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Abstract: The risk of forest and pasture fires is one of the research topics of interest around the world.
Applying precise strategies to prevent potential effects and minimize the occurrence of such incidents
requires modeling. This research was conducted in the city of Sanandaj, which is located in the
west of the province of Kurdistan and the west of Iran. In this study, fire risk potential was assessed
using weights of evidence (WoE) and statistical index (SI) models. Information about fire incidents
in Sanandaj (2011–2020) was divided into two parts: educational data (2011–2017) and validation
data (2018–2020). Factors considered for potential forest and rangeland fire risk in Sanandaj city
included altitude, slope percentage, slope direction, distance from the road, distance from the river,
land use/land cover (LULC), average annual rainfall, and average annual temperature. Finally, in
order to validate the two models used, the receiver operating characteristic (ROC) curve was used.
The results for the WoE and SI models showed that about 62.96% and 52.75% of the study area,
respectively, were in the moderate risk to very high risk classes. In addition, the results of the ROC
curve analysis showed that the WoE and SI models had area under the curve (AUC) values of 0.741
and 0.739, respectively. Although the input parameters for both models were the same, the WoE
model showed a slightly higher AUC value compared to the SI model, and can potentially be used
to predict future fire risk in the study area. The results of this study can help decision makers and
managers take the necessary precautions to prevent forest and rangeland fires and/or to minimize
fire damage.

Keywords: elevation; forecasting; geographic information system; Kurdistan; land use/land cover;
statistical index; Sanandaj county; weights of evidence; wildfire risk; Zagros forests

1. Introduction

Wildfires are the result of interactions between several environmental factors, includ-
ing fuel availability, weather, topography, and a source of ignition. When factors such as
low humidity, strong wind, topography, and wind direction are favorable, a fire can rapidly
develop if the quantity and availability of fuel are appropriate [1]. Forest fire risk is a term
used to describe the possibility of vegetation (i.e., land cover) causing the ignition and
spread of a fire through fuel characteristics, such as the type, load, and moisture content [2].
In other words, the risk of wildfire also depends on the characteristics of vegetation, such
as forests with many oil trees, vines, or branches with dry leaves [3]. The terms risk, danger,
and hazard have been used in the literature since the beginning of modern fire science in
the 1920s [4,5].

Wildfire risk is considered one of the main reasons for the decline of forest ecosystems
around the world, which can occur naturally or as a result of human intervention [6].
Wildfire is a critical Earth-system process that has significant influences on both terrestrial
and atmospheric conditions, especially in relation to vegetation dynamics, biogeochemical
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cycling, and atmospheric chemistry [7]. As a common and prevalent disturbance that
affects the environment, economy, and social life, forest fires not only damage the trees,
but also the whole forest ecosystem by altering the vegetation composition, structure, and
biogeochemical cycle [8]. Proper planning is needed to reduce fire risk, restore the fire
regime, and manage forest fires effectively.

Despite the impacts of wildfire in terms of degradation, such as the reduction of plant
communities and biodiversity, which can accelerate deforestation processes [9], wildfires
also play essential roles in many forest processes. For example, forest fires influence the
composition and successional stages [10], and they act as a selective factor for the traits
of plants [11]. Forest fires have an impact on many other Earth-system processes, such as
the carbon and nutrient cycles, the atmospheric cycle regulating the oxygen content of the
atmosphere, and the evolutionary processes of many plant species [12]. Other advantages
of forest fires are the elimination of harmful microorganisms, fungi, insects, and herbal
diseases, as well as soil enrichment with the nutrients and minerals released from the
remaining ash [13].

According to the literature, the spatial factors affecting wildfires are climatic factors,
such as wind speed, wind direction, rainfall, humidity, temperature, solar radiation, and
seasonal changes [14,15], morphological factors, such as slope, aspect, curvature, indicators
of topography, altitude, distance from the river, distance from human-made facilities, and
soil moisture and texture [16], and parameters related to the type of fuel, including the
condition and type of tree, type of land cover, and cover density [17–20].

