45] is shown in Figure 3b.
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The start time indicates the vehicles traveling from home to office and the end time
show the vehicles traveling back from work to home. From the figures, it can be realized
that the maximum vehicles leave from home between 7 AM−10 AM and then return back
to home between 4 PM–7 PM. Thus, the EVs can be effectively charged in an office parking
environment for 8–12 hours. However, for residential parking, the scenario will be the
opposite and vehicle charging will be mostly overnight.

In this paper, a rooftop PV system installed over the car parking roof is considered
for analysis. The work presented in [46] discusses the off-grid solar-powered EV charging
station. A 320 kW solar PV system is considered as a source for analysis in the presented
work and 10 PV panels with a capacity of 320 WP is accounted for a parking space of
one vehicle. The size of the selected PV panel is 1.6 m2 and hence, the area considered
for parking one vehicle is 16 m2 in this case. According to the Dutch regulation, 12.5 m2

is the minimum area required for parking one vehicle [47]. The work presented in [48]
discusses the feasibility of PV-powered EV charging station. The PV-powered charging
station installed in the Université de Technologie de Compiègne, France is considered for
analysis. A total of 84 SunPower SPR X21-345PV panels were mounted over the parking
shade, which has a capacity for parking nine cars. The area covered by one PV panel that is
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1.6 m2 [48]. Hence, the parking area per vehicle is nearly 15 m2 in this case. Based on the
above discussion, the parking space per vehicle is considered as 15 m2.

2.2. Site Selection

The State of Electric Vehicles report released in August 2021 has stated that the Aus-
tralian EV market experienced a tremendous rise in EV sales in 2021. The NSW government
has been continuously taking several initiatives to increase EV adoption in the state. Based
on state and BudgetDirect reports, 30% of total EVs accounted for in Australia are from
NSW there are around 6400 EVs in the state. NSW is ranked as #1 in making EV policies
among the other states in Australia, with a score of 9 out of 10. According to the EV strategy
announced by the NSW government, the entire passenger fleet of the NSW government
will be transformed into EVs by 2030. Further, the NSW state government has decided
to invest nearly 500 million dollars in the next four years as incentives for electric vehicle
purchases. Along with that, an investment of 171 million dollars is allotted for building the
ultra-fast EV charging infrastructure across the state [49].

The potential of renewable-based power generation is promising in the selected region,
particularly solar power generation. Moreover, the utility services are offering separate
solar feed-in tariffs as well as a ToUP tariff plan for EVs. Considering all these facts and
figures, New South Wales (NSW), the southeastern state of Australia is selected as the
location for analysis in this study. A PV powered On-grid EV charging station with a
capacity of 20 parking spaces considered in this paper. The total area of parking space is
300 m2 and the capacity of the solar PV system taken into account 65 kWp. The complete
specification of the PV powered charging station is given in Table 2.

Table 2. Specification of the PV powered charging station.

Parameter Value

Location New South Wales (NSW), Australia
Latitude 32.533◦ S
Longitude 148.931◦ E
Parking area per vehicle 15 m2

PV Module SPR–X21–345-COM
Maximum Output Power (Pmax) 345 Wp
Average Efficiency of Module (ηs) 21.5%
Temperature co-eff (γ) −0.29%/◦C
Cell Type Monocrystalline Maxeon
Total Capacity of the PV System 65 kWp
Total Area of parking shade 300 m2

No. of Parking 20

2.3. PV Modeling

A photovoltaic cell converts solar energy into electrical energy. The power produced by
a photovoltaic cell depends upon the solar radiation and temperature data. The expression
for output power Ppv is given by,

Ppv = ηs × A × 0.9 × SI × (1 + γ (to − 25)) (1)

where, Ppv is PV module’s output power and ηs is the efficiency of the PV module. ‘A’
represents the area of the PV module, whereas ‘SI’ denotes the solar irradiation (W/m2). γ
and to represent the temperature coefficient of PV module (%/◦C) and outdoor temperature
(◦C), respectively. Value of γ differs depending on the manufacturing parameters and PV
technology used [45]. Solar radiation and outdoor temperature are the key parameters for
modeling the solar PV system. Power generation of the proposed PV systems considered
in this study is computed using Equation (1).
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2.4. Day-Ahead Weather Forecasting for Solar PV Generation Using ANN

