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Abstract: The contributions of urban forests and green spaces to sustainable development have
been confirmed. Meanwhile, cities worldwide have shown that investments in urban forestry can
greatly contribute to citizens’ quality of life. This study was conducted in urban forests in the
Dadu Terrace of Taichung City, central Taiwan, which were frequently disturbed by fires and had
grassland severely invaded by Panicum maximum after the forest degraded. We sampled 46 plots
in Dadu Terrace to understand the relationship between the soil seed bank and vegetation as well
as to evaluate the feasibility of applying soil seed bank transfers for ecological restoration in Dadu
Terrace. The grassland was dominated by Panicum maximum. Forest vegetation was distinguished by
cluster analysis into five types, i.e., Ficus microcarpa type, Acacia confusa type, Litsea glutinosa type,
Cinnamomum camphora type, and Trema orientalis type. In the aboveground survey, we recorded
141 vascular plants, including 129 seed plants and 12 ferns. There were 40 identified species of
naturalized plants. A total of 29,914 seedlings were recorded in the soil seed bank, with an average
seed density of 9634 seeds/m2 and a total of 91 species. There were 40 species of naturalized plants,
accounting for 90.9% of the total seed reserves. This showed that Dadu Terrace was severely affected
by the invasion of naturalized species. The species number and seed reserves of woody plants of
the Panicum maximum type were significantly lower than those of forest vegetation. The composition
of the soil seed bank was dominated by naturalized plants, indicating that the high frequency of
fire reduced the proportion of native species and woody plants in the soil seed bank. Acacia confusa
type was the main forest type in Dadu Terrace. Although several woody species and seed reserves
were in its soil seed bank, the naturalized proportions were even higher. Trema orientalis type was
the secondary forest type in Dadu Terrace; it had the smallest forest area. However, it was the
only vegetation type with a greater tree seed abundance than herbs and the lowest proportion of
naturalized seed abundance. Trema orientalis type vegetation has a relatively high soil transfer value
for ecological restoration but lacks diversity. Our results revealed that the characteristics of the
soil seed bank of Dadu Terrace make it challenging to restore the grassland to the forest by natural
succession. Therefore, we suggest that artificial restoration is necessary for Dadu Terrace.

Keywords: urban forest; soil seed bank; fire; naturalized plant; invasive plant; restoration

1. Introduction

Seed availability is a critical key to recovery [1,2], which is determined by seed pro-
duction conditions, seed rain, and soil seed bank [3]. The species composition and seed
reserve of soil seed banks can represent a specific restoration capacity [4]. They can also
be used to describe vegetation succession mechanisms and trends in plant communities
and predict the recovery of pioneer populations after disturbance [5–7]. Therefore, the soil
seed bank is considered a crucial component of potential vegetation restoration, and soil
seed bank composition can be applied to ecological restoration [8–10], thereby providing
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an essential reference for reforestation and forest ecosystem management [5,9,11–13]. More
and more studies have explored the role of seed banks in invasive species succession and
vegetation restoration [14–17].

Western Taiwan has a flat terrain, and it has lost much of its natural forest in the
low-elevation parts of the mountains owing to population growth and development of
agriculture and industry. The Dakeng area and Dadu Terrace in Taichung City contain
the remaining forests and play a critical role in urban forests in central-western Taiwan.
The former is richer in terms of forest and species diversity [18,19], whereas the latter has
planted forests with Acacia confusa as the main silvicultural species [5] (Figure 1a).
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Figure 1. (a) Acacia forest; (b) Panicum maximum grassland; (c) burnt trees; (d) fire disturbance in
Dadu Terrace of Taiwan.

A perennial native to Africa, Panicum maximum is widely cultivated in tropical and
subtropical regions and is often used as pasture [20]. It is now one of the world’s most
invasive plants [21,22]. P. maximum was introduced to Taiwan in 1908 and was planted as
a provision grass in Dadu Terrace during Japanese rule [23]. Because P. maximum has a
higher photosynthetic rate than the native Miscanthus sinensis, it grows faster in the same
environment [24]. Additionally, P. maximum grew rapidly after the fire (Figure 1b) [5,20,24]
and has thus become one of the top 20 invasive plants in Taiwan [25], resulting in a savanna-
like landscape in Dadu Terrace after the frequent fires (Figure 1c,d) [26]. When P. maximum
invades and forms grassland, it disrupts the forest’s structural composition and changes
the composition of the soil seed bank [5].

In this study, we want to understand the composition characteristics of urban forest soil
seed banks and their influence on vegetation restoration in Dadu Terrace. We analyzed the
types of aboveground vegetation, seed reserves, and the relationship between aboveground
vegetation and soil seed banks. Then, we compared with the ratio of naturalized plants,
the number and seed abundance of tree species in soil seed bank characteristics among
different plantation types to estimate the potential plantation and natural successional
restoration trends in Dadu Terrace. We also assessed the feasibility of applying soil seed
banks for ecological restoration as a reference for future ecological restoration of this urban
forest.



Sustainability 2022, 14, 4178 3 of 22

2. Materials and Methods
2.1. Study Site

Dadu Terrace in Taiwan is located on the west side of Taichung Basin, bordered by
Dajia River in the north and Dadu River in the south, with a length of approximately
20 km from north to south, a width of approximately 7 km from east to west (Figure 2a),
and a maximum elevation of 310 m. Its geology is part of the Toukoshan formation, and
the soil is mainly red clay with poor water retention and contains a lot of gravel [27,28].
The climate of Dadu Terrace is characterized by distinct wet and dry seasons. The climate
diagram (Figure 2b) shows that the dry period lasts from October to January of the upcom-
ing year and the per-humid period lasts from March to September. The forest area has
gradually reduced in recent years owing to land development and fire disturbance [29].
The composition of the existing vegetation can be divided into forest and grassland based
on the vegetation physiognomy, and the latter is dominated by the invasive plant P. maxi-
mum. One of the dominant species that form the forest is A. confusa, one of the essential
afforestation species in Taiwan, and it has the largest area of the broadleaf plantation at
low elevation [30]. In addition, there are many cemeteries in the area. After entering dry
autumn and winter seasons, the aboveground Panicum maximum accumulates flammable
fuels [31], which are often accidentally lit by human activities. The frequent fire disturbance
has caused a reduction in the forest area of Dadu Terrace [29,32] (Figure 1c,d), resulting in a
retrogressive succession of vegetation. As the deforested area expands and the surrounding
forest vegetation becomes remote and fragmented, forest recovery becomes less resilient,
resulting in slow or even stagnant succession.