In 2015, approximately 98 million hectares of forest around the world were affected
by fires [21]. Based on the results of some studies, the occurrence of future climate change
and its effects on rainfall patterns and the occurrence of drought will intensify forest
fires in many places [20,22,23], which, in turn, increases the demand for managers to
adopt fire risk reduction strategies in the face of future climate change. Numerous factors
increase the incidence of forest fires around the world, such as tourist imprudence by
lighting campfires in forests, deliberate fires used to convert forest lands into agricultural
lands [24,25], traditional agricultural practices, such as residual burning, lightning-induced
fires [20,26], droughts, hot winds [27,28], smoking [29], and the release of bottles or broken
glass, which work as a collective lens that focuses the sun light [30].

The Zagros forests are located in the west and southwest of Iran and along the Zagros
mountains. The area of these forests is about six million hectares, covering about 44% of
Iran’s forests. In the Zagros forests, there are about 170 species of trees and shrubs. Quercus
libani, Quercus infectoria, Pistacia atlantica, Amygdalus, Crataegus, and Celtis australis
are important wood species in the Zagros region [31].

According to a report published by the Natural Resources and Watershed Management
Organization of Iran, forest and rangeland fires occur frequently, and fires in the forests
of Iran have destroyed a large part of these valuable ecosystems in recent years. Iran is
one of the lowest-forest-cover countries in the world. Therefore, the investigation of the
consequences of forest fires in the forests of Iran and the recognition of fire suppression
methods for fires in these forests are essential in order to present a solution for decreasing
these fires [32]. Reports indicate the occurrence of 1124 cases of fires and the burning of
7364 hectares of forests and rangelands of the Kurdistan province between only 2007 and
2016 [33].

Herein, the study area is a part of the Zagros forests of western Iran, which are
dominated by oak trees. In recent years, the area of the Zagros forests has decreased, which
is mainly due to climate change. The effect of climate change on reducing the area of the
Zagros forests has been confirmed in various studies [34,35]. Furthermore, climate change
and the rise of the mean annual temperature have increased the fire rate in forests and
pastures. It seems that the fire affects the vegetation and changes the forest stand structures.
The results of the study in [36] showed that, a decade after the occurrence of a fire, the
share of oak trees was decreased, while the proportions of Amygdalus and Crataegus
were increased.
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As reported by forest managers, forest fire models depend on the stages of the fire:
pre-fire planning (fire risk modeling), fire control (fire behavior modeling), and post-fire
assessment (effects of fire and economic models) [26,37]. Sensitivity zoning is a vital
component of forest fire management. The methods used to assess potential fire risk can be
divided into four categories: (i) statistical and data-driven models, (ii) machine learning
models, (iii) multi-criteria decision models, and (iv) hybrid models. The results show that
data-driven models are the most common methods for assessing the potential of forest fire
risk, but hybrid models are the most accurate methods [38].

Common methods used to potentially model the risk of forest and rangeland fires
include hierarchical analysis [39,40], particle swarm optimization [41], the statistical in-
dex (SI) [40], differential evolution algorithm [41], functional data analysis (FDA) [42],
generalized linear model (GLM) [43], support vector machine (SVM) and artificial neural
network (ANN) [43], random forest [43,44], frequency ratio [45,46], fuzzy analytic net-
work process [47], VIKOR and Topsis [48], definitive evidence function [2], weights of
evidence (WoE) [46,49], logistic regression [41,50], spectral and wavelet analyses [15,51],
dynamic four-day scale forecast modeling [5], and complex mathematical models, such as
elmfire [52]. Each method has its own advantages and weaknesses.

