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Abstract: In recent years, online ride-hailing has become an indispensable part of residents’ travel
mode. Therefore, the prediction of online ride-hailing travel demand has become extremely important.
In the era of big data, the application of big data in the field of transportation is becoming more
extensive. Based on the open data of ride-hailing trips in Haikou City, Hainan Province, provided
by the Didi platform and combined with the rainfall data of Haikou City, this paper proposes a
gate recurrent unit (GRU) model considering rainfall factors and rest days factors for short-term
trip demand prediction. The K-fold cross-validation method is adopted to adjust the parameters
of the model to the optimal ones through the training set. The improved GRU model is compared
with the original GRU model and other classic models, and the model is evaluated by root mean
square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R2
score indexes. Finally, it is proved that the GRU model proposed in this paper greatly improves the
prediction accuracy of short-term online ride-hailing travel demand.

Keywords: GRU; rainfall intensity; multiple factors; online ride-hailing travel demand prediction;
big data

1. Introduction

In the era of big data, the use of big data in the transportation industry is becoming
more extensive. Online ride-hailing has become popular across the country and is an
important means of transportation for people because online ride-hailing is more conve-
nient and flexible than bus and metro for passengers. The travel demand prediction of
online ride-hailing has great significance for the development of online ride-hailing [1–4].
Deep learning is a new research direction in the field of machine learning, which is now
widely applied in the field of transportation. Through multi-layer processing, the initial
“low level” features are gradually transformed into “high level” features, and the complex
learning tasks can be completed with simple models. In 1994, Bengio et al. [5,6] looked
into this problem in depth, and found some fairly fundamental factors that make training
recurrent neural networks (RNNs) very difficult. Then, in 1997, Schmidhuber et al. [7]
proposed a long short-term memory (LSTM) neural network, a special RNN, which solves
the problem of long-term dependence of RNNs and can learn long-term dependence in-
formation. In recent years, in the field of transportation, many scholars have used the
LSTM model to predict traffic flow. Luo et al. [8] proposed a spatio-temporal traffic flow
prediction method combining K-nearest neighbor (KNN) and LSTM. KNN is used to select
the adjacent stations that have the closest relationship with the test stations to capture the
spatial characteristics of the traffic flow. LSTM is used to mine the temporal variability of
the traffic flow, and a two-layer LSTM network is used to predict the traffic flow of the
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selected stations. Yang et al. [9] proposed a method to improve LSTM by capturing these
high-impact traffic flow values using an attention mechanism. At the same time, some data
beyond the normal range were smoothed to obtain better prediction results. The results
showed that the prediction model has certain competitiveness in short-term traffic flow
prediction. The gate recurrent unit (GRU) can also be seen as a variant of LSTM, as their
underlying concepts are similar and produce equally impressive results in some cases.
Lu et al. [10] used the data of Didi and Conv-LSTM to forecast the travel demand of online
ride-hailing. Reasonable prediction results can provide data support for vehicle scheduling
and distribution, solve problems such as energy waste and traffic congestion caused by
asymmetry between supply and demand, and maximize the benefits of passengers, drivers,
and ride-hailing platforms. In 2014, Cho et al. [11] proposed the GRU model, which consists
of a two-layer RNN. Wang et al. [12] used LSTM and GRU to forecast vehicle traffic flow
with GPS sampling data in the road network. The results showed that the LSTM and GRU
methods have better prediction performance than the existing autoregressive integrated
moving average (ARIMA) methods. Dai et al. [13] proposed a short-term traffic flow pre-
diction model combining spatiotemporal analysis and GRU. The prediction results of the
proposed model were compared with the actual traffic flow data to verify the effectiveness
of the model. Li et al. [14] combined the transfer learning method to solve the problem of
insufficient online traffic data, adopted the particle filter online training algorithm to reduce
the training time complexity, and used the GRU model to achieve accurate prediction of
satellite network traffic.