The concept of artificial neural networks (ANN) is derived from the information
processing of biological nervous systems. ANN process the information with a help of
interconnected elements, which are called neurons. ANN is most widely accepted for
forecasting due to its high approximation capability and the accuracy of prediction. Hence,
ANN is adopted for forecasting weather data in this work. Figure 4 shows the multilayer
perceptron network of NN with one input layer, one hidden layer, and one output layer.
As shown in the figure, all the inputs are connected to each and every neuron in the hidden
layer. At the initial stage, the weights are randomly assigned based on the relation between
the input and output. Then, during the training process, NN adjusts the weights, and the
outputs are updated in each stage. This process is repeated, and weights are adjusted in the
layers until the error between the output of NN at the output layer and the expected output
are minimized. The following subsections discuss the various stages of model development
of ANN.
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The ANN model development for forecasting has a number of stages such as (i)
Data Collection & Generation of Data for Training and Testing (ii) Data Pre-processing &
Normalization and (iii) Training & Testing of Neural Network.

(i) Data Collection & Generation of Data for Training and Testing

The typical operating conditions of the system are represented by the data. The first
step in ANN modelling is the collection of data and the generation of training and testing
data from the collected data. In order to schedule the vehicle charging optimally, knowing
the power generation in advance is mandatory. As mentioned in the previous section,
power generation is computed using weather data. Thus, the weather data is predicted
and the power generation is computed using the predicted data. The hourly data of solar
irradiation and temperature for s one year period from 1 May 2020–30 April 2021 for New
South Wales, Australia (Latitude: 32.533◦ S, Longitude:148.931◦ E) is collected from Solar
Irradiation Data (SODA) [50]. To build the ANN model, the data is further processed and
separated for training and testing. From the processed data, 70% of data is used for training
and the rest is taken as test data. The following subsection describes the data pre-processing
and normalization of raw data.

(ii) Data Pre-processing & Normalization

The hourly data of temperature and irradiation collected for the selected region have
8460 samples of each datum. In the case of irradiation, the data are zero during the period
when there is no sunlight. The variation between the minimum and maximum values of
the and zeros in the data will create a great impact on the training of the neural network.
Moreover, the network will be saturated quickly during the training process with such raw
data. Hence, data is generally pre-processed and normalized to increase the robustness
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of training and prediction accuracy. In this case, the irradiation data is pre-processed to
remove zeros and the very low irradiation values. For irradiation data, samples between
9 AM to 7 PM are sorted and collected. A total of 3650 samples are used for prediction.
However, for the prediction of temperature all the 8460 samples are used.

(iii) Training & Testing of Neural Network.

An ANN-based forecast model is developed using MATLAB and trained using the
Levenberg-Marquardt algorithm. The ANN model consists of one hidden layer with
10 hidden neurons is used. The number of hidden neurons is selected by the trial-and-error
method. The actual and predicted output for Irradiation, and Temperature, are presented
in Figure 5a,b, respectively. The mean square error (MSE), root mean square error (RMSE),
mean absolute percentage error (MAPE), and the correlation coefficient (R) are presented
in Table 3.
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Table 3. Simulation results of forecasting.

Irradiation Temperature

MSE 2.2295 × 103 0.2294
RMSE 47.2176 0.4790
R2 0.9949 0.9995
MAPE 7.9048 1.7067

From the Table 3, it can be understood that the correlation coefficient (R2) of all the
selected parameters is very close to “1”. This confirms the efficiency of the prediction
and reliability of predicted data. Using the obtained results, the power generated by the
Solar PV system is calculated and these results are used for scheduling the vehicles for
optimal charging.

