The Use of a Non-Invasive Electrical Method to Assess the Chemical Composition, Hardness, and Color of Durum Wheat Grain Cultivated in an Integrated System
Abstract
:1. Introduction
- Evaluate the effect of an integrated cultivation system, differing in a nitrogen fertilizer dose and growth regulator use (with/without, GR/WGR) on changes in the selected quality traits (protein, lipid, and starch contents; hardness; color) and electrical properties (conductive and capacitive) of the grain of native durum wheat;
- Determine correlations between the analyzed quality traits and electrical properties of durum wheat grain to identify the feasibility of employing a non-invasive electrical method for grain quality assessment.
2. Materials and Methods
2.1. Cultivation of Durum Wheat in an Integrated System
2.2. Determination of the Selected Chemical Components of the Grain
2.3. Hardness Measurements
2.4. Color Measurements
2.5. Electrical Measurements
- a measuring sensor—a glass container (internal dimensions: L: 88.80 × D: 49.20 × H: 76.20 mm) with flat electrodes made of acid-proof steel having the surface area of ca. 68 cm2, attached adjacent to two opposite longer container’s walls,
- a metal container with a water jacket connected to a thermostat (PolyScience, Niles, IL, USA),
- an LCR meter, type E4980a (Agilent, Santa Clara, CA USA) with a measuring attachment.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Physicochemical Properties (Technological) of the Grain
3.2. Changes in the Electrical Parameters of the Grain
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interests
References
- Colasuonno, P.; Marcotuli, I.; Blanco, A.; Maccaferri, M.; Condorelli, G.E.; Tuberosa, R.; Parada, R.; de Camargo, A.C.; Schwember, A.R.; Gadaleta, A. Carrotenoid pigment content in durum wheat (Triticum turgidum L. var durum): An overview of quantitative trait loci and candidate genes. Front. Plant Sci. 2019, 10, 1347. [Google Scholar] [CrossRef] [Green Version]
- Banach, J.K.; Majewska, K.; Żuk-Gołaszewska, K. Effect of cultivation system on quality changes in durum wheat grain and flour produced in North-Eastern Europe. PLoS ONE 2021, 16, e0236617. [Google Scholar] [CrossRef]
- Alemu, H. Review paper on breeding durum wheat (Triticum Turgidum L. var. Durum) for quality traits. Int. J. Adv. Res. Publ. 2017, 1, 448–455. [Google Scholar]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef] [Green Version]
- Morris, C.F.; Casper, J.; Kiszonas, A.M.; Fuerst, E.P.; Murray, J.; Simeone, M.C.; Lafiandra, D. Soft kernel durum wheat—A new bakery ingredient? Cereals Foods World 2015, 60, 76–83. [Google Scholar] [CrossRef]
- Xiao, F.B.; Wang, K.; Dupuis, B.; Taylor, D.; Nam, S. Kernel vitreousness and protein content: Relationship, interaction and synergistic effects on durum wheat quality. J. Cereal Sci. 2018, 79, 210–217. [Google Scholar] [CrossRef]
- Polish National List of the Research Center for Cultivar Testing. In Cereals; COBORU: Słupia Wielka, Poland, 2021; ISSN 1641-7003. (In Polish)