2.2. Setting of Sampling Plot and Vegetation Survey

The study site was divided into three parts, north, central, and south regions, by the
geography of Dadu Terrace. For each region, we selected several plant communities by
vegetation composition and physiognomy characteristics, and 17 areas (A–R) were set up.
Three plots were set up for each area, except for O_(1 plot), Q_(1 plot), and R_area (two
plots) due to the small size of the plant community. We set 46 sampling plots, and the
distance between plots was about 10–30 m within the area. Because the composition and
structure of the Dadu Terrace forest were relatively simple and the canopy height of the
forest is mostly below 10 m, the sampling plot size was set at 10×10 m. Each sampling plot
was subdivided into four 5 × 5 m subsampling plots in which the aboveground vegetation
was surveyed. We surveyed the frequency, covered area, and basal area of plant occurrence
in the sampling plot and recorded all herbaceous plants, vines, and woody plants (with a
diameter at breast height (DBH) < 1 cm) as an understory to count their coverage area. The
forest sampling plot was also surveyed for the overstory of trees with a DBH of >1 cm; its
DBH was recorded, and basal area was calculated. These characteristics were converted
to relative frequency, relative coverage, or relative dominance, which were summed to
the importance value (IV). The IV values of understory and overstory were calculated
separately, i.e., the IV value of understory is relative frequency + relative coverage, and the
IV value of overstory is relative frequency + relative dominance.
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2.3. Sampling and Germination Test of the Soil Seed Bank

Soil seed bank samples were collected from the centers of the subsampling plots in the
first, second, and third quadrants of each planting area randomly, then three 15 cm × 15 cm
soil samples were taken from each area using a metal frame tool. The area was divided into
two soil layers, the upper layer of 0–5 cm (including the layer of dead leaves) and the lower
layer of 5–10 cm, which were marked and brought back to the laboratory in sealed zip-lock
bags (Figure 2c). The soil samples were placed in black plastic bags immediately after
collection and stored at room temperature without light to prevent early germination of
seeds in the soil samples by light and temperature stimulation. Soil samples were collected
in 276 bags from 20 to 26 March 2017, with a total soil sampling plot of 31,050 cm2 and a
soil sample volume of 310,500 cm3.

In this study, the seedling emergence method was used to study the soil seed bank [3].
The experimental site was located at the Beigou Tree Nursery, Department of Forestry,
National Chung-Hsing University, without a shade net in a greenhouse that could block
most foreign seeds from entering. The collected soil samples were placed separately
and evenly in a 50 cm × 30 cm × 6.5 cm plastic germination container lined with white
nonwoven fabric. Furthermore, 1–2 cm perlite was placed under the nonwoven fabric
to ensure that the seeds and soil would not be lost through drainage holes. Water was
sprinkled regularly at three times (8:00, 12:00, and 16:00) daily for 3 minutes each time. The
germination experiment was initiated on 27 March 2017 and ended on 17 August 2017,
with 21 weeks of germination, and weekly observations were carried out to identify the
germinating seedlings and record their numbers. The identified seedlings were removed so
as not to block the germination of other seeds. The plant species that could not be identified
were moved to other large pots, planted until they could be identified, and were then
removed. Three control plastic germination containers were set up during the experiment,
nonwoven and seed-free imported Akadama soil were laid to confirm whether foreign
seeds were introduced into the soil samples.

2.4. Measurement of Environmental Factors

Environmental factors affect the growth and survival of plants and the causes of
vegetation composition. Different soil conditions affect the growth of seedlings [33]. Envi-
ronmental factors affect invasive plants’ geographic distribution, and colonization is also an
important issue [34]. The environmental factors measured in this study were elevation (Ele),
slope (Slo), whole light sky (WLS), aspect (Asp), and moisture gradient (MG). The sampling
plot was located by a global positioning system (GPS), and the elevation of the sample
center was measured. The slope was measured directly using a compass to determine the
elevation of the sampling plot. The whole light sky was measured using a compass to
determine the elevation of 12 azimuths around the center of the sampling plot; the whole
light sky refers to the size of the airspace in which the sampling plot can receive solar
radiation, which is a comprehensive estimate of aspect, slope, terrain shading, and solar
radiation energy [35,36]. Aspect refers to the direction the slope of the sampling plot faces,
which is transformed to the corresponding value of moisture gradient [37].

In this study, three soil collection sites were randomly selected in the sampling plot,
within which the upper layer of dead leaves was cleared first. After mixing the topsoil at a
depth of approximately 10 cm, samples were placed at room temperature and air-dried.
Samples were then sieved using a two mm sieve and measured for soil pH (Soil_pH) [38],
total nitrogen (Soil_N) [39], total organic carbon (Soil_C) [40], available phosphorus [41],
and cation exchange capacity (CEC) [42].

2.5. Data Analysis and Statistical Methods

The scientific names of plants were based on Flora of Taiwan II [43]. Rare plants were
based on The Red List of Vascular Plants of Taiwan, 2017 [44]. The naturalized plants are
referred to in local documents in Taiwan [9,45,46]. The growth forms of seed plants were
divided into four types, including trees, shrubs, vines, and herbs.
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Principal coordinate analysis (PCoA) was conducted to understand the correlations
between the aboveground vegetation and soil seed bank. The overstory IV values of the
forest samples were via cluster analysis using the Sørensen similarity index and single
linkage method. In addition, a gradient analysis of the understory IV of forest and grass
was conducted to understand the correlation between the composition of ground cover
species and environmental factors using detrended correspondence analysis (DCA) and
canonical correlation analysis (CCA). In this study, the gradient of the axial length of the
DCA results was more than two standard deviations, and if the axial length of DCA was
greater than four, CCA was performed using environmental factors [47]. The statistical
software PC-ORD 6 [48] was used for cluster analysis and ordination analysis.