3. Improved Placement Algorithm

In [51], Arif et al. presented and discussed a placement algorithm for EV scheduling.
The main limitation of the algorithm is its time restriction for entry and departure time
of the vehicle. In residential parking, the charging is done mostly overnight. However,
the algorithm proposed in [51] is not suitable for scheduling overnight charging. In the
paper, the placement algorithm is modified in such a way to offer flexibility for the user to
enter and exit the charging point at any time of the day. Further, it is improvised to make it
capable of scheduling overnight charging, which allows the vehicle to continue charging in
the next day starting from 0100 h also. Moreover, the proposed algorithm considers the
hourly PV generation also into account vehicle scheduling for optimal and cost-effective
charging. Formulation of the proposed algorithm is presented in the following sub-section.
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Formulation of Optimized Scheduling Algorithm

The proposed algorithm collects the vehicle information required to schedule the
charging once the vehicle is plugged in for charging. Here, the vehicle arrival time is
considered as a plug-in time of the EV. Likewise, the charging must be stopped before the
departure time of the vehicle and the vehicle must be charged with the required amount of
energy before the vehicle leaves the station. Considering these factors and the predicted
hourly generation of solar PV, the algorithm should assign a slot at which the charging
cost will be minimized. The main factors considered in the algorithm development are
as follows:

• Availability of power generated by solar PV based on the predicted data
• Vehicle arrival time (EVat)
• Vehicle departure time (EVdt)
• Length of charging duration (Lch)
• Vehicle charging power (Pev) and
• Consumption Tariff rate (Rgrid) and PV tariff (Rpv).

Here, the algorithm follows uninterruptible charging i.e., once the charging process is
initiated, it will be terminated only upon completion of the charging duration. Initially, the
placement algorithm generates the charging slot between the arrival time and departure
time based on the length of charging duration.

Let us consider that the ith vehicle is plugged in for charging at EVat h., the vehicle
will depart at EVdt h. and it should be charged for Lch h. Then, the total number of possible
charging slots of the ith vehicle can be obtained using,

qi =

{
EVi

dt − EVi
at − Li

ch + 1 for EVdt > EVat(same day)
24 + EVi

dt − EVi
at − Li

ch + 1 for EVdt < EVat(next day)
(2)

Then, the algorithm calculates the total charging cost for all the possible slots. For each
slot, the hourly required power is computed based on the PV power generation for every
hour between the starting time and end time. From that, the slot at which the cost incurred
for charging is identified by the algorithm using Equation (3), and the vehicle is scheduled
to charge in that slot.

argminCi
ch

(
qi
)

(3)

Since, the PV-generated power is predicted in advance, the algorithm can optimally
schedule the EV charging by effectively utilizing the PV power. In addition to that, the
excess power from PV generation is supplied to the grid when there is no requirement
or the required power is less than the generated power. The step-by-step procedure for
finding optimal slot for EV charging using improved placement algorithm with predicted
PV power is given in Table 4. The algorithm initially collects the vehicle information and
PV power generation. Then, the power required from the grid is computed for each hour
during the period between start and end time of charging. The charging cost is calculated
for each slot between the arrival and leaving time of the vehicle and the slot at which
the minimum cost incurred is identified using Equation (3). Finally, the vehicle will be
scheduled to charge during the minimum cost slot. This way, the solar power is effectively
utilized to reduce the overall grid cost and the burden to the grid is also minimized.
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Table 4. Step by Step procedure of the proposed optimal charging algorithm.

Steps Procedure

Step-1 Load the arrival time (EVat), departure time (EVdt), charging duration (Lch) and charging power (Pev)of the
electric vehicle

Step-2 Load the electricity consumption charge (Rc) and PV tariff (Rpv) tariff (Rch)
Step-3 Load the predicted data of irradiation and temperature for the selected day and calculate PV Power using Equation (1)
Step-4 for ith vehicle

Step-5

Find the number of possible charging slots between EVat and EVdt using,

qi =

{
EVi

dt − EVi
at − Li

ch + 1 for EVdt > EVat(same day)
24 + EVi

dt − EVi
at − Li

ch + 1 for EVdt < EVat(next day)

Step-6
Find charging cost for all the slots from xi = 1:qi

Charging Start Time Ci
st = EVi

at + xi − 1
Charging End Time Ci

f t = EVi
at + xi + Li

ch − 2

Step-7

for xi = 1:qi

for t = Ci
st : Ci

f t
Find the required power using

Preq(t) = Pev(t)− Ppv(t)

Calculate the charging cost

Ci
ch =

Ci
f t

∑
t=Ci

st

Rch·Preq

RchisRpv i f Preq < 0
RchisRgrid i f Preq > 0

Step-8

Find the slot at which cost incurred for charging is minimum

min
Ci

f t

∑
t=Ci

st

Rch·Preq

Step-9

Schedule the vehicle to charge at

argminCi
ch

(
qi
)