- Żuk-Gołaszewska, K.; Żerańska, A.; Krukowska, A.; Bojarczuk, J. Biofortification of the nutritional value of foods from the grain of Triticum durum Desf. by an agrotechnical method: A scientific review. J. Elem. 2016, 21, 963–975. [Google Scholar] [CrossRef]
- Polish National List of Agricultural Plant Varieties; COBORU: Słupia Wielka, Poland, 2018; ISSN 1231-8299. (In Polish)
- Polish National List of the Research Center for Cultivar Testing. In Cereals; COBORU: Słupia Wielka, Poland, 2019; ISSN 1641-7003. (In Polish)
- Polish National List of the Research Center for Cultivar Testing. In Cereals; COBORU: Słupia Wielka, Poland, 2020; ISSN 1641-7003. (In Polish)
- Łuczycka, D. Cechy Elektryczne Ziaren Pszenicy (Electrical Properties of Wheat Grains); Monographs LXXIII; UP Wrocław: Wrocław, Poland, 2009; pp. 5–90. (In Polish) [Google Scholar]
- Nelson, S.O.; Bartley, P.G., Jr. Measuring frequency-and temperature-dependent dielectric properties of food materials. Trans. ASAE 2000, 43, 1733–1736. [Google Scholar]
- Nelson, S.O.; Trabelsi, S. Principles of grain and seed moisture sensing through radio-frequency and microwave dielectric properties In 2017 ASABE annual international meeting (p.1). Am. Soc. Agric. Biol. Eng. 2017, 1, 1701422. [Google Scholar]
- Majewska, K.; Banach, J.K.; Żywica, R.; Białobrzewski, I. Influence of variety, moisture content, kernel size and applied current frequency on the electric properties of wheat grain. Int. J. Food Prop. 2008, 11, 392–406. [Google Scholar] [CrossRef]
- Banach, J.K.; Majewska, K.; Żywica, R. Applying conductivity parameters to assess the degree of barley grain destruction. Pol. J. Commod. Sci. 2020, 2, 50–60. [Google Scholar]
- Banach, J.K.; Majewska, K.; Ejsmont, A.; Żywica, R.; Grabowska, E. Effect of species, chemical composition and measurement frequency on conductance properties of cereal grains. Pol. J. Commod. Sci. 2017, 3, 49–58. [Google Scholar]
- Jha, S.N.; Narsaiah, K.; Basediya, A.L.; Sharma, R.; Jaiswal, P.; Kumar, R.; Bhardwaj, R. Measurement techniques and application of electrical properties for nondestructive quality evaluation of foods—A review. J. Food Sci. Technol. 2011, 48, 387–411. [Google Scholar] [CrossRef] [Green Version]
- Bansal, N.; Dhaliwal, A.; Mann, K.S. Dielectric properties of corn flour from 0.2 to 10 GHz. J. Food Eng. 2015, 166, 255–262. [Google Scholar] [CrossRef]
- Łuczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K. Dielectric properties of wheat flour mixed with oat meal. Int. Agrophysics 2013, 27, 175–180. [Google Scholar]
- Bożek, K.S.; Żuk-Gołaszewska, K.; Bochenek, A.; Gołaszewski, J.; Kalaji, K.M. Modelling the growth, development and yield of Triticum durum Desf under the changes of climatic conditions in north-eastern Europe. Sci. Rep. 2021, 11, 21753. [Google Scholar] [CrossRef] [PubMed]
- PN-EN ISO 712; Ziarno Zbóż i Przetwory Zbożowe. Oznaczanie Wilgotności. Metoda Odwoławcza (Cereal Grains and Processed Cereals. Moisture Determination. Reference Method). PKN: Warszawa, Poland, 2012. (In Polish)