The species and number of seedlings germinated in each soil sample were recorded,
and the soil seed bank was compiled to showcase each species and its corresponding
number. Because ecological data of soil seed banks are not normally distributed [49],
the species composition and seed reserves of soil seed banks among plant communities
were analyzed using the nonparametric Kruskal–Wallis test. A post hoc assessment was
performed to compare the differences in the composition of native and naturalized species
in different plant communities. This part was computed by SPSS 22.0 [50].

We used the Sørensen similarity index [51] to investigate the similarity in species
composition of the soil seed bank among different plant communities.

SI = 2c/(Va + Sa)

where SI is the Sørensen similarity index, and Va and Sa are the number of species for
aboveground vegetation and soil seed bank in the same plot_a, respectively. Moreover, c
is the number of species occurring in aboveground vegetation and soil seed banks. The
Sørensen similarity index was calculated by R 4.1.2 version and Simba package.

3. Results
3.1. Composition of Aboveground Plant Community

A total of 141 species of vascular plants, including 129 species of spermatophyte
and 12 species of pteridophyte, were recorded. Among them, 100 native species and
41 naturalized species were included; the naturalized plants were all spermatophytes.
Spermatophytes included 35 tree species, 27 shrub species, 25 vine species, and 42 herb
species according to the type of growth. The top three families with the most species
were Asteraceae (19 species), Euphorbiaceae (14 species), and Rubiaceae (8 species). One
species—Zanthoxylum avicennae—was listed in The Red List of Vascular Plants of Taiwan, 2017
as vulnerable (VU), and two species—Acronychia pedunculata and Lindera glauca—were data
deficient (DD).

A total of 37 forest plant communities were sampled, cluster analysis was conducted
based on the IV of tree species of the sampling plot, and a dendrogram was drawn (Figure 3).
According to the vegetation physiognomy, the plant community was divided into forest
and grassland. The plots of forest plant communities were classified into five types with
information maintenance of 40% as the threshold value. Furthermore, the most dominant
species in the basal area of the overstory were used as the names of the vegetation types
(Figure 4), including Ficus microcarpa type (six sample plots), Acacia confusa type (two-
sample plots), Litsea glutinosa type (six sample plots), Cinnamomum camphora type (four
sample plots), and Trema orientalis type (one sample plot).
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The herb community was named after P. maximum, the most dominating plant in
the sampling plot. In addition to P. maximum, there were some shrubs such as Lantana
camara and associated annual–biennial plants such as Bidens pilosa var. radiata and Praxelis
clematidea. Among the forest vegetation, all were plantations except the Trema orientalis type,
a secondary forest. The sampling plots were dominated by A. pedunculata, L. glauca, and
Z. avicennae, and other species were classified as Acacia confusa type owing to the sporadic
presence of A. confusa. The number of species differed significantly among the aboveground
vegetation types (p < 0.05). The post hoc results of the pairwise vegetation types showed that
the number of species in the Panicum maximum type was significantly less than those in the
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Cinnamomum camphora type and Acacia confusa type (p < 0.05) (Table 1). The proportions of
species within the naturalized plants differed significantly from vegetation types (p < 0.05).
Panicum maximum type was significantly higher than Acacia confusa type and Cinnamomum
camphora type (p < 0.05).

Table 1. Summary of aboveground vegetation and soil seed bank conditions among different vegeta-
tion types in Dadu Terrace, Taiwan.

Vegetation Type

Grassland Forest

Panicum maximum
Type (n = 9)

Acacia confusa
Type (n = 20)

Ficus microcarpa
Type (n = 6)

Litsea glutinosa
Type (n = 6)

Cinnamomum
camphora Type (n = 4)

Trema orientalis
Type (n = 1)

Species number of
aboveground vegetation 11.4± 3.8 b 23.6 ± 11.2 a 14.5 ± 10.0 ab 17.2 ± 7.7 ab 35.0 ± 6.7 a 16.0

Percentage of
naturalized species of

aboveground vegetation
(%)

56.7 ± 11.6 a 26.3 ± 16.5 b 30 ± 10.7 ab 49.4 ± 18.7 ab 23.1 ± 2.2 ab 56.3

Percentage of
naturalized species

covered of understory
(%)

96.8 ± 5 a 51.5 ± 41.9 b 45.6 ± 22.6 ab 88.2 ± 12.1 ab 10.3 ± 6.1 b 97.1

Average munber of
species in soil seed bank 13.8 ± 4.4 a 15.1 ± 5.2 a 14.8 ± 1.7 a 15.7 ± 1.5 a 13.8 ± 3.2 a 10.0

Average seed reserve in
soil seed bank

(seeds/m2)
771.0 ± 494.5 a 523.5 ± 482.6 a 618.3 ± 460.9 a 748.8 ± 398.3 a 928.5 ± 324.4 a 589.0

Average number of tree
species in soil seed bank 0.4 ± 0.5 b 2.6 ± 1.4 a 2.3 ± 0.8 a 2.5 ± 0.5 a 2.5 ± 1.5 ab 1.0

Average tree seed
storage in soil seed bank

(seed/m2)
0.7 ± 1.0 b 19.2 ± 18.9 a 6.3 ± 3.9 ab 10.2 ± 10.4 ab 7.0 ± 4.1 ab 404.0

Percentage of
naturalized species in

soil seed bank (%)
73.0 ± 5.5 a 56.4 ± 12.2 b 60.3 ± 8.1 ab 65.5 ± 7.7 ab 52.4 ± 11.6 ab 90.0

Percentage of soil seed
reserves of naturalized

species (%)
97.3 ± 2.3 a 78.0 ± 21.9 a 95.7 ± 2.6 a 95.6 ± 4.2 a 87.7 ± 11.8 a 31.4

The average Sørensen
similarity index between
aboveground vegetation

and the soil seed bank

0.28 ± 0.11 a 0.20 ± 0.12 a 0.16 ± 0.05 a 0.50 ± 0.12 a 0.19 ± 0.08 a 0.31

Range of Sørensen
similarity index between
aboveground vegetation

and soil seed bank

0.15–0.45 0.00–0.50 0.09–0.23 0.36–0.64 0.09–0.26 0.31

Kruskal–Wallis test: significance (p < 0.05). Significant differences are distinguished using superscript ab.