Many factors, such as weather conditions, morning and evening rush hours, and
holidays, can affect travel. Therefore, combining various factors to forecast the traffic flow
can make the prediction result more accurate [15–17]. Zhang et al. [18] used GRU model
to predict traffic flow and combined weather factors to make the prediction results more
accurate. Li et al. [19] used different deep-learning models to forecast pedestrian travel in
hazy weather. Liu et al. [20] proposed an hourly passenger-flow prediction model based
on deep learning by using stacked autoencoders (SAE) and a deep neural network (DNN).
Travel characteristics, defined as time characteristics, scene characteristics, and passenger
flow characteristics are inputs in this model. Additionally, experimental results showed
that this method can provide a more accurate and general passenger-flow prediction model
for bus rapid transit (BRT) stations with different passenger-flow distributions. Table 1
summarizes the current literature on online ride-hailing travel demand forecasting.

Table 1. Literature on online ride-hailing travel demand forecasting.

Author, Year Model Consider Influence Factor Consider Multi-Factor

Nejadettehad et al. [21] (2020) RNN No No
Jin et al. [22] (2020) Stacking ensemble learning Yes No

Tian et al. [23] (2020) CNN-LSTM Yes No
Li et al. [24] (2020) ST-transformer Yes No

This paper GRU Yes Yes

There are not much research in the field of online ride-hailing travel demand prediction,
and there is no deep-learning model based on multi factors in the prediction of online
ride-hailing travel demand. Based on the research of the above scholars, in order to fill
the gap in travel demand prediction of online ride-hailing and multi-factor prediction, this
paper proposes a GRU model with multi-factor consideration to predict travel demand of
online ride-hailing. Based on analysis of the data characteristics, this paper proposes a GRU
model considering multiple factors. The weight parameters are adjusted to the optimal by
K-fold cross validation method, and then the model proposed in this paper is evaluated by
various evaluation functions and compared with other models. The purpose of this paper
is to optimize the supply relationship of online car-hailing and make full use of online
car-hailing resources according to the prediction of online car-hailing travel demand. This
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can reduce road traffic pressure and traffic pollution, which is of great significance to the
sustainable development of the city.

2. Data Analysis
2.1. Data Sources and Processing

The data selected in this paper are from the online ride-hailing trip data in Haikou of
Didi Chuxing GAIA Initiative (https://gaia.didichuxing.com, accessed on 26 May 2021).
“Didi Chuxing” has changed the traditional taxi mode and established a modern travel
mode for users in the era of the big mobile internet. Compared with traditional telephone
call and curb call, the birth of the drip taxi has changed the traditional taxi-market pattern,
overturning the concept of curb-block. Using the characteristics of mobile internet, a
combination of online and offline will maximize the passenger taxi experience, change
the traditional ways of taxi drivers and other passengers, save the cost of communication
between drivers and passengers, reduce the empty rate, and maximize savings of resources
and time on both sides of the company. As shown in Figure 1, the area enclosed by red
line is the area of Haikou City. In this paper, we have used the Haikou online ride-hailing
trip data of 1 May 2017 to 1 June 2017 and the hourly rainfall-intensity data of Haikou
City in May, obtained. through Python web crawler. Next, the online ride-hailing trip
characteristics of that month will be analyzed.
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Figure 1. Scope map of Haikou City.

Firstly, the data was cleaned. Data cleaning refers to the final procedure of finding and
correcting identifiable errors in data files, including checking data consistency and dealing
with invalid and missing values. Data cleaning after entry is usually done by computers
rather than by humans. For this paper, there were more than two million pieces of online
car-hailing data in the month. As a medium-sized data storage platform, SQL Server has
the advantages of efficient data processing and flexible background development, which
can analyze the data better. With the SQL database, invalid travel times, longitude, latitude
and other missing values are removed, which will ensure the accuracy of data.

Then, the hourly travel volume of online ride-hailing is calculated by SQL language,
and the hourly travel volume of each day is summed to give the total travel volume of each
day. The number of online ride-hailing trips per day in a month is shown in Figure 2.

https://gaia.didichuxing.com
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Figure 2. Daily number of online ride-hailing trips.