Fires in the Zagros forests have been studied by many researchers. In research con-
ducted in the Sardasht forests, it was shown that wildfires have a higher chance of occurring
between June and September [53]. In another study, fire danger maps were created using
an SVM, GLM, FDA, and random forest. The results of that study showed that the FDA
(0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps [54].
Jaafari et al. [55] modeled wildfire probability across the Zagros mountains of Iran using
the WoE model. The findings of that study clearly demonstrated that the probability of a
fire was strongly dependent on the topographic characteristics of landscapes and, perhaps
more importantly, human infrastructure and associated human activities.

The main advantage of the WoE and SI models is that they calculate the weighted
values of the factors based on a statistical formula, so they avoid the subjective choice of
weighting factors. In addition, input maps with missing data (incomplete coverage) can
be accommodated in the models, which does not significantly impact the results [40,56].
However, the main shortcoming of the WoE and SI models is that the weight values
calculated for different areas are not comparable in terms of the degree of hazard [56].

In Iran, wildfires are seen as a significant threat to forests and pastures. Some estimates
suggest that an average of 400 fire events occur per year, burning over 6000 hectares of
land [57]. This trend is expected to continue and may even increase in the future due to
ongoing climate and land-use changes, as well as increasing human activities [58]. On
the other hand, and based on many surveys that have been conducted, the application
of the WoE and SI models in forest fire susceptibility mapping is novel. Therefore, this
research was conducted to evaluate the WoE and SI models for wildfire susceptibility
mapping in Sanandaj county. In other words, the aim of this study was to identify high-risk
and low-risk areas of wildfires in the study area using the WoE and SI models in order
to manage and reduce the risk of fire. Maps of factors affecting fires, including altitude,
slope percentage, slope direction, distance from the road, distance from the river, land
use/land cover (LULC), average annual rainfall, and average annual temperature, were
prepared using the available statistical data (2011–2020) and a geographic information
system (GIS). Then, with the help of mathematical functions (WoE and SI models), a fire
potential map for the area was forecasted, and finally, the two models were compared using
their ROC curves.

The rest of the paper is organized as follows. In Section 2, the study region, datasets,
preprocessing, methods, and evaluation criteria are described. The results are demonstrated
in Section 3. The results are discussed and compared with those of other similar studies in
Section 4. Finally, Section 5 concludes this paper.
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2. Materials and Methods
2.1. Study Region

This research was conducted in Sanandaj city, which is located in the west of Kurdistan
province and the west of Iran. With an area of 231,721 hectares, Sanandaj city is located
between 47◦14′41′′ and 46◦24′55′′ east longitude and 35◦38′25′′ to 35◦2′26′′ north latitude.
The location of the study area in Kurdistan and Iran is shown in Figure 1. The areas of
the forests and rangelands of Iran are 17,649,890 and 83,309,167 hectares (ha), respectively;
among these, the areas of forests and rangelands of Kurdistan province are 256,794 and
1,182,214 ha, respectively [59]. The study region has a Mediterranean climate, and with the
onset of summer, many scattered fires occur in pastures and forests. In recent years, climate
change has had a negative impact, and the number and extent of fires have increased.
Therefore, the development of accurate strategies for preventing potential effects and
minimizing the occurrence of such incidents requires modeling.

Figure 1. Map of the study region showing the location of Sanandaj in Kurdistan and Iran.

2.2. Dataset and Preprocessing

Data related to fire incidents in Sanandaj city (2011–2020) were provided by the Natural
Resources and Watershed Management Department of Sanandaj city. In the first step, the
fire incidents were divided into two parts: educational data (2011–2017) and validation
data (2018–2020). In order to prepare a fire risk zoning map, the factors affecting the
occurrence of fires in the area were first identified. Factors considered for potential forest
and rangeland fire risk in Sanandaj city included altitude, slope percentage, slope direction,
distance from the road, distance from the river, LULC, average annual rainfall, and average
annual temperature [14,16].