- PN-EN ISO 20483; Ziarno Zbóż i Nasiona Roślin Strączkowych. Oznaczanie Zawartości Azotu i Przeliczanie Na Zawartość Białka. Metoda Kjeldahla. (Cereal Grains and Legume Seeds. Determination of Nitrogen Content and Converting to Protein Content. Kjeldahl Method). PKN: Warszawa, Poland, 2014. (In Polish)
- Krełowska-Kułas, M. Badanie Jakości Produktów Spożywczych; PWE: Warszawa, Poland, 1993; Volume 61, pp. 61–62. ISBN 83-208-0902-9. (In Polish) [Google Scholar]
- Banach, J.K.; Żywica, R.; Nieradko, I.; Staniewski, B. Studies on determination of mathematical relationships between rapeseed oil content and electrical properties of butter and fat mixes. J. Food Eng. 2012, 112, 346–351. [Google Scholar] [CrossRef]
- Banach, J.K.; Żywica, R. A method of evaluating apple juice adulteration with sucrose based on its electrical properties and RCC model. Sustainability 2021, 13, 6716. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar]
- Ringnér, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef]
- Gąsiorowski, H. (Ed.) Pszenica. Chemia i Technologia (Wheat. Chemistry and Technology); PWRiL: Poznań, Poland, 2004; ISBN 83-09-01787-1. (In Polish) [Google Scholar]
- Lafiandra, D.; Riccardi, G.; Shewry, P.R. Improving cereal carbohydrates for diet and health. J. Cereal Sci. 2014, 59, 312–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Dragov, R. Gene action for grain protein content in durum wheat. Acta Agric. Slov. 2021, 117, 1–8. [Google Scholar] [CrossRef]
- Obuchowski, W.; Makowska, A.; Łuczak, M.; Sulewska, H. Agrotechniczne i logistyczne aspekty uprawy pszenicy durum w Polsce (Agrotechnical and logistic aspects of durum wheat cultivation in Poland). Przegląd Zbożowo-Młynarski 2007, 10, 33–34. (In Polish) [Google Scholar]
- Giuliani, M.M.; Giuzio, L.; De Caro, A.; Flagella, Z. Relationships between nitrogen utilization and grain technological quality in durum wheat. II. Grain yield and quality. Agron. J. 2011, 103, 1668–1675. [Google Scholar]
- Mefleh, M.; Conte, P.; Fadda, C.; Giunta, F.; Piga, A.; Hassoun, G.; Motzo, R. From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. J. Sci. Food Agric. 2018, 99, 2059–2067. [Google Scholar] [CrossRef] [PubMed]
- Żuk-Gołaszewska, K.; Majewska, K.; Tyburski, J.; Gołaszewski, J. Physical and technological properties of kernels and flour made from spelt grown in an organic farming system in north-eastern Poland. J. Cereal Sci. 2018, 79, 501–507. [Google Scholar] [CrossRef]
- Żywica, R. Zjawiska Elektryczne w Produkcji i Towaroznawczej Ocenie Jakości Mięsa (Electrical Phenomena in Production and Commodity Evaluation of Meat Quality); Universiti of Warmia and Mazury in Olsztyn: Olsztyn, Poland, 2010; pp. 9–248. (In Polish) [Google Scholar]
- Rossini, F.; Provenzano, M.E.; Sestili, F.; Ruggeri, R. Synergistic effect of sulphur and nitrogen in the organic and mineral fertilization of durum wheat: Grain yield and quality traits in the Mediterranean environment. Agronomy 2018, 8, 189. [Google Scholar] [CrossRef] [Green Version]