The chart above shows rest days in blue, while the yellow shows weekdays. Since
the travel characteristics of Friday after 2 p.m. are similar to weekends, Friday is divided
into rest days to set the weight. Setting different weights on rest days and working days to
separate them can help the model gain weight information during learning and make the
prediction more accurate. It can be clearly seen that the travel volume of online ride-hailing
on rest days was significantly greater than that on weekdays, indicating that the travel
demand of online ride-hailing on rest days is stronger than that on weekdays.

2.2. Rainfall Data Analysis

China’s meteorological departments classify rainfall according to its intensity [25].
Rainfall intensity refers to the amount of rainfall per unit period of time, which is generally
expressed by the depth of rainfall per unit time. According to the difference in unit
time, there are several different classification methods of rainfall levels; meteorological
departments generally set the unit time as 1 h, 12 h, and 24 h. The classification standards
of rainfall grades in China are shown in Table 2:

Table 2. Classification standards of rainfall grades in China.

Rainfall Level 1 h Rainfall (mm) 12 h Rainfall (mm) 24 h Rainfall (mm)

Light rain ≤2.5 ≤4.9 ≤9.9
Moderate rain 2.6–8 5–14.9 10–24.9

Heavy rain 8.1–16 15–29.9 25–49.9
Torrential rain ≥16.1 ≥30 ≥50

Raw meteorological data include important parameters such as hourly atmospheric
pressure, temperature, mean relative humidity, mean wind speed, and rainfall. The influ-
ence of factors other than rainfall on travel demand is small, so is not considered. This paper
focuses on the influence of rainfall on online ride-hailing travel demand characteristics,
so only hourly rainfall data and the date and time of the corresponding data collection
were extracted. The longitude and latitude of Haikou meteorological station selected in
this paper is 110.25◦ and 20◦. In order to facilitate the research, it was assumed that rainfall
was uniformly distributed during the data collection period.

Additionally, combined with rainfall intensity and online ride-hailing travel data, the
comparison of hourly travel demand was made between 19 May 2017 (Friday with rain),
26 May 2017, and 12 May 2017 (both Friday with no rain). As shown in the figure below,
the black column indicates the intensity of rainfall, while the black broken line indicates
the number of online ride-hailing trips per hour on 19 May.

It can be seen in following Figure 3 that, on this day, the rainfall intensity at 17:00 and
18:00 in the evening was relatively high, reaching the level of moderate rain. Compared with
the other two days, the travel demand for online ride-hailing at this time also significantly



Sustainability 2022, 14, 4083 5 of 15

increased. According to the travel characteristics of online ride-hailing, this paper proposes
an improved model based on the GRU model, which takes into account the factors of
rainfall intensity and rest days.
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3. Model Analysis
3.1. Gate Recurrent Unit

The principle behind the GRU is very similar to LSTM, that is, it uses a gating mecha-
nism to control input, memory, and other information and make predictions at the current
time-step [11]. The GRU has two gates, a reset gate and an update gate. Intuitively, the
reset gate determines how new input information is combined with previous memories,
and the update gate defines the number of previous memories to be saved to the current
time-step. Basically, these two gated vectors determine what information can ultimately be
used as the output of the gated loop unit. These two gating mechanisms are unique in that
they are able to preserve information in long-term sequences without being cleared over
time or removed because it is not relevant to the prediction.

As shown in Figure 4 above. The update gate helps the model determine how much
information from the past should be transferred to the future, or how much information
from the previous time-step and the current time-step should be transferred. This is very
powerful because the model can decide to copy all the information from the past to reduce
the risk of the gradient disappearing. In the time-step t, firstly, we need to calculate the
update gate zt using the following formula:

zt = σ(xtWz + ht−1Uz) (1)

where xt is the input vector of the time t step, the t component of the input sequence X,
which will undergo a linear transformation (multiplied by the weight matrix Wz). ht−1
holds information about the previous time-step t− 1, and it also goes through a linear
transformation. The update adds these two pieces of information into the sigmoid activation
function, thus compressing the activation result to between 0 and 1. The sigmoid function is
similar to the tanh function and is also non-linear, except that the sigmoid function compels
the value into a range of 0 to 1, which helps update or forget information. The sigmoid
function formula is as follows:

Sigmoid(x) =
1

1 + e−x (2)
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Essentially, the reset gate determines how much past information needs to be forgotten,
which we can calculate using the following expression:

rt = σ(xtWr + ht−1Ur) (3)

This expression is the same as the update gate expression, except that the parameters
and uses of the linear transformation are different. As described in the previous update
gate, ht−1 and xt first undergo a linear transformation, and then add the sigmoid activation
function to output the activation value.
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We will now discuss, in detail, how these gates affect the final output. In the use of the
reset gate, the new memory content will use the reset gate to store information related to
the past. Its calculation expression is:

h′t = tanh(xtWh + rt �Uhht−1) (4)

The input xt and the previous time-step information ht−1 first undergo a linear trans-
formation, namely, the right multiplication of the matrices Wh and Uh, respectively. The
Hadamard product of reset gate rt and Uhht−1 is calculated, that is, the product of corre-
sponding elements of rt and Uhht−1. Because the reset gate calculated earlier is a vector of
0 to 1, it measures the size of the gate opening. For example, a gate value of 0 for an element
means that information about that element has been completely forgotten. The Hadamard
product determines what previous information is to be retained and forgotten. The results
of these two parts are then added and put into the hyperbolic tangent activation function.

In the last step, the network needs to compute the ht vector, which will hold the
information of the current cell and pass it to the next cell. In this process, we need to use
the update gate, which determines what information needs to be collected in the current
memory content ht

′ and the previous time-step ht−1. This process can be expressed as:

ht = (1− zt)� h′t + zt � ht−1 (5)

where zt is the activation result of the update gate, which also controls the inflow of
information in the form of gate control. The Hadamard product of zt and ht−1 represents
the information retained by the previous time-step to the final memory. This information,
together with the information retained by the current memory to the final memory, is equal
to the content output by the final gated loop unit.
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In Equations (1)–(5), Wz, Wr, Wh, Uz, Ur and Uh are the weight of each calculation
layer and ht−1 is the output of time t− 1. In addition, ht and xt represent the output and
the input of time t.

3.2. Improved Model

GRU model has good accuracy in the case of less training times or small data sample
size, so the GRU model was adopted based on the sample size in this paper. As shown in
Figure 5 below, the technical roadmap for the improved model proposed in this paper is
as follows:
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Step 1: The data sets are built by time series. The GRU model is a time-series model,
which requires the data set to have a stable time-series, otherwise the time-series model
cannot be established. The data spans from the 1 May 2017 solstice to 1 June 2017, in which,
travel data of a day is calculated according to the hourly travel demand.

Step 2: The factor weights are set. In this paper, two influence factors of online ride-
hailing are selected. One is the rainfall intensity, the other is the off-day factor. The weight
of rainfall intensity factor is set according to millimeters of rainfall per hour. The weight
of seven days a week is set according to the data analysis above. The weight of Monday
to Friday at 2:00 p.m. is 0.2, and the weight of Friday at 2:00 p.m. to Sunday at 12:00 a.m.
is 0.4, among which the weight of holidays is 0.6. Input the two factors and hourly travel
demand data into the GRU model at the same time, and the formula is as follows:

xt =
(

Dh Wr Wd
)

(6)

where xt is the input, Dh, Wr, and Wd, respectively, represent the hourly travel demand
for online ride-hailing, hourly rainfall, and the weight of each hour of the day. The input
dimension of this paper is (744, 2, 4), which expresses the number of rows representing
the input, which is 744, the number of columns, which is 4, and the number of GRU cells,
which is 2.

Step 3: The data sets are divided. The training set is the learning sample data set,
which is mainly used to train the model. The verification set is to adjust the parameters
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of the classifier on the learned model, such as selecting the number of hidden units in
the neural network. Validation sets are also used to determine the network structure or
parameters that control the complexity of the model. The test set is mainly to test the
resolution (recognition rate, etc.) of the trained model. In this paper, the original data set
was divided into training set and test set, and the ratio of training set and test set was 4:1.
The data from 1 May 2017 to 1 June 2017 are sorted according to the time series. The first
80% of the data are the training set and the last 20% are the test set. In addition, The data of
the validation set is the last 10% of the training set.