Topographic variables, such as altitude, slope, and aspect, affect the behavior and
speed of forest fires’ spread [60]. These topographic variables were derived from a digital
elevation model (DEM) with a resolution of 12.5× 12.5 square meters, which was down-
loaded from the advanced land-observing satellite (ALOS PALSAR) and from the Alaska
satellite facility [61].

2.3. Methods
2.3.1. Maps and Layers

One of the effective factors in the occurrence of forest and pasture fires is altitude; with
increasing altitude, fire risk decreases [62]. The height class maps were obtained by using
the digital model of the height with a pixel size of 12.5× 12.5 square meters. There is a direct
relationship between the land slope factor and fire risk potential; with increasing land slope,
fire risk increases [62]. These maps were prepared based on the DEM and were classified
into six classes. An aspect map is an important factor in wildfire occurrence. South-facing
aspects receive more sunlight, higher temperatures, robust winds, low humidity, and low
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fuel moisture in the Northern Hemisphere [27], which could potentially be in favor of fire
occurrences. These maps were also prepared based on the DEM and were classified into
nine classes.

The LULC layer was prepared by the Forests and Rangelands Organization. The
LULC layer was also divided into different classes based on the different uses. Climatic
variables are among the main factors affecting the occurrence of forest fires because they
affect the quality and quantity of flammable materials [13,26]. There is a direct relationship
between temperature and fire risk; the higher the temperature, the higher the fire risk [63].
Meteorological data on temperature and precipitation were provided by the Meteorological
Organization. To prepare isothermal and precipitation maps, 20-year meteorological data
(2001–2020) from the synoptic meteorological and climatological stations of Kurdistan
province were used, and the desired maps were prepared using the inverse-distance-
weighted (IDW) interpolation method. Maps of distances from rivers and roads were
prepared using a 1:50,000 digital topographic map and through the application of distance
functions (Figure 2).

2.3.2. Weights of Evidence (WoE)

The evidence weighting or conditional probability method was first developed to
identify and explore mineral deposits [64]. The evidence weighting method is a data-
driven method used to combine datasets, and it is based on the use of a linear form of
the Bayesian probability model for the estimation of the relative importance of evidence
using statistics [65]. Let Npix1 be the number of pixels with fire in the class, let Npix2 be the
number of pixels with fire in the map minus the number of pixels with fire in the class, let
Npix3 be the number of pixels in the class minus the number of pixels with fire in the class,
and let Npix4 be the total number of pixels in the map minus the number of pixels with fire
in the map minus the number of pixels in the class plus the number of pixels with fire in
the class. The weights in the WoE are determined with Equations (1) and (2) [66,67].

W+
i = ln

( Npix1

Npix1 + Npix2

/ Npix3

Npix3 + Npix4

)
(1)

W−i = ln
(

Npix2

Npix1 + Npix2

/ Npix4

Npix3 + Npix4

)
(2)

A positive weight W+ indicates that there is a causal agent at the site of the fire, and the
magnitude of this weight indicates the correlation between that agent and the occurrence
of the fire. However, a negative weight W− indicates the absence of the desired factor
at the site of the fire, indicating a negative level of correlation. The difference between
positive and negative weights indicates the magnitude of the spatial relationship between
the causative agent and the occurrence of a fire, as calculated with Equation (3) [68].

WF = W+ −W−. (3)

To obtain the final weight of each factor, the positive and negative weights of the
various classes of each factor are added together. If the weight of the factor is positive, it
plays a role in the occurrence of a fire, and if the weight of the factor is negative, it indicates
that the factor has no effect on the occurrence of a fire. Some factors also have a small effect
on the occurrence of fires, and their weight is zero or close to zero. From the weights, a
weighted thematic map was obtained, and a fire prediction map was calculated.
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Figure 2. Wildfire ignition factors used in this study: (a) aspect, (b) slope, (c) elevation (m), (d) LULC,
(e) rainfall (mm), (f) temperature (◦C), (g) distance to rivers (m), and (h) distance to roads (m) maps.
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2.3.3. Statistical Index (SI)