- Marinaccio, F.; Blandino, M.; Reyneri, A. Effect of nitrogen fertilization on yield and quality of durum wheat cultivated in Northern Italy and their interaction with different soils and growing seasons. J. Plant Nutr. 2016, 39, 643–654. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Sacco, A.; Mauro Senatore, M.; Mori, M. Organic versus mineral fertilization: Assessing of yield and quality of durum wheat in marginal lands. Ital. J. Agron. 2021, 16, 1855. [Google Scholar] [CrossRef]
- Cseresnyés, I.; Mikó, P.; Kelemen, B.; Füzy, A.; Parádi, I.; Takács, T. Prediction of wheat grain yield by measuring root electrical capacitance at anthesis. Int. Agrophysics 2021, 35, 159–165. [Google Scholar] [CrossRef]
- Patel, M.M.; Patel, I.C.; Patel, P.H.; Bathar, V.M.; Tikka, S.B.S. Effect of thiourea on growth, yield and economics of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) under rainfed conditions. J. Arid. Legumes 2006, 3, 22–24. [Google Scholar]
- Nilesh, G.; Chakrborti, P.; Rai, A.K.; Gupta, P.C. Effect of plant growth regulator on growth response and yield component in wheat (Triticum aestivum L.). Crop Res. J. Agric. Sci. 2012, 3, 204–208. [Google Scholar]
- Ropelewska, E.; Zapotoczny, P.; Bożek, K.S.; Żuk-Gołaszewska, K. Thermal, physical and morphological properties of durum wheat. J. Consum. Prot. Food Saf. 2019, 14, 131–137. [Google Scholar]
Parameters | Without the Application of Growth Regulator (WGR) | With the Application of Growth Regulator (GR) | Significant Differences WGR–GR | ||||||
---|---|---|---|---|---|---|---|---|---|
Fertilization [kg·ha−1] | |||||||||
0N | 80N | 120N | 0N | 80N | 120N | 0N | 80N | 120N | |
Starch [%d.m.] | 64.62 ± 0.27 c | 62.01 ± 0.32 b | 60.90 ± 0.24 a | 65.12 ± 0.34 c | 63.44 ± 0.28 b | 61.85 ± 0.05 a | NS | p < 0.01 | p < 0.01 |
Lipid [%d.m.] | 2.43 ± 0.05 aA | 2.31 ± 0.01 b | 2.22 ± 0.09 bB | 2.51 ± 0.01 c | 2.11 ± 0.05 a | 2.24 ± 0.03 b | p < 0.05 | p < 0.01 | NS |
Protein [%d.m.] | 12.717 ± 0.530 a | 14.157 ± 0.388 b | 14.425 ± 0.382 b | 11.450 ± 0.418 a | 14.022 ± 0.504 bB | 15.825 ± 0.851 Cd | 0.01 | NS | NS |
Fmax [N] | 131.87 ± 17.98 a | 126.47 ± 10.66 a | 122.87 ± 19.88 a | 120.90 ± 9.08 a | 120.51 ± 14.22 a | 134.38 ± 9.57 b | NS | NS | NS |
L* | 53.92 ± 0.54 a | 53.27 ± 0.79 a | 52.11 ± 0.64 a | 53.49 ± 1.04 a | 52.93 ± 0.48 a | 52.84 ± 0.79 a | NS | NS | NS |
a* | 8.78 ± 0.72 a | 8.92 ± 0.55 a | 8.88 ± 0.21 a | 8.67 ± 0.71 a | 8.82 ± 0.60 a | 8.69 ± 0.64 a | NS | NS | NS |
b* | 28.42 ± 0.51 a | 28.39 ± 0.57 a | 27.91 ± 0.54 a | 28.14 ± 0.63 a | 27.35 ± 0.74 a | 27.87 ± 0.62 a | NS | NS | NS |
Frequency | Without the Application of Growth Regulator (WGR) | With the Application of Growth Regulator (GR) | Significant Differences WGR–GR | ||||||
---|---|---|---|---|---|---|---|---|---|
Fertilization [kg·ha−1] | 0N | 80N | 120N | ||||||
0N | 80N | 120N | 0N | 80N | 120N | ||||
Z [Ω] | |||||||||
1 kHz | 16.00 ± 5.29×106 b | 14.50 ± 1.09×106 b | 11.50 ± 1.08×106 a | 12.50 ± 1.76×106 a | 14.30 ± 2.15×106 Cc | 11.5 ± 3.74×106 aB | p < 0.05 | NS | NS |