Step-10 End

4. Simulation Results and Analysis

Two different case studies are conducted. In the first case, a residential parking shade
for one car (16 m2) with 3.45 kW PV system is considered. In this case, the effectiveness of
the scheduling algorithm is analyzed using data of the three vehicles with different power
rating. The charging power and charging time of slow and fast charging considered for
analysis is presented in Table 5. The cost incurred to charge the vehicles with unscheduled
and proposed optimal charging under different scenarios is compared and analyzed. In
the second case, a charging station with a capacity of charging 20 vehicles in a day is
considered. The charging station is integrated with a 65 kW PV system. In case 2, three
different scenarios are considered for the analysis. In both cases, the analysis is carried out
as follows: (i) Uncontrolled charging with grid power, (ii) Uncontrolled charging with grid
power and PV power source, (iii) Optimized charging with grid power, and (iv) Optimized
charging with grid power and PV power source.
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Table 5. Type of Electric Vehicle Charging.

Type of Charging Charging Power Duration of Charging Avg. Time Duration

Slow Charging 3 kW 7–9 h 8 h
Fast Charging I 7 kW 4–6 h 5 h
Fast Charging II 11 kW 1–3 h 2 h

Time-of-Use pricing (ToUP) scheme is adopted for analysis in this study. The utility
service providers in Australia offer independent Time-of-Use pricing (ToUP) schemes for
EV users. EV ToUP pricing scheme of NSW is presented in Table 6. Apart from this, all the
service providers offer a solar feed-in tariff for the customers. The solar feed-in cost of 7
cents/kW is offered by most of the service providers in Australia. Hence, 7 cents/kW is
considered as a feed-in tariff for Solar PV and wind power in this study. Other than the
usual off-peak, shoulder, and peak prices, a special tariff is offered to EV users between
12–4 h [52]. EV ToUP of NSW is depicted in Figure 6.

Table 6. ToUP Tariff data.

Slot (Hr) 1 2 3 4 5 6 7 8 9 10 11 12
Cost (₡) 7.98 7.98 7.98 15.95 15.95 15.95 28.6 28.6 23.1 23.1 23.1 23.1
Slot (Hr) 13 14 15 16 17 18 19 20 21 22 23 24
Cost (₡) 23.1 23.1 23.1 23.1 28.6 28.6 28.6 23.1 23.1 15.9 15.9 7.98
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4.1. Case 1. Analysis of Optimal Charge Scheduling of EV in Residential Paring Shade

For the first case study, the 305th day of the year, i.e., 2 March 2021, is considered.
Using the predicted weather data, the expected power generation of 3.45 kW PV system for
305th day is computed. The actual power generation on the selected day is also calculated
to validate the accuracy of the prediction. The actual and predicted power of the PV system
is shown in Figure 7. The actual and predicted power computed for the selected day is
listed in Table 7. The prediction efficiency is also presented in the table.
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Table 7. Total output power of Solar PV system based on Actual and Predicted data.

Actual Power 23.5851 kW

Predicted Power 23.4927 kW
Efficiency 99.61%

Three plug-in electric vehicles with dissimilar power ratings and charging rates are
taken to analyse the algorithm. The simulation data of EVs are given in Table 8. The table
shows the departure time, arrival time, charge duration, and charge rate of the selected
vehicles. To refer to the vehicles, a short name is given as ID for all the selected vehicles.
For example, “Nissan Leaf” is referred to as “NL”.

Table 8. Simulation Data for Electric Vehicles.

Vehicle ID Vehicle Arrival
Time (At)

Vehicle
Departure
Time (Dt)

Charging
Duration of
Vehicle (h)

Rate of
Charging of
Vehicle (kW)

Total Energy of
Vehicle (kWh)