The statistical index method is a two-variable statistical method that was first proposed
by van Westen [69] for landslide sensitivity maps. Definite weight values for each of the
classes of parameters affecting the occurrence of fires are obtained as the natural logarithm
of the fire density in each class divided by the fire density in the whole map. The statistical
index method is a bi-variate statistical method. Certain weight values for each of the classes
of effective parameters in the fire risk zoning are obtained as the natural logarithm of the
fire density in each class divided by the fire density in the whole map. The formula of the
SI model is given by

WSI = ln
( Fij

Pij

/ FT

PT

)
, (4)

where WSI is the weight given to a certain class i of factor j; Fij is the number of forest fires
in a certain class i of factor j; FT is the total number of forest fires in the study area; Pij is the
number of pixels in a certain class i of factor j; PT is the total number of pixels in the study
area [40]. The values obtained for each class were used in GIS in the relevant layers, and a
fire risk zoning map was obtained. Finally, the prepared map was divided into five hazard
classes, namely, very low, low, moderate, high, and very high risk.

2.4. Evaluation Criteria

In this study, using the receiver operating characteristic (ROC) curve, the performance
of each model was investigated. The ROC curve is the most widely used statistical tech-
nique for assessing the efficiency of models [70]. The ROC curve is a graph technique
for examining the trade-off between specificity and sensitivity, with the x-axis showing a
false-positive rate (1-specificity) and the y-axis showing a true-positive rate (sensitivity).
The area under the ROC curve is called the area under the curve (AUC), and the model
with the highest AUC has the highest relative performance. An AUC of 0.5 is equivalent
to a neutral model, and the closer this value is to one, the higher the model efficiency [71].
The interpretation of ROC values includes negligible, poor, moderate, good, very good,
and excellent with ROC values of 0 < AUC ≤ 0.5, 0.5 < AUC ≤ 0.6, 0.6 < AUC ≤ 0.7,
0.7 < AUC ≤ 0.8, 0.8 < AUC ≤ 0.9, and 0.9 < AUC, respectively [72,73].

3. Results

The results of the relationship between each of the effective factors and the occurrence
of fires using the WoE and SI models are presented in Table 1. As can be seen, the southeast
(1.43) and flat (0.0) directions had the highest impact and the lowest impact on fire occur-
rence, respectively. In addition, slopes of 0–7 degrees (1.35) and 14–21 degrees (0.76) had
the highest and lowest impacts on the occurrence of fires, respectively. On the other hand,
the highest number of fires was observed at the altitude floor of 1218–1500 m (2.07), and the
lowest number of fires was observed at the altitude floor of more than 2500 m (0.00). As the
distance from the river increased, the probability of fires increased, and the highest number
of fires was observed at a distance of more than 1200 m (1.12). In addition, according to
the results of weighting, there was an inverse relationship between the distance from the
road and the potential for fire, i.e., the shorter the distance from the road, the higher the
probability of a potential fire. Examination of the LULC map showed that fires occurred
more in lands with urban use (2.41), and then agricultural use (1.26). The highest incidence
of fires was observed in rainfall classes of 480–510 mm (1.37), and the lowest incidence of
fires was observed in classes with the lowest rainfall. The highest positive correlation was
observed between the occurrence of fires and the temperature parameter at temperatures
higher than 40.2 ◦C (1.99).

The fire potential maps obtained by using the WoE and SI models are illustrated in
Figure 3. The areas and percentages of floor areas for potential fire occurrence are listed in
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Table 2. The results of the WoE and SI models showed that about 62.96% and 52.75% of the
study area were in the moderate, high, and very high fire potential classes, respectively.

Table 1. Percentages of numbers of pixels and fire points, as well as the score classes of parameters in
the WoE and SI models.