100 kHz | 1.65 ± 0.15×105 a | 3.36 ± 0.12×105 c | 2.87 ± 0.05×105 b | 2.92 ± 0.34×105 a | 3.27 ± 0.12×105 b | 2.97 ± 0.14×105 ca | p < 0.01 | NS | p < 0.05 |
1 MHz | 2.85 ± 0.50×104 a | 3.81 ± 0.12×104 c | 3.32 ± 0.12×104 b | 3.30 ± 0.37×104 a | 3.70 ± 0.15×104 b | 3.37 ± 0.16×104 ca | p < 0.05 | NS | NS |
Cp [F] | |||||||||
1 kHz | 1.19 ± 0.05×10−11 b | 1.06 ± 0.09×10−11 a | 1.32 ± 0.13×10−11 c | 1.23 ± 0.19×10−11 ca | 1.07 ± 0.17×10−11 a | 1.21 ± 0.09×10−11 b | NS | NS | p < 0.05 |
100 kHz | 5.42 ± 0.26×10−12 b | 4.71 ± 0.16×10−12 a | 5.46 ± 0.11×10−12 cb | 5.47 ± 0.68×10−12 ca | 4.84 ± 0.19×10−12 a | 5.33 ± 0.26×10−12 b | NS | NS | NS |
1 MHz | 4.83 ± 0.23×10−12 cb | 4.18 ± 0.12×10−12 a | 4.78 ± 0.17×10−12 b | 4.87 ± 0.58×10−12 a | 4.29 ± 0.18×10−12 a | 4.71 ± 0.23×10−12 b | NS | NS | NS |
Cs [F] | |||||||||
1 kHz | 1.32 ± 0.06×10−11 a | 1.15 ± 0.09×10−11 b | 1.46 ± 0.15×10−11 c | 1.37 ± 0.21×10−11 a | 1.17 ± 0.02×10−11 b | 1.33 ± 0.11×10−11 ca | NS | NS | p < 0.05 |
100 kHz | 5.52 ± 0.26×10−12 a | 4.80 ± 0.17×10−12 b | 5.61 ± 0.08×10−12 ca | 5.57 ± 0.71×10−12 a | 4.93 ± 0.18×10−12 b | 5.41 ± 0.26×10−12 ca | NS | NS | p < 0.05 |
1 MHz | 4.86 ± 0.24×10−12 a | 4.19 ± 0.13×10−12 b | 4.82 ± 0.16×10−12 ca | 4.90 ± 0.58×10−12 a | 4.32 ± 0.18×10−12 b | 4.71 ± 0.21×10−12 ca | NS | NS | NS |
Quality Parameters | Z1 kHz | Z100 kHz | Z1 MHz | Cs1 kHz | Cs100 kHz | Cs1 MHz | Cp1 kHz | Cp100 kHz | Cp1 MHz |
---|---|---|---|---|---|---|---|---|---|
WGR + 0N | |||||||||
Lipid [%d.m.] | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Protein [%d.m.] | ** | *** | * | *** | *** | * | 0.129 | *** | *** |
Starch [%d.m.] | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Hardness [N] | *** | *** | *** | ** | * | * | *** | *** | *** |
L* | ** | ** | ** | 0.734 | 0.943 | 0.763 | ** | ** | ** |
a* | 0.738 | 0.864 | 0.898 | 0.842 | 0.916 | 0.962 | 0.774 | 0.920 | 0.935 |
b* | * | * | * | 0.218 | 0.235 | 0.249 | * | * | * |
WGR + 80N | |||||||||
Lipid [%d.m.] | 0.515 | *** | *** | 0.945 | ** | *** | 0.462 | *** | *** |
Protein [%d.m.] | 0.319 | *** | *** | 0.994 | *** | *** | 0.953 | *** | *** |
Starch [%d.m.] | 0.138 | *** | *** | 0.914 | *** | *** | 0.165 | *** | *** |
Hardness [N] | 0.349 | * | * | 0.457 | * | * | ** | * | * |
L* | 0.367 | 0.089 | 0.075 | 0.436 | 0.083 | 0.077 | 0.690 | 0.830 | 0.686 |
a* | 0.289 | 0.718 | 0.727 | 0.257 | 0.729 | 0.714 | 0.871 | 0.996 | 0.960 |
b* | 0.092 | 0.117 | 0.126 | 0.100 | 0.122 | 0.123 | 0.248 | 0.340 | 0.369 |
WGR + 120N | |||||||||
Lipid [%d.m.] | 0.992 | 0.435 | *** | 0.691 | *** | *** | 0.983 | *** | ** |
Protein [%d.m.] | 0.895 | 0.929 | *** | 0.777 | *** | 0.570 | 0.865 | * | 0.793 |
Starch [%d.m.] | 0.989 | 0.953 | *** | 0.957 | *** | 0.114 | 0.983 | *** | 0.537 |
Hardness [N] | 0.591 | *** | * | *** | *** | *** | *** | *** | *** |
L* | 0.770 | 0.965 | 0.651 | 0.171 | 0.845 | 0.854 | 0.301 | 0.145 | 0.089 |
a* | 0.605 | 0.549 | 0.411 | 0.380 | 0.578 | 0.305 | 0.779 | ** | ** |