Kia EV6 KA 11 h 18 h 3 11 33

Nissan Leaf NL 7 h 19 h 8 3 24

Hyundai-IQNIQ HD 16 h 24 h 5 7 36

Vehicle “KA” arrives at the charging station at 11 h. It will leave the station at 18 h. It
must be charged for 3 h duration before it leaves the station. Figure 8a shows the charging
schedule and charging power without PV in uncontrolled charging mode. In uncontrolled
charging mode, the charging process is initiated immediately after the vehicle is connected
to the charging station (11 h) and continue to charge for the required charging duration
which is 3 h in this case. Figure 8b shows the grid power which represents the hourly
grid power of the charging station integrated with 3.45 kW solar PV system. Negative
power indicates the excessive power supplied to the grid and positive power indicates the
amount power of power taken from the grid. For the selected case, the proposed algorithm
also schedules the vehicle to charge from 11 h since the charging cost is minimized in that
slot. Therefore, the charging slot remains the same for both uncontrolled charging and the
proposed optimal charging for the vehicle “KA”. Hence, the graphs for optimal scheduling
are not presented again. Thus, for vehicle “KA” the cost incurred for charging with an
uncontrolled charging approach and optimal charging remains the same.
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Now, for vehicle “NL”, under uncontrolled charging, the vehicle is charged between
7 h to 14 h as shown in Figure 9a. But the proposed algorithm scheduled the vehi-
cle to charge between 9 h to 16 h to reduce the cost as shown in Figure 9c. The grid
power with the PV for “NL” under uncontrolled and proposed method are shown in
Figures 9b and 9d respectively.
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Likewise, for vehicle “HD”, under uncontrolled approach, the vehicle is charged at a
higher cost. However, the proposed algorithm optimized the charging schedule in such a
way as to reduce the charging cost. Figure 10 shows the charging power and grid power of
“HD” with uncontrolled, and proposed charging approach without and with PV integration.
A detailed cost comparison between different methods with different sources of power to
charge the vehicle is presented in Table 9. For vehicle KA, the cost incurred for charging is
the same with and without scheduling since the charging cost is low in the first slot. For
vehicles NL and HD, it is evident from the table that the proposed algorithm optimally
schedules the charging of vehicles in such a way to reduce the cost incurred for charging.
Further, the integration of solar PV systems helps to reduce the overall charging cost.

Table 9. Charging Cost Comparison.

Uncontrolled Charging Method Proposed Charging Method

Vehicle KA NL HD KA NL HD

Grid Only 7.6230 5.8740 9.2400 7.6230 5.5440 7.4690

Grid & PV 4.5884 1.8833 6.4796 4.5884 0.6691 5.8180

From the above results, it can be inferred that nearly 10% of cost-saving is achieved
for charging “NL” and the cost saving is more than 20% in the case of “HD” when charged
only from the grid. On the other hand, with the integration of PV system, 50% to 100%
cost-saving can be achieved depends on the power rating, charging requirement, tariff
schemes, and capacity of PV system integrated into the charging unit/station, i.e., in certain
cases, the energy generated by the PV system will be sufficient fulfil the requirement.
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4.2. Case 2: Large Scale Analysis of PEV Charging from Solar PV based Charging Station

In this case, a long-term analysis of PEV charging station with 65 kW solar PV system
is carried out. The economic benefits of integrating solar PV systems in large-scale public
charging stations with the proposed charging approach are analyzed. To conduct the
analysis for a period of one year, initially the daily generation of solar PV system for one
year between 1 May 2020 to 30 April 2021 is obtained using the weather data collected
from the selected region. The daily generation of the selected solar PV system is shown
in Figure 11. The average power generated by the 65 kW solar PV system per day is
321.8417 kW. The generation is computed using the predicted data.
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The vehicle data consist of vehicle arrival time, departure time, duration of charging
and charging power is generated for 365 days and analysis is carried out for PV powered
grid connected charging station with 10, 12 and 15 charging points. The number of slow
chargers, fast charger I, and fast charger II in each scenario are given in Table 10. To generate
the vehicle data, it is assumed that the vehicles will enter the station between 7 h–11 h and
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depart from the station between 17 h–20 h. In each set, the arrival time, departure time of
each vehicle is randomly generated based on this assumption. Likewise, the duration of
charging for different charging power are also randomly generated based on the charging
duration. A sample dataset of one day for scenario 2 is listed in Table 11. Vehicle data for
365 days is generated in a similar fashion.

Table 10. Number of chargers selected for large scale analysis.

Scenario 1 Scenario 2 Scenario 3

No. of Charging Points 10 12 15

Slow Charging (3 kW) 5 6 8

Fast Charging I (7 kW) 3 4 4

Fast Charging II (11 kW) 2 2 3

Table 11. Sample of random vehicle data.