Comparing the coverage of understory plants, a significant difference was found
among vegetation types (p < 0.05), and the ground coverage of naturalized plants of
the Panicum maximum type was significantly higher than that of Acacia confusa type and
Cinnamomum camphora type (p < 0.05) (Table 1).

The DCA results of the 46 samples of aboveground vegetation understory in Dadu
Terrace showed that the total variation was 6.40; the eigenvalues were 0.678, 0.421, and
0.307 in the first three axes, where the explanation rates of variation were 10.6, 6.6, and
4.8% in the first three axes, and the lengths of the first three axes were 4.03, 3.171, and 2.86,
respectively (Figure 5). The sampling plot of Acacia confusa type straddled the first and
third quadrants of the DCA ordination diagram, the sampling plot dominantly containing
A. pedunculata was distributed on the rightmost side of axis 1, and the sampling plots of
Acacia confusa type and Panicum maximum type that dominantly comprised P. maximum
were distributed in the third quadrant of the ordination diagram, whereas the sampling
plots of A. confusa type in the middle of Dadu Terrace (B1–B3, L1–L3) were distributed
between the aforementioned two. Litsea glutinosa type had a distinctive ground cover
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composition owing to the dominance of L. glutinosa seedlings and was clearly distinguished
from the other plant samples dominated by P. maximum in axis 2.
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Figure 5. Detrended correspondence analysis (DCA) of understory vegetation in Dadu Terrace,
Taiwan.

The CCA analysis results showed that the characteristic values of the first three axes
were 0.528, 0.399, and 0.276, and the explanation rates of variation of the first three axes were
8.2, 6.2, and 4.3%, respectively. Among the environmental factors, moisture gradient, slope,
soil total nitrogen, and soil_pH were the most significant ones (Figure 6). The sampling
plot of P. maximum grassland was distributed on the leftmost side of axis 1 of the CCA
ordination diagram, which showed that it had a higher soil_pH (4.78–6.64) and a lower
soil total nitrogen (0.097–0.203%), whereas forest had a lower soil pH (pH 3.80–5.93) and a
higher soil total nitrogen (0.122–0.542%). In addition, Acacia confusa type had a higher CEC
(7.70–19.30 cmol/kg), which was mainly distributed in the right side of axis 1, whereas
Cinnamomum camphora type had a higher moisture gradient (12.22–16.00), and the sampling
plots were mainly distributed in the first quadrant.
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Soil_pH: soil pH.

3.2. Composition of the Soil Seed Bank

This study recorded 29,914 seedlings of soil seed banks, with an average seed density
of 9634 seeds/m2, containing 36 families, 79 genera, and 91 species. Within this set,
the top three families with the highest number of species were Asteraceae (19 species),
Poaceae (8 species), Cyperaceae (6 species), and Euphorbiaceae (6 species); the top three
families with the most abundant seed reserves were Rubiaceae (5763 seeds/m2), Asteraceae
(2362 seeds/m2), and Solanaceae (1007 seeds/m2). The number of species and seed reserves
of plant growth types were most dominated by herbs (51 species, 9170 seed/m2), followed
by shrubs (16 species, 49 seed/m2), trees (14 species, 296 seed/m2), and vines (10 species,
119 seed/m2). The top 10 species in the soil seed bank accounted for 90.61% of the total seed
reserves in the following order: Spermacoce latifolia, Solanum americanum, Pr. clematidea, Pa.
maximum, Kyllinga brevifolia, T. orientalis, Conyza sumatrensis, Oplismenus compositus, Mikania
micrantha, and Soliva anthemifolia (Table 2). The top 10 species had significant differences in
their proportions of the seed reserve, with S. latifolia accounting for 59.75%, S. americanum
for 10.45%, and P. clematidea for 9.81% of the total seed reserves, and the top three species
accounted for >80% of the total seed reserve, indicating that the soil seed bank of Dadu
Taiwan is characterized by a small number of species occupying a large proportion of the
seed reserve. The number of naturalized plant species was 40, accounting for 44.0% of the
total species, but 90.9% of the total seed reserve. In the soil seed bank, there were three rare
species listed in The Red List of Vascular Plants of Taiwan, 2017, which were the endangered
species (EN) Epaltes australis (one seedling), the vulnerable species (VU) Z. avicennae (one
seedling), and the data-deficient (DD) A. pedunculata (seven seedlings).
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Table 2. Species composition of aboveground vegetation and soil seed banks among different vegetation types in Dadu Terrace of Taiwan (seeds/m2).

Species
Above

Ground
Vegetation 1

Growth
Type

Native/
Naturalized

Life
Span 2

Panicum
maximum

Type
(n = 9) 3

Acacia
confusa Type

(n = 20)

Ficus
microcarpa

Type
(n = 6)

Litsea
glutinosa

Type
(n = 6)

Cinnamomum
camphora Type

(n = 4)

Trema
orientalis Type

(n = 1)
Total Ratio (%)

Spermacoce latifolia + Herb Naturalized A 3739.9 4357.0 7437.0 9022.2 10940.7 1481.5 5756.5 59.75
Solanum americanum + Herb Naturalized A 2953.1 463.7 884.0 548.1 448.1 59.3 1006.4 10.45

Praxelis clematidea + Herb Naturalized A 2388.5 854.1 143.2 390.1 392.6 148.1 945.6 9.81
Panicum maximum + Herb Naturalized P 1121.0 739.3 145.7 118.5 322.2 148.1 606.4 6.29
Kyllinga brevifolia − Herb Native P 3.3 521.5 2.5 0.0 11.1 0.0 228.7 2.37
Trema orientalis + Tree Native P 6.6 93.3 64.2 74.1 66.7 5985.2 195.8 2.03

Conyza sumatrensis − Herb Naturalized A 261.7 15.6 49.4 434.6 0.0 0.0 121.1 1.26
Oplismenus compositus + Herb Native P 37.9 113.3 7.4 0.0 518.5 0.0 102.7 1.07

Mikania micrantha + Vine Naturalized P 14.8 68.9 22.2 113.6 118.5 666.7 75.4 0.78
Soliva anthemifolia − Herb Naturalized A 339.1 0.0 0.0 0.0 0.0 0.0 66.3 0.69