b* | 0.700 | 0.916 | 0.796 | 0.988 | 0.975 | 0.974 | 0.928 | 0.780 | 0.819 |
Quality Parameters | Z1 kHz | Z100 kHz | Z1 MHz | Cs1 kHz | Cs100 kHz | Cs1 MHz | Cp1 kHz | Cp100 kHz | Cp1 MHz |
---|---|---|---|---|---|---|---|---|---|
GR + 0N | |||||||||
Lipid [%d.m.] | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Protein [%d.m.] | *** | ** | ** | 0.242 | 0.361 | 0.437 | 0.123 | 0.725 | ** |
Starch [%d.m.] | *** | *** | ** | *** | *** | *** | *** | *** | *** |
Hardness [N] | 0.762 | 0.939 | 0.649 | 0.722 | 0.757 | 0.711 | 0.973 | 0.742 | 0.699 |
L* | * | 0.132 | ** | 0.206 | 0.185 | 0.202 | 0.143 | 0.190 | 0.196 |
a* | 0.499 | 0.548 | 0.418 | 0.580 | 0.570 | 0.577 | 0.515 | 0.572 | 0.577 |
b* | 0.479 | 0.250 | 0.447 | 0.977 | 0.911 | 0.965 | 0.678 | 0.928 | 0.993 |
GR + 80N | |||||||||
Lipid [%d.m.] | ** | *** | 0.086 | *** | *** | ** | ** | *** | ** |
Protein [%d.m.] | 0.201 | *** | 0.084 | * | * | * | 0.774 | ** | ** |
Starch [%d.m.] | 0.073 | *** | 0.356 | *** | ** | * | *** | ** | * |
Hardness [N] | 0.312 | ** | * | 0.096 | ** | *** | 0.091 | ** | *** |
L* | 0.263 | * | 0.761 | * | 0.071 | 0.191 | * | 0.109 | 0.233 |
a* | 0.431 | * | 0.093 | 0.095 | * | * | 0.092 | * | * |
b* | * | 0.586 | 0.099 | 0.584 | 0.767 | 0.756 | 0.666 | 0.787 | 0.780 |
GR + 120N | |||||||||
Lipid [%d.m.] | 0.484 | *** | *** | *** | *** | ** | 0.627 | ** | *** |
Protein [%d.m.] | *** | *** | *** | * | * | * | 0.439 | ** | *** |
Starch [%d.m.] | 0.642 | *** | *** | *** | ** | * | 0.962 | ** | *** |
Hardness [N] | 0.262 | 0.123 | 0.128 | * | *** | *** | 0.239 | 0.137 | 0.122 |
L* | * | *** | *** | 0.060 | *** | *** | ** | *** | *** |
a* | 0.900 | 0.641 | 0.843 | 0.267 | * | * | 0.906 | 0.823 | 0.850 |
b* | *** | *** | *** | 0.708 | * | ** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banach, J.K.; Majewska, K.; Grzywińska-Rąpca, M.; Żuk-Gołaszewska, K. The Use of a Non-Invasive Electrical Method to Assess the Chemical Composition, Hardness, and Color of Durum Wheat Grain Cultivated in an Integrated System. Sustainability 2022, 14, 3834. https://doi.org/10.3390/su14073834
Banach JK, Majewska K, Grzywińska-Rąpca M, Żuk-Gołaszewska K. The Use of a Non-Invasive Electrical Method to Assess the Chemical Composition, Hardness, and Color of Durum Wheat Grain Cultivated in an Integrated System. Sustainability. 2022; 14(7):3834. https://doi.org/10.3390/su14073834
Chicago/Turabian StyleBanach, Joanna Katarzyna, Katarzyna Majewska, Małgorzata Grzywińska-Rąpca, and Krystyna Żuk-Gołaszewska. 2022. "The Use of a Non-Invasive Electrical Method to Assess the Chemical Composition, Hardness, and Color of Durum Wheat Grain Cultivated in an Integrated System" Sustainability 14, no. 7: 3834. https://doi.org/10.3390/su14073834
APA StyleBanach, J. K., Majewska, K., Grzywińska-Rąpca, M., & Żuk-Gołaszewska, K. (2022). The Use of a Non-Invasive Electrical Method to Assess the Chemical Composition, Hardness, and Color of Durum Wheat Grain Cultivated in an Integrated System. Sustainability, 14(7), 3834. https://doi.org/10.3390/su14073834