Factor Class Pixels (%) Fire (%) W+ W− W F WSI

Aspect

Flat 0.00 0.00 0.00 0.00 0.00 0.00
North 0.11 0.12 0.06 −0.01 0.07 1.06

Northeast 0.12 0.12 −0.04 0.01 −0.04 0.96
East 0.13 0.14 0.12 −0.02 0.14 1.13

Southeast 0.13 0.19 0.36 −0.07 0.43 1.43
South 0.13 0.10 −0.28 0.04 −0.31 0.76

Southwest 0.14 0.13 −0.10 0.02 −0.12 0.90
West 0.13 0.09 −0.30 0.04 −0.34 0.74

Northwest 0.11 0.12 0.05 −0.01 0.06 1.05

Slope (degree)

0–7 0.13 0.18 0.34 −0.06 0.41 1.35
7–14 0.24 0.22 −0.09 0.03 −0.12 0.87

14–21 0.28 0.23 −0.23 0.08 −0.30 0.76
21–28 0.23 0.24 0.04 −0.01 0.05 0.99
28–35 0.12 0.13 0.12 −0.02 0.14 1.08
>35 0.04 0.05 0.04 0.00 0.04 0.99

Elevation (m)

1218–1500 0.08 0.17 0.73 −0.10 0.83 2.07
1500–1750 0.27 0.38 0.32 −0.15 0.47 1.37
1750–2000 0.33 0.23 −0.34 0.13 −0.47 0.71
2000–2250 0.22 0.19 −0.12 0.03 −0.16 0.88
2250–2500 0.08 0.03 −1.08 0.06 −1.13 0.34

>2500 0.02 0.00 0.00 0.02 −0.02 0.00

Distance to river (m)

0–300 0.38 0.22 −0.53 0.22 −0.75 1.02
300–600 0.27 0.15 −0.57 0.15 −0.73 0.80
600–900 0.17 0.19 0.11 −0.02 0.13 1.10

900–1200 0.11 0.13 0.16 −0.02 0.18 0.90
>1200 0.07 0.30 1.50 −0.29 1.79 1.12

Distance to road (m)

0–300 0.24 0.39 0.50 −0.23 0.73 1.65
300–600 0.16 0.22 0.31 −0.07 0.38 1.36
600–900 0.10 0.09 −0.02 0.00 −0.02 0.98

900–1200 0.11 0.08 −0.39 0.04 −0.43 0.68
1200–10,600 0.39 0.22 −0.60 0.25 −0.85 0.55

LULC

Agriculture 0.31 0.40 0.24 −0.13 0.37 1.26
Gardening 0.10 0.09 −0.14 0.01 −0.16 0.87

Forest 0.12 0.04 −0.97 0.08 −1.05 0.38
Pasturage 0.45 0.44 −0.03 0.02 −0.05 0.97

Urban 0.01 0.03 0.88 −0.02 0.90 2.41
Water 0.00 0.00 0.00 0.00 0.00 0.00

Rainfall (mm)

389–420 0.02 0.00 0.00 0.02 −0.02 0.00
420–450 0.05 0.02 −1.01 0.03 −1.04 0.36
450–480 0.24 0.22 −0.11 0.03 −0.14 0.90
480–510 0.52 0.71 0.31 −0.51 0.82 1.37
510–540 0.14 0.03 −1.43 0.12 −1.54 0.24
540–570 0.03 0.02 −0.41 0.01 −0.42 0.66
570–611 0.01 0.01 −0.49 0.00 −0.50 0.61

Temperature (◦C)

38.18–38.7 0.03 0.00 0.00 0.03 −0.03 0.00
38.7–39.2 0.09 0.00 0.00 0.10 −0.1 0.00
39.2–39.7 0.26 0.23 −0.13 0.04 −0.17 0.66
39.7–40.2 0.36 0.10 −1.29 0.35 −1.64 0.21
40.2–40.7 0.25 0.67 0.98 −0.81 1.79 1.99
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Figure 3. Maps of the fire hazard potential using the WoE model (left panel) and SI model
(right panel).