Acacia confusa + Tree Native P 0.0 123.7 17.3 61.7 14.8 0.0 65.4 0.68
Bidens pilosa var.

radiata + Herb Naturalized A 174.5 42.2 19.8 12.3 40.7 118.5 62.8 0.65

Gnaphalium
purpureum − Herb Naturalized A 107.0 29.6 29.6 39.5 11.1 0.0 43.8 0.45

Oxalis corniculata + Herb Native A 31.3 15.6 51.9 79.0 151.9 0.0 43.2 0.45
Centella asiatica + Herb Native P 0.0 1.5 192.6 4.9 118.5 0.0 36.7 0.38
Toddalia asiatica + Vine Native P 0.0 0.0 0.0 0.0 400.0 0.0 34.8 0.36

Acronychia
pedunculata + Tree Native P 0.0 49.6 0.0 0.0 3.7 0.0 21.9 0.23

Urena lobata + Shrub Native P 1.6 40.7 9.9 2.5 7.4 0.0 20.3 0.21
Lindernia crustacea − Herb Native A 6.6 0.7 14.8 61.7 70.4 0.0 17.7 0.18

Youngia japonica + Herb Native A 46.1 10.4 0.0 0.0 0.0 0.0 42 0.14
Eleusine indica − Herb Native A 24.7 13.3 0.0 0.0 0.0 0.0 33 0.11

Polygonum chinense + Herb Native A 1.6 23.0 0.0 0.0 0.0 0.0 32 0.11
Cyperus compressus − Herb Native A 13.2 16.3 0.0 0.0 0.0 0.0 30 0.10
Cardamine flexuosa − Herb Naturalized A 0.0 18.5 4.9 4.9 0.0 0.0 29 0.10

Sida alnifolia − Shrub Native P 0.0 19.3 0.0 0.0 0.0 0.0 26 0.09
Pluchea sagittalis − Herb Naturalized P 13.2 5.9 0.0 19.8 7.4 0.0 26 0.09

Elephantopus mollis − Herb Naturalized P 1.6 14.1 0.0 0.0 0.0 29.6 22 0.07
Miscanthus floridulus + Herb Native P 0.0 2.2 4.9 2.5 48.1 0.0 19 0.06

Vernonia cinerea + Herb Native A 16.5 5.9 0.0 0.0 0.0 0.0 18 0.06
Rhynchelytrum repens + Herb Naturalized P 28.0 0.0 0.0 0.0 0.0 0.0 17 0.06
Phytolacca americana − Herb Naturalized P 23.0 1.5 0.0 0.0 0.0 0.0 16 0.05
Flueggea suffruticosa − Shrub Native P 0.0 9.6 0.0 0.0 0.0 0.0 13 0.04
Cyperus esculentus − Herb Naturalized P 4.9 0.0 7.4 17.3 0.0 0.0 13 0.04

Ixeris chinensis − Herb Native P 18.1 0.7 0.0 0.0 0.0 0.0 12 0.04
Chloris barbata − Herb Naturalized P 0.0 5.9 4.9 0.0 3.7 0.0 11 0.04
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Table 2. Cont.

Species
Above

Ground
Vegetation 1

Growth
Type

Native/
Naturalized

Life
Span 2

Panicum
maximum

Type
(n = 9) 3

Acacia
confusa Type

(n = 20)

Ficus
microcarpa

Type
(n = 6)

Litsea
glutinosa

Type
(n = 6)

Cinnamomum
camphora Type

(n = 4)

Trema
orientalis Type

(n = 1)
Total Ratio (%)

Boehmeria nivea − Shrub Naturalized P 0.0 5.2 0.0 0.0 14.8 0.0 11 0.04
Scoparia dulcis − Herb Naturalized A 0.0 0.0 0.0 9.9 25.9 0.0 11 0.04

Ipomoea obscura + Vine Naturalized P 0.0 3.0 0.0 0.0 0.0 88.9 10 0.03
Hedyotis corymbosa − Herb Native A 1.6 5.2 0.0 4.9 0.0 0.0 10 0.03
Conyza canadensis − Herb Naturalized A 13.2 0.0 0.0 2.5 0.0 0.0 9 0.03

Scleria terrestris − Herb Native P 0.0 4.4 7.4 0.0 0.0 0.0 9 0.03
Ficus microcarpa + Tree Native P 0.0 1.5 2.5 12.3 3.7 0.0 9 0.03

Ipomoea nil − Vine Naturalized A 0.0 5.9 0.0 0.0 0.0 0.0 8 0.03
Symplocos chinensis + Shrub Native P 0.0 0.7 2.5 14.8 0.0 0.0 8 0.03

Axonopus compressus − Herb Naturalized P 0.0 5.9 0.0 0.0 0.0 0.0 8 0.03
Zanthoxylum

avicennae + Tree Native P 0.0 3.7 0.0 0.0 7.4 0.0 7 0.02

Mallotus japonicus + Tree Native P 0.0 5.2 0.0 0.0 0.0 0.0 7 0.02
Ficus subpisocarpa − Tree Native P 0.0 3.0 4.9 0.0 3.7 0.0 7 0.02

Ageratum
houstonianum + Herb Naturalized A 0.0 3.0 4.9 0.0 0.0 0.0 6 0.02

Mimosa pudica + Shrub Naturalized P 0.0 3.7 0.0 0.0 0.0 0.0 5 0.02
Lantana camara + Shrub Naturalized P 0.0 2.2 0.0 4.9 0.0 0.0 5 0.02

Morus alba + Shrub Native P 1.6 3.0 0.0 0.0 0.0 0.0 5 0.02
Tephrosia noctiflora − Herb Naturalized A 6.6 0.0 0.0 0.0 0.0 0.0 4 0.01

Lepidagathis inaequalis − Herb Native P 1.6 1.5 2.5 0.0 0.0 0.0 4 0.01
Litsea glutinosa + Shrub Naturalized P 0.0 0.0 0.0 9.9 0.0 0.0 4 0.01