Step 4: The data is normalized. The original data maintains its original distribution,
and the data values are normalized to a range of 0 to 1. After data normalization, the original
features of the data can be well retained, but the size of the data value is reduced, which is
of great help to model training and prediction. In this paper, the min-max normalization
method is selected to normalize the data. The calculation formula is as follows:

x′ =
x−min(x)

max(x)−min(x)
(7)

where x′ is the normalized data value and x is the real data value.
Step 5: Input the training set into the model for training. According to the training

results of the training set, the parameters of the model and the weight of the model input
are adjusted constantly. In this paper, the K-fold cross-validation method is used [26–28],
and K = 10 is taken without repeated sampling. The training set is randomly divided into
10 pieces. Each time, 1 piece is selected as the validation set, and the remaining 9 pieces
are selected as the training set. The average value of the 10 test results was calculated as
the estimation of the model accuracy and as the performance index of the model under
the current K-fold cross-validation. The schematic diagram of K-fold cross-validation is
shown in Figure 6 below. If the model error is too large (if MAPE > 40% or R2 < 0.8), all
parameters are reset and the training set is re-trained. Through continuous training and
debugging, the optimal parameters and weights are finally determined.
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Through the training of the training set and the adjustment of the model in the above
steps, the final parameters of the model in this paper are determined as follows (Table 3):

Table 3. Detailed description of parameters.

Parameter Value

Number of hidden layers 2

Number of each hidden layer neurons 24

Training times 50

Activation function of hidden recurrent layers tanh

Details of weight parameters

Weight from 12:00 a.m. Monday to 2:00 p.m.
Friday is 0.4

Weight from 2:00 p.m. Friday to 12:00 a.m.
Sunday is 0.6

Weight of holidays is 0.8
Rainfall weights are based on actual rainfall

intensity

Backstep 24

“Number of hidden layers” in Table 3 above indicates the number of hidden layers
of this model. “Number of each hidden layer neurons” indicates the number of neurons
in each hidden layer of the model in this paper. “Training times” indicates the number
of training times in a round of model training. “Activation function of hidden recurrent
layers” indicates the activation function selected by the model. In the selection of activation
function, combined with previous studies, we found that the activation functions of most
GRU models use tanh, relu, and sigmoid functions. When the input of tanh is large or small,
its output is smoother and the gradient is smaller. Then, under the same model conditions,
we have compared the effects of tanh and relu activation functions, and the result is that
tanh has a better effect. “Backstep” indicates the number of previous data learned during
model training.

In this paper, the learning rate of the model is set by the adaptive gradient descent
algorithm. The batch gradient descent algorithm is used to process the whole training set
at the same time, and all samples are used to update its parameters. Since the number of
training sets in this paper is not very large, the code execution speed will not be long when
using the batch gradient descent algorithm, and the accuracy will also be improved.

The hourly weight is set according to the characteristics of online car-hailing demand,
and the hourly weight is input into the model as a feature quantity for the model to learn.

4. Result Analysis
4.1. Selection of the Evaluation Function

In this paper, root mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and decision coefficient R2 score are selected as the
accuracy evaluation indexes to compare these prediction algorithms [29–32].

The root mean square error (RMSE) is the square root of the ratio of the square of the
deviation between the predicted value and the true value to the number of observations
n. In actual measurements, n is always finite, and the true value can only be replaced by
the most reliable (best) value. RMSE ranges from 0 to infinity, and is equal to 0 when the
predicted value is in perfect agreement with the real value. The larger the error, the greater
the value.

The full name of MAE is mean absolute error, which is the mean of the absolute error.
MAE is another commonly used regression loss function. It is the mean of the absolute sum
of the difference between the target value and the predicted value. It represents the mean
error margin of the predicted value, regardless of the direction of the error, and ranges from
0 to infinity. When the predicted value is exactly consistent with the true value, it is equal
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to 0, which is the perfect model. The larger the error, the greater the value. The advantage
of MAE is that it is less sensitive to outliers and more stable as a loss function.