Table 2. Area and percentage of area of fire potential classes based on the WoE and SI models.

Classes WoE Area (ha) WoE Area (%) SI Area (ha) SI Area (%)

Very low 34,751 11.79 51,340 17.42
Low 74,398 25.25 87,895 29.83

Moderate 88,162 29.92 76,487 25.96
High 56,852 19.29 54,119 18.37

Very high 40,504 13.75 24,825 8.42

The ROC curve was used to validate the fire potential maps. The AUC values for the
models that were evaluated according to the validation data are presented in Table 3. In
addition, the ROC curve of the models that were evaluated according to the validation data
is illustrated in Figure 4. Of the WoE and SI models under study, the highest accuracy was
attributed to the WoE model (0.741); therefore, in terms of fire potential detection, the WoE
model had a slightly better performance than the SI model.

Figure 4. The ROC curves of the WoE and SI models with respect to the validation data.
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Table 3. AUC values of the models for predicting fire potential.

Validation Data Prediction Model

WoE 0.741
SI 0.739

4. Discussion

As one of the most important causes of natural disturbances in forest ecosystems,
fire has a great impact on forest resources, climate change, and ecological sequences [74].
Knowledge of fire-prone areas with fire potential is essential for regional and logistical
planning, as well as fire prevention and control measures [75]. Herein, the relationship
between each of the effective factors and the points of occurrence of fires was investigated
using the WoE and SI models.

Kayet et al. [76] stated that the highest correlation between fire occurrence and slope
measurement criteria was observed in the southwest and southeast directions. This finding
is consistent with the results of the current study. As was observed, the southeast direction
(1.43) had the greatest impact on the occurrence of fires, which was consistent with the
findings of the study by Hong et al. [77]. The slope plays an important role in fires, and the
speed of a fire tends to increase on steep slopes. The slopes of 0–7 and 28–35 degrees had
the greatest impact on the occurrence of fires, but in the study of Hong et al. [77], a slope of
more than 30 degrees had the greatest impact on the occurrence of fires.

Elevation above sea level affects the extent of a fire by changing the shape of the
front and the process of the spreading of the fire. In a study in Greece, the height and
density of vegetation were found to affect the spread of fires [78]. The highest number
of fires was observed on the lowest elevation floor (1218–1500 m), and the number of
fires decreased with increasing altitude. In the study conducted by Hong et al. [77], the
highest score obtained from the WoE model was observed in the highest elevation class,
which contradicts the results of the current study. In addition, in another study, the highest
score obtained from the weights of evidence model was observed in the middle altitude
class (400–600 m) [46]. In other studies, the highest correlation between fire incidence and
altitude was observed at the lowest elevation [16,76], which was consistent with the results
of the current study.

The vegetation water content is closely related to the forest fire situation, such that
with drought occurrence and the drying of seasonal rivers or an increase in distance from
water sources, such as rivers, vegetation loses its moisture, which leads to conditions that
can potentially increase the chance of fire occurrence [20,79]. According to the results of the
current study, with increasing distance from a river, the probability of fire increased, which
is consistent with the results of the study by Hong et al. [46].

Sensitivity to forest fires is directly related to proximity to roads and footpaths. Road
corridors significantly affect the spatial patterns of human-induced fires [80]. There is
an inverse relationship between the distance from a road and the potential for fire, i.e.,
the longer the distance from the road, the lower the probability of fire. The results of the
study by Hong et al. [46,77] showed that the highest probability of fires occurred on the
floor at the altitude of 500–1500 m. Vegetation characteristics and LULC types are major
and effective factors in fires [16,20,81]. Examination of the LULC map showed that fires
occurred more in urban lands (2.41), and then agricultural lands (1.26). The reason for
this is probably the occurrence of fires in forest parks within the city of Sanandaj. The
results of the study by Hong et al. [77] showed that the highest correlation was between
fire occurrence and forest and residential uses.