Mussaenda parviflora + Vine Native P 0.0 2.2 2.5 0.0 0.0 0.0 4 0.01
Hedyotis dichotoma − Herb Native A 0.0 0.7 0.0 7.4 0.0 0.0 4 0.01
Drymaria diandra − Herb Naturalized A-P 0.0 3.0 0.0 0.0 0.0 0.0 4 0.01
Ixeris polycephala − Herb Native A 4.9 0.0 0.0 0.0 0.0 0.0 3 0.01

Broussonetia papyrifera + Tree Native P 0.0 1.5 2.5 0.0 0.0 0.0 3 0.01
Chromolaena odorata + Herb Naturalized P 1.6 0.0 2.5 2.5 0.0 0.0 3 0.01

Rubus parvifolius − Shrub Native P 0.0 0.0 4.9 0.0 0.0 0.0 2 0.01
Liquidambar formosana − Tree Native P 1.6 0.0 0.0 2.5 0.0 0.0 2 0.01

Cyperus cyperoides − Herb Native P 3.3 0.0 0.0 0.0 0.0 0.0 2 0.01
Melochia corchorifolia − Shrub Naturalized P 0.0 0.7 2.5 0.0 0.0 0.0 2 0.01
Solanum trianthum − Shrub Naturalized P 1.6 0.7 0.0 0.0 0.0 0.0 2 0.01
Maesa perlaria var.

formosana − Shrub Native P 0.0 1.5 0.0 0.0 0.0 0.0 2 0.01

Macaranga tanarius + Tree Native P 1.6 0.7 0.0 0.0 0.0 0.0 2 0.01
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Table 2. Cont.

Species
Above

Ground
Vegetation 1

Growth
Type

Native/
Naturalized

Life
Span 2

Panicum
maximum

Type
(n = 9) 3

Acacia
confusa Type

(n = 20)

Ficus
microcarpa

Type
(n = 6)

Litsea
glutinosa

Type
(n = 6)

Cinnamomum
camphora Type

(n = 4)

Trema
orientalis Type

(n = 1)
Total Ratio (%)

Alpinia zerumbet + Herb Native P 0.0 1.5 0.0 0.0 0.0 0.0 2 0.01
Dianella ensifolia + Herb Native P 0.0 1.5 0.0 0.0 0.0 0.0 2 0.01

Passiflora suberosa + Vine Naturalized P 0.0 0.7 0.0 2.5 0.0 0.0 2 0.01
Bridelia monoica + Tree Native P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01
Sarcandra glabra − Shrub Native P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01

Cinnamomum
camphora + Tree Native P 0.0 0.0 0.0 0.0 3.7 0.0 1 <0.01

Crotalaria zanzibarica + Shrub Naturalized A 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01
Sapium sebiferum + Tree Naturalized P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01
Mallotus repandus + Vine Native P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01

Fimbristylis aestivalis − Herb Native A 1.6 0.0 0.0 0.0 0.0 0.0 1 <0.01
Polygonum plebeium − Herb Naturalized A 0.0 0.0 0.0 2.5 0.0 0.0 1 <0.01

Epaltes australis − Herb Native A 1.6 0.0 0.0 0.0 0.0 0.0 1 <0.01
Morinda parvifolia + Vine Native P 0.0 0.0 0.0 2.5 0.0 0.0 1 <0.01

Melia azedarach + Tree Native P 0.0 0.0 2.5 0.0 0.0 0.0 1 <0.01
Gnaphalium
purpureum − Herb Naturalized A 0.0 0.0 2.5 0.0 0.0 0.0 1 <0.01

Lophatherum gracile + Herb Native P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01
Clerodendrum
cyrtophyllum + Shrub Native P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01

Sonchus oleraceus − Herb Naturalized A 0.0 0.0 0.0 2.5 0.0 0.0 1 <0.01
Momordica charantia

var. abbreviata + Vine Naturalized A 0.0 0.0 0.0 2.5 0.0 0.0 1 <0.01

Pericampylus glaucus + Vine Native P 0.0 0.7 0.0 0.0 0.0 0.0 1 <0.01
Ageratum conyzoides − Herb Naturalized A 0.0 0.0 2.5 0.0 0.0 0.0 1 <0.01

Bothriospermum
zeylanicum − Herb Native A 0.0 0.0 0.0 2.5 0.0 0.0 1 <0.01

Duchesnea indica − Herb Naturalized P 1.6 0.0 0.0 0.0 0.0 0.0 1 <0.01

Total 11,422.2 7754.8 9160.5 11,093.8 13,755.6 8725.9 29,914 100.00

1 Aboveground vegetation: +, present; −, absent. 2 Life span: A, annual–biennial; P, perennial. 3 n: represents the number of plots.



Sustainability 2022, 14, 4178 14 of 22

The dominant species in the seed reserve of the soil seed bank varied by vegetation
type, where O. compositus was significantly more abundant in Cinnamomum camphora type;
P. clematidea, S. americanum, and P. maximum were significantly more abundant in terms of
quantity in the Panicum maximum type; the seed reserves of T. orientalis and M. micrantha
were mainly found in Trema orientalis type; and K. brevifolia was more abundant in the
Acacia confusa type. With the exception of the Trema orientalis type, the seed reserves of all
vegetation types were dominated by herbs, and seed reserves were mainly dominated by a
few species (Table 2). There was no significant difference in the number of plant species
and seed reserves among the vegetation types in the soil seed bank (Table 1). The post hoc
results of pairwise comparison of vegetation types showed that the number of tree species
differed significantly (p < 0.05). The Panicum maximum type was significantly less than
the other three vegetation types, including Acacia confusa type, Ficus microcarpa type, and
Litsea glutinosa type. However, the tree seed reserves only differed significantly between
Panicum maximum type and Acacia confusa type (p < 0.05). The differences among the other
vegetation types were not significant (Table 1). Furthermore, our result showed that the tree
species and seed reserves in the soil seed bank of Panicum maximum type at Dadu Terrace
were the lowest.

The proportion of naturalized plant species in the soil seed bank was between 52 and
73% for each vegetation type, except for Trema orientalis type. Among them, the percentage
of naturalized plant species in Panicum maximum type was significantly higher than that
in Acacia confusa type (p < 0.05) (Table 1). The proportion of naturalized plants in the
seed reserve of Trema orientalis type (31.4%) was lower, whereas the naturalized plant seed
reserves of the other vegetation types ranged from 78.0 to 97.3%. The naturalized plant
proportions of the seed reserve were not significantly different among vegetation types
(Table 1).