Charging Power 3 kW 7 kW 11 KW

Arrival time 7 7 7 8 9 9 9 11 11 9 10 9

Departure time 18 19 20 20 19 19 20 20 19 18 17 18

Charging Duration 7 7 7 8 8 9 6 4 6 5 1 2

The annual charging cost under different scenarios using proposed charging methods
without PV, and proposed charging method with PV are given in Table 12. From the
analysis carried out with 10, 12 and 15 charging points as given in Table 10, a solar powered
charging station with 12 charging points includes 6 slow charges (3 kW), 4 fast charger I
(7 kW) and, 2 Fast charger II (11 kW) is found to be a sustainable net-zero energy solution
with the proposed algorithm based on the annual charging cost. The daily cost of charging
station for scenario 1 under different approaches for a period of one year is shown in
Figure 12.

Table 12. Annual charging cost under different scenarios.

No. of
Charging

Points

10 12 15

3 kW 7 kW 11 kW 3 kW 7 kW 11 kW 3 kW 7 kW 11 kW
5 3 2 6 4 2 8 4 3

Grid Power
Only Cost Grid & PV Cost Grid Power

Only Cost
Grid & PV

Cost
Grid Power
Only Cost

Grid & PV
Cost

Optimized 2.2817 × 104 −5.3170 × 103 2.7851 × 104 −283.4445 3.3739 × 104 5.6051 × 103

The annual charging cost is AUS $28,131 when charging is carried out using uncon-
trolled charging method. In this case, the station is powered only from the grid. However, a
reduction of AUS $280 is achieved with the proposed charging approach. With the integra-
tion of 65 kW solar PV system, the charging station becomes self-sustainable for the selected
conditions. The net annual charging cost has become negative (AUS $ (-)283.4445) in a
65 KW solar powered EV charging station with proposed algorithm. Hence, the operator
can make a net profit of AUS $28,134.445 annually. The key reason is that the utility services
charge the peak and off-peak tariff between 7 AM–7 PM and the solar PV system also
produces power during this period. From these results, it can be inferred that the solar pow-
ered grid connected charging station with the proposed scheduling algorithm significantly
reduces the overall charging cost and burden on the utility grid during peak hours.
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5. Conclusions

In this article, the authors proposed a novel scheduling algorithm for charging of
EV to reduce the overall charging cost and to eradicate the negative impact on the power
grid. With the proposed technique, charging of EV is completely managed based on
day-ahead forecasting of connected renewable power generation source. A dedicated
artificial neural network model is developed to forecast power generation. The proposed
algorithm schedule charges in such a way to effectively utilize the solar PV power. The
effectiveness and accuracy of the proposed scheduling algorithm is validated through
extensive simulation studies under different scenarios. A 3.45 kW solar powered charging
station in residential parking for charging one vehicle and an office parking space charging
station with 65 kW PV systems are modelled for the analysis. An extensive comparative
with uncontrolled charging without and with a PV system, optimal charging without and
with PV for different vehicles, and different time slots for different scenarios is carried out.
The study reveals that the residential charging system reduces the cost by 10–20% with
the proposed algorithm. Further, the cost incurred for charging a vehicle with 30 kWh
battery capacity from 10−90%, i.e., 80% charging is nearly zero (0.6691 cents) when it is
charged from a 3.45 kW solar powered residential system with the proposed algorithm.
The cost analysis of the commercial charging station is carried out with and without solar
PV system by incorporating the proposed algorithm. From the analysis, it can be observed
that the annual electricity tariff of the charging station with 12 charging points is AUS
$27851.00. However, on the other hand, the vehicle charging becomes sustainable with
a profit of AUS $28,134.445 in the65 kW solar powered charging station with proposed
algorithm for the selected conditions. From the results and analysis, it is concluded that the
proposed charging algorithm optimally schedules the vehicle charging and the charging
cost is less compared to the uncontrolled approach. In addition to that, Solar PV power
forecasting aid to optimally schedule the charging and this helps to reduce the burden on
the grid and peak demand issues. Thus, the solar powered EV charging system with the
proposed optimal charge scheduling algorithm makes the EV charging more sustainable
and cost effective.
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