The highest score of the models was observed in the middle rainfall classes (480–510 mm),
and the lowest score was observed in the classes with the lowest rainfall. Hong et al. [46]
achieved similar results and stated that the highest correlation between fire occurrence and
rainfall classes was observed in the middle rainfall classes (1200–1300 mm). A direct rela-
tionship was observed between the occurrence of fires and the temperature parameter, such
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that with increasing temperature, the correlation between fire occurrence and temperature
increased. This finding is consistent with the results of the studies by Ahmed et al. [14] and
Hong et al. [46].

In this study, the WoE and SI models were used to assess potential forest and rangeland
fire risk. In a study conducted in Turkey, the potential for fire risk was investigated using
an SI model and a hierarchical analysis approach. The results of this study showed that
the SI model had good performance for potential fire risk [40]. The results of the proposed
models showed that the highest accuracy belonged to the WoE model (0.741); therefore, in
terms of fire potential detection, the WoE model performed slightly better than the SI model.
Sivrikaya et al. [40] examined the performance of hierarchical analysis and SI models for
potential fire risk in Turkey. The results of their study showed that the SI model had good
performance for potential fire risk. Juliev et al. [82] stated that the SI model had a good
performance for potential landslide risk matching, which is consistent with the results of
the present study.

The results of the WoE and SI models in this study showed that about 62.96% and 52.75%
of the study area were in the medium to very high risk classes, respectively. Eugenio et al. [83]
used SI models to map forest fire risk. Their results for Espírito Santo State in Brazil showed
approximately 3.81% low risk, 21.18% medium risk, 30.10% high risk, 41.50% very high
risk, and 3.40% severe forest fire risk, and in total, high, very high, and extreme risk areas
accounted for 78.92% of heat spots. Hong et al. [77] examined the spatial patterns of fire
sensitivity in China. The results of their study showed that the WoE model had good perfor-
mance (0.854) for potential fire risk. In another study conducted in China, Hong et al. [46]
examined the potential for fire risk using frequency ratio, WoE, and linear and quadratic
differential analysis models. The WoE model had the highest yield (2.82). Other researchers
have endorsed the performance of the WoE model for the spatial modeling of hazards.

According to the information related to fires that occurred in Sanandaj city, the oc-
currence of fires in forest parks inside Sanandaj city, as well as in the rangelands and
forest lands on the outskirts of Sanandaj city, was significant. On the other hand, one of
the effective factors in the occurrence of forest fires is population density or proximity to
population centers. Previous studies showed that most forest fires occurred near densely
populated areas of Spain and Portugal [84,85].

5. Conclusions

In this study, WoE and SI models were used to assess potential fire risk in Sanandaj,
Iran. To prepare a fire sensitivity map, information related to the fires that occurred and the
effective factors of these events, including altitude, slope, aspect, LULC, distance from a
river, distance from a road, annual rainfall, and maximum annual temperature, were used.
The results showed that the WoE model (0.741) had slightly better performance than that of
the SI model (0.739) for fire risk. In general, it can be concluded that these two models have
good performance for potential fire risk.

According to the wildfire risk forecasting map, the highest number and density of
forest fires occurred in the lands and forest parks around Sanandaj city, where the human
factor had the greatest role in these fires. Therefore, in order to prevent and deal with
potential hazards due to fires in areas containing natural resources and environments in
Sanandaj city, measures should be taken to increase monitoring in areas with high and
very high fire risk potential, such as by increasing the amount of human resources, creating
firebreaks, and allocating most of the financial resources related to forest and rangeland
firefighting, i.e., by launching an appropriate fire extinguishing system, using modern
technologies and appropriate equipment, and training expert forces. Other strategies for
preventing fires in fields of natural resources and the environment include building a culture
around the importance and use of these national resources. The fire risk potential maps
prepared in this study may be used as a very effective management tool for developing fire
risk reduction strategies and management measures in order to reduce fire events in areas
with high and very high risk of fires.
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