The DCA results of the 46 plots of soil seed banks in Dadu Terrace (Figure 7) showed
that the total variation was 3.641; the characteristic values of the first three axes were
0.668, 0.376, and 0.219, where the explanation values of variation were 18.34, 10.33, and
6.02% and the lengths of the axes were 3.38, 2.47, and 2.28, respectively. In the ordination
diagram, the sampling plots of Cinnamomum camphora type and Litsea glutinosa type were
distributed on the left side of axis 1, while the sampling plots of Acacia confusa type, Ficus
microcarpa type, and Panicum maximum type were grouped separately on axis 1, showing
that Cinnamomum camphora type and Litsea glutinosa type have a similar composition of
soil seed banks. Acacia confusa type, Ficus microcarpa type, and Panicum maximum type
were affected by the difference in the geographical location of the sampling plot, and the
composition of the soil seed bank was more variable. Axis 2 separated Trema orientalis
type and Panicum maximum type, showing the difference in the composition of the two
vegetation types.
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3.3. Similarities between Soil Seed Bank and Aboveground Plant Composition

A total of 57 families, 147 genera, and 185 species of spermatophytes were investigated
in this study, of which 47 species occurred both in the aboveground vegetation and in the
soil seed bank. The overall Sørensen similarity index between the aboveground vegetation
type and soil seed bank was 50.1%, with Litsea glutinosa type being the highest (0.50 ± 0.12)
and Ficus microcarpa type being the lowest (0.16 ± 0.05). However, the variation in Sørensen
similarity indices varied widely among sampling plots of different aboveground vegetation
types (Table 1).

The analysis of the first two axes using PCoA revealed that the species compositions
of the aboveground vegetation type and the soil seed bank were separated by axis 1,
indicating there was a greater variation in the species composition between each other
(Figure 8). The PCoA result of the compositions between aboveground vegetation and the
soil seed bank showed that the explanation rates of variation in the first three axes were
28.93, 9.92, and 7.63%, respectively. Axis 2 mostly showed similarities in the composition of
aboveground and soil seed banks, i.e., the sampling plots of Acacia confusa type containing
A. pedunculata (N1, N2, N3, P1, P2, and P3) were mainly distributed above axis 2, whereas
the sampling plots of Panicum maximum type (E1, E2, E4, M1, M2, and M3) were mainly
found below axis 2, which showed the correlation between the composition of aboveground
vegetation species and the soil seed bank.
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4. Discussion
4.1. Composition Characteristics of Aboveground Vegetation and Soil Seed Bank

The Dadu Terrace forest is an essential urban forest in central Taiwan and is crucial
for landscaping, environmental purification, and public recreation. Due to cemeteries
surrounding the forests, people pay respect to the dead at these tombs according to tra-
ditional customs and clean the weeds surrounding the cemetery, which often leads to
wildfire accidents. There were 3418 fires in Dadu Terrace from 2011 to 2013 [32], with
the highest percentage of fires caused by P. maximum weeds. The period of greatest fire
occurrence was from late autumn of every year to April of the following year (the Qingming
tomb-sweeping period of the Han people). Under these highly frequent fire disturbances,
the grassland composed of native M. sinensis has been gradually replaced by P. maximum
and other exotic naturalized plants [9]. The aboveground composition of the grassland
comprises exotic plants adapted to highly frequent fires such as P. maximum, L. camara, and
other postfire-emergent plants or annual and biennial plants such as B. pilosa var. radiata
and P. clematidea, which have further formed a dominant grassland with plants such as
P. maximum. This reflects the fact that Dadu Terrace is heavily invaded by naturalized
plants such as P. maximum, making the number of invasive species and percentage of
ground coverage higher than those in the forest area, along with crowding out the survival
space of native species and reducing species diversity. The CCA ordination diagram shows
that nutrients in grasslands, including soil nitrogen and cations, decreased, and soil pH
increased, altering the pH and other properties of soil that were now not conducive to the
succession of the forest.

The proportion of naturalized plants soil seed banks at Dadu Terrace ranged from 52.4
to 90.0%, and that of the seed reserves ranged from 31.4 to 97.3%, values which are much
higher than those in other areas of Taiwan [20–22,52]. This phenomenon indicates that
naturalized plants have become the dominant seed reserve component of the sustainable
soil seed bank at Dadu Terrace. Aboveground cover compositions with higher proportions
of naturalized plants also have higher proportions in the soil seed bank, reflecting the
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influence of naturalized plants in aboveground vegetation on soil seed bank composi-
tion [53–55]. The causes of this phenomenon are mainly historical factors of the region,
such as past fire disturbance, afforestation, and agricultural activities.

Frequent fire disturbances can cause different effects. Some cases show seed ger-
mination out of the top layer of soil seed bank, reducing the species diversity and seed
reserve [56,57] but some do not [58]. In recent years, the frequent fires on the grasslands
of Dadu Terrace have led to the deterioration of the species composition and structure of
the aboveground vegetation. Only the plants adapted to the high frequency of fires have
established their populations. Frequent fires result in a higher proportion of seeds in the soil
seed bank of plants with shorter life histories or reproductive periods [59]. Plants adapted
to frequent fires are mostly naturalized plants, resulting in a higher similarity between the
aboveground vegetation and the seed plant composition of the soil seed bank [3,20,60].
Fire disturbance allows naturalized plants to maintain their dominance [61,62], and their
species invest more resources in the root. It also alters local environmental systems’ carbon
and nitrogen cycles [63,64]. Some naturalized plants even increase the occurrence and
frequency of fires in the area [65,66]. The interaction of fire disturbance and invasion by
naturalized plants has resulted in the formation of P. maximum grassland at Dadu Terrace,
which is dominated by invasive naturalized plants, resulting in a seed bank continuously
characterized by the absolute dominance of exotic plants as seed reserves in the soil seed
bank.