The mean absolute percentage error (MAPE) is one of the most popular metrics used
to evaluate prediction performance. MAPE ranges from 0 to infinity. When the MAPE
value is 0%, it means the model is perfect, while if the MAPE value is greater than 100%, it
means the model is poor. The value of the MAPE alone is meaningless because MAPE is a
relative value, not an absolute value. The MAPE depends on the size of the numbers in the
data. For example, if you have two numbers, one is 100, one is 1, and your predictions are
101 and 2, each with an error of 1, but the MAPE value is bigger and the other is smaller.
Similarly, when the actual value is large, the values of RMSE and MAE will also be large.
Therefore, it is meaningless to look at the values of RMSE and MAE alone; they need to be
compared with other models under the same data.

R2 refers to goodness of fit, and is the fitting degree of the regression line to the
observed value. In deep learning, R2 is usually called the R2 score. The R2 score can be
colloquially understood as using the mean as the error base to see if the prediction error
is greater than or less than the mean base error. The value of the R2 score ranges from 0
to 1. An R2 score of 1 means that the predicted and true values in the sample are exactly
the same without any error. In other words, the model we built perfectly fits all the real
data, and is the best model with the highest R2 score. However, the model is not usually
this perfect, there is always an error, and when the error is small, the numerator is smaller
than the denominator, the model is going to approach 1, which is still a good model, but
as the error gets bigger and bigger, the R2 score is going to get further and further away
from the maximum of 1. If the R2 score value is 0, it means that every predicted value
of the sample is equal to the mean value, and the model constructed is exactly the same
as the mean value model. If the R2 score value is less than 0, it indicates that the model
constructed is inferior to the benchmark model, and the model should be rebuilt.

In Table 4 and the formulae above, n represents the number of data sample, yp is the
value of forecast data, and y is the actual value.

Table 4. Predictive evaluation index formula.

Metric Formula

RMSE RMSE =

√
1
n

n
∑

i=1
(yp − y)2

MAE MAE =
1
n

n
∑
1

∣∣yp − y
∣∣

MAPE MAPE =
100%

n

n
∑

i=1

|y−yp|
|y|

R2 score R2 = 1− ∑n−1
i=0 (yp − y)2

∑n−1
i=0 (y− y)

4.2. The Comparison of Predicted Results

We next analyze the improved GRU model proposed in this paper and the original
GRU model for evaluation indexes. The two models are used to predict the same set of
data, and the parameter values of the two models are the same as those in Table 3.

As shown in Figure 7 below, the black polyline represents the real data of the test set,
while the red and blue polylines represent the test data of the improved GRU model and
the original GRU model, respectively. The abscissa of the figure is the data number of the
test set, which is the number of data in the prediction set sorted by time series, and the
ordinate is the number of travel demand. It is clear that the red line fits better than the
blue, which indicates that the improved GRU model predicts better results than the original
GRU model.
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Figure 8 shows the prediction results of the two models on a rainy day. The figure
above selects the data of the rainy day on 30 May in the test set, in which the red poly-
line is the improved GRU model, the blue polyline is the ordinary GRU model, and the
black column is the rainfall in that hour. It can be seen that the prediction result of the
improved GRU model is better than that of the ordinary GRU model when the rainfall
increases sharply.
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Figure 9 shows the prediction results of the two models on a rest day. This figure
selects the data on Sunday, 28 May. The red polyline is the improved GRU model, and the
blue polyline is the ordinary GRU model. It can be seen that the prediction accuracy of the
improved GRU model on Sunday is also much higher than that of the ordinary GRU model.
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The RMSE, MAE, MAPE, and R2 values of each test set were obtained by making five
predictions for the two models, respectively, and then these evaluation indexes of the two
models were compared. From Table 5, the average value of each evaluation index obtained
from the five prediction results was calculated. By comparing the average values of each
index of the two models, it can be seen that the improved GRU model proposed in this
paper is better than the original GRU model in each evaluation index. Compared with
the original GRU model, the RMSE index value of the proposed improved GRU model is
reduced by 56.79%, the MAE value is decreased by 49.40%, the MAPE value is decreased
by 27.91%, and the R2 value is increased by 25.71%.

