SARIMA Modelling Approach for Forecasting of Traffic Accidents
Abstract
:1. Introduction
- Ambition—To reduce mortality and the risk of serious injury to the level of the most successful countries in the European Union;
- Mission—A stable and effective road safety system;
- Vision—Road transport without casualties, with a significantly reduced number of injuries and significantly reduced costs of road accidents.
- First pillar: More effective road safety management,
- Second pillar: Safer roads,
- Third pillar: Safer vehicles,
- Fourth pillar: Safer road users and,
- Fifth pillar: Post-crash measures.
2. Literature Review
- the model is deterministic and computationally easy;
- the model has the advantage of requiring multiple model parameters to describe time series that exhibit non-stationarity both within and between seasons;
- conventional ARIMA cannot capture seasonality and trend in data sets.
- The main disadvantages of SARIMA are:
- the model can only predict a short period of time;
- the model can only extract linear relationships within the time series data.
3. Materials
- Column A: Unique ID road accident number;
- Column B: Date and time at which the accident occurred;
- Column C: Longitude of the place where the road accident occurred;
- Column D: Latitude of the place where the traffic accident occurred;
- Column E: Type of road accident: road accident with damage to property, road accident with injured persons and road accident with fatalities;
- Column F: Name-type of traffic accident: traffic accident with one vehicle, traffic accident with at least two vehicles—without turning, traffic accident with at least two vehicles—turning or crossing, traffic accident with parked vehicles, traffic accident with pedestrians;
- Column G: Detailed description of the traffic accident: traffic accident with one vehicle: 11 types of cases, traffic accident with at least two vehicles—without turning: 9 types of cases, traffic accident with at least two vehicles—turning or crossing: 18 types of cases, traffic accident with parked vehicles: 5 types of cases, pedestrian accident: 25 types of cases.
- Column A: Unique ID road accident number;
- Column B: Police administration;
- Column C: Municipality;
- Column D: Date and time at which the accident occurred;
- Column E: longitude of the place where the traffic accident occurred;
- Column F: latitude of the place where the traffic accident occurred;
- Column G: Type of traffic accident: traffic accident with property damage, traffic accident with injured persons, traffic accident with dead persons;
- Column H: Name-type of traffic accident: traffic accident with one vehicle, traffic accident with at least two vehicles—without turning, traffic accident with at least two vehicles—turning or crossing, traffic accident with parked vehicles, traffic accident with pedestrians;
- Column I: Detailed description of the traffic accident: traffic accident with one vehicle: 11 types of cases, traffic accident with at least two vehicles—without turning: 9 types of cases, traffic accident with at least two vehicles—turning or crossing: 18 types of cases, traffic accident with parked vehicles: 5 types of cases, pedestrian accident: 25 types of cases.
- The analysis of road accidents included only columns with latitude and longitude from the data sets;
- The time series was only examined on a monthly basis;
- Only years with complete data were used;
- The year 2020 was not included in the analysis due to conditions caused by the COVID-19 pandemic;
- Data were available for 48 months, with a model developed based on 36 months and a model that was tested based on 12 months (2019);
- Data are limited due to constraints imposed by public use, so data on gender, age, length of driving experience and other driver characteristics are not available, but neither are data on the vehicle(s) involved in the accident.
4. Methodology
- Decomposition of the time series,
- Autocorrelation and partial autocorrelation,
- Stationarity test,
- SARIMA modelling,
- Residual test and test set error,
- Prediction.
- The non-seasonal and seasonal Auto Regressive (AR) polynomial term of order p and P, Equations (1) and (2):
- The non-seasonal and seasonal Moving Average (MA) part of order q and Q, Equations (3) and (4):
- Non-seasonal differencing operator is the of order d used to eliminate polynomial trends, Equation (5):
- Seasonal differencing operator is the order of D used to eliminate seasonal patterns, Equation (6):
- —actual values;
- —forecast values;
- —forecast error.
- Mean Absolute Error (MAE) or Mean Absolute Deviation (MAD), Equation (9):
- Mean Absolute Percentage Error (MAPE), Equation (10):
- Theil’s U1—statistics is a measure of forecast accuracy ( means a perfect fit), Equation (11):
5. Results
5.1. Basic Data on the Time Series
5.2. Development of the SARIMA Model
- Model identification;
- Model estimation;
- Model validation.
- A lower value indicates a simpler model compared with a model with a higher AIC;
- It is a relative measure of model parsimony, i.e., it is only significant when we compare the AIC for alternative hypotheses (=different models of the data).
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Memiş, S.; Demir, E.; Karamaşa, Ç.; Korucuk, S. Prioritization of road transportation risks: An application in Giresun province. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 111–126. [Google Scholar] [CrossRef]
- Sénquiz-Díaz, C. Transport infrastructure quality and logistics performance in exports. ECONOMICS-Innov. Econ. Res. 2021, 9, 107–124. [Google Scholar] [CrossRef]
- Pešić, D.; Pešić, A. Monitoring of Road Safety Performance Indicators–Current Situation and Trends in The Republic of Serbia. Transp. Res. Procedia 2020, 45, 70–77. [Google Scholar] [CrossRef]