4.2. Feasibility of Soil Seed Banks for Vegetation Restoration

This study found that herbaceous plants dominated the seed reserve in the soil seed
bank of the Dadu Terrace urban forest, where, except for Trema orientalis type, naturalized
plants accounted for >70% of the seed reserves in the soil seed bank of each vegetation
type. Naturalized plants have formed a continuous soil seed bank at Dadu Terrace and
are seriously affecting the composition and reserves of the seed bank. In addition, the
woody plant species and their seed reserve of Panicum maximum type grasslands were
lower than those of other forest vegetation types, indicating that the composition of the
soil seed bank of P. maximum grasslands is highly unfavorable to the natural restoration
of urban forests. The main reason for this phenomenon is the excessive fire disturbance,
which prevents the survival of postemergence seedlings and young trees, whereas annual
plants such as S. latifolia, S. americanum, and P. clematidea, or perennials such as P. maximum
and L. camara have better adaptability to frequent fires, thus forming the current plant
community that is dominated by P. maximum. Although urban forest ecological restoration
is conducted in Dadu Terrace through plantation construction, for planted forests such as
Acacia confusa type, Cinnamomum camphora type, Litsea glutinosa type, and Ficus microcarpa
type, and secondary forest Trema orientalis type, the number of species and seed reserves of
naturalized plants still accounts for a very high proportion of the soil seed bank.

The limitation of seed germination is also one of the limitations of forest coloniza-
tion [67] and the seeds of trees such as A. confusa and T. orientalis, native pioneer species,
break dormancy and leave the soil seed bank to grow into seedlings when stimulated
and disturbed by light [68]. Preliminary tests showed that the germination of A. confusa
seeds were higher after soil disturbance than without disturbance by fire in P. maximum
grasslands at Dadu Terrace [3], suggesting that artificial soil disturbance could increase
the germination of A. confusa seedlings in the soil seed bank of P. maximum grasslands.
However, A. confusa seedlings grow more slowly than herbaceous plants and therefore
require proper management such as mowing and vine removal to grow into young trees
taller than P. maximum [69], which is difficult for A. confusa to restore the forest on its own.

The area of Trema orientalis type was relatively small at Dadu Terrace and was a sec-
ondary forest at the beginning of forest succession; its soil seed bank was the only sampling
plot in this study that was dominated by tree growth types. The drupes of T. orientalis
are bird feeding [70], and the seeds are suborthodox [71] and are commonly found in
the soil seed banks in low-elevation forests in Taiwan [3,16,20–22,30,52]. T. orientalis is
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also a fast-growing pioneer species common after forest disturbances in tropical forests in
Asia [2,72–75], and is a species with forest restoration potential [76]. In the Trema orientalis
type at Dadu Terrace, due to the presence of T. orientalis parent trees and the fact that
T. orientalis seeds need to be stimulated by variable temperature or light to break dormancy
and germinate out of the soil [68], T. orientalis seeds can continuously accumulate in the
soil seed bank under the shade of their parent tree.

In order to restore and improve its forest ecosystem services in the Dadu Terrace urban
forest, it would be ineffective to wait for natural restoration or negative strategies such
as making appeals or signs to advise people to reduce disruption. Significantly, invasive
plants have severely altered the native vegetation form and it is difficult for forest seeds to
colonize in the adjacent urban forest. Moreover, because almost the entire Dadu Terrace
forest is planted, the species composition is relatively simple and naturalized plants are
abundant. Furthermore, although there are 14 native tree species in the soil seed bank,
the main tree seed reserve is mainly dominated by T. orientalis of Trema orientalis type.
Compared with the neighboring Dakeng area, the native species and species reserve of the
Dadu Terrace are significantly insufficient [30]. Therefore, the Dakeng area would be used
as a template for developing the Dadu Terrace ecological restoration project by referring to
the composition of reference ecosystems in similar environments of the neighboring areas.
This template was used as a benchmark to evaluate the restoration project’s effectiveness in
the later stages [75,77].

In addition to accelerating forest restoration through afforestation or propagating
the introduction of native species [78–83], the use of soil seed banks to achieve vegetation
restoration is also an ecological restoration strategy [84–86], i.e., to increase species diversity
by transferring forest-seed-rich soils to sites where forest seeds are scarce or where soils are
degraded. In this study, only Trema orientalis type was a secondary forest in Dadu Terrace
(however, the area was minimal), and its soil seed bank was the only plant community
that was dominated by native tree seed reserves. However, it had the potential for soil
transfer, only one single species—T. orientalis—in terms of the richness of tree species
was in its soil seed bank, which needs to be considered. Therefore, if Dadu Terrace were
to use a soil seed bank for soil transfer restoration, it is recommended to consider soils
from neighboring areas such as the Dakeng area in Taichung City, where there are more
native species [2,30], for its advantages of rich species diversity and a high proportion
of native species. By integrating ecological reforestation and soil seed bank restoration,
we can accelerate establishing a forest ecosystem close to nature and compatible with urban
forest functions. However, in addition to human intervention to accelerate the effectiveness
of restoration, the reduction in fire disturbance is the key to the success of ecological
restoration in Dadu Terrace.

5. Conclusions

The Dadu Terrace soil seed bank is mainly composed of herbaceous plants, of which
naturalized plants account for >90% of the seed reserves. The tree seed reserves in the
soil seed bank are mostly found in Trema orientalis type and Acacia confusa type, where
T. orientalis and A. confusa are the most abundant tree species in the soil seed bank. However,
due to frequent fire disturbance and light stimulation, seeds of T. orientalis and A. confusa
tend to germinate and reduce the seed reserves of the soil seed bank, and their seedlings
and young trees have difficulty surviving in the Panicum maximum type. In the future,
it will be challenging for the Panicum maximum type to use the soil seed bank for successful
restoration of the forest after the disturbance, and the restoration of the forest depends on
moderate human intervention. The amount of T. orientalis in the soil seed banks was more
than 20 times higher than that of parent tree vegetation types, and it was the only one in
Dadu Terrace where trees and native species dominate the proportion of seed reserves, and
thus has a high value for soil transfer. However, just one tree species—T. orientalis—is an
insufficient diversity of tree species. If the soil seed bank transfer methodology is suited for
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restoration of species diversity and reforestation, it is recommended to use the soils from
neighboring areas with more native and local species as Dakeng area.
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