Table 5. Predictive evaluation index comparison.

Model The Improved GRU Model GRU Model

Index RMSE MAE MAPE R2 RMSE MAE MAPE R2

Test I 314.69 440.47 0.30 0.88 748.21 889.46 0.42 0.72
Test II 348.93 467.59 0.33 0.86 774.91 908.87 0.46 0.66
Test III 302.73 423.28 0.28 0.89 768.65 895.23 0.44 0.68
Test IV 359.61 482.84 0.34 0.85 759.82 890.94 0.44 0.68
Test V 320.17 456.21 0.31 0.88 740.93 901.64 0.43 0.70

Average 329.23 454.08 0.31 0.87 758.50 897.23 0.44 0.69

The same values for training times and the number of neurons and hidden layers were
used for each of the above four models, after which the training results of the respective
models were contrasted. The improved GRU model in this paper is compared with the
original GRU model and two popular LSTM and RNN models under the same set of data.
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According to Figure 10, “GRU+” represents the improved GRU model proposed in this
paper. It can be seen that the prediction accuracy of the GRU model is higher than that of
the RNN and LSTM models when the data sample size and training times are less, and the
prediction accuracy of the proposed improved GRU model is also much higher than that of
the other models.
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Based on the above analysis, it can be concluded that the improved GRU model
proposed in this paper has good advantages in short-term online ride-hailing travel demand
prediction, and the prediction accuracy of the weighted GRU model is greatly improved
compared with the ordinary GRU model.

5. Policy Implication

With the rapid change of internet travel mode, the contradiction between the rapid
growth of online ride-hailing travel demand of urban residents and the supply and demand
of service-vehicle resources is becoming increasingly prominent. Residents’ travel behavior
analysis is a very important basic work in urban comprehensive transportation-system
planning and urban-construction planning, and it is also an effective basis for formulating
transportation policies Therefore, it is of great significance to study the characteristics of
urban residents’ travel activities. The sharing economy represented by online ride-hailing
can not only directly promote urban economic development, but also stimulate relevant
industries and technological innovation. Especially for cities in the period of economic
transformation, if we can promote the development of new business forms with an inclusive
and prudent attitude and make use of the shared economy to revitalize social resources,
it will create good opportunities for urban leapfrog development. The research on online
ride-hailing travel demand prediction can improve the Government’s understanding of
urban travel characteristics. At the same time, this research is of great significance for
reducing environmental pollution, reducing urban road traffic pressure, and for urban
sustainable development. The online ride-hailing travel demand forecast studied in this
paper can give reasonable data for the supply and demand in different periods of time.
Using the predicted results for reference, social network ride-hailing resources can be better
allocated. When residents need less travel, it can reduce the number of times they use
online ride-hailing and reduce road traffic pressure and environmental pollution.
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6. Conclusions

The research in this paper has significance for optimizing the supply relationship of on-
line ride-hailing, reducing urban road traffic pressure, and reducing traffic pollution. Based
on the predicted travel demand for online ride-hailing in the future, we can reasonably
arrange the number of online ride-hailing opportunities, reduce unnecessary vehicle waste,
and reduce traffic pollution, which is of great significance to the sustainable development
of the city.

This paper fills the gap in online ride-hailing travel demand prediction considering
multiple factors. Based on the big-data analysis of online ride-hailing travel based on the
SQL database, the time weight is reasonably set, and the impact of rainfall intensity on travel
demand is considered at the same time. Combining the rainfall intensity and time travel
characteristics with the deep learning GRU model, and analyzing the prediction results
through various evaluation indexes, we can show that the prediction accuracy of the GRU
model considering multiple factors proposed in this paper is better than earlier models.

Additionally, there are some future developments proposed in this article:
(1) Weight parameters can be set more accurately through big-data analysis.
(2) In this paper, the travel characteristics of morning and evening peak hours and

late-night hours have not been taken into account. These two factors can be taken into
account in the weight-setting in the future.

(3) In the future, geographic coordinates, such as setting the weight according to the
travel demand of the travel area, can also be taken into account in the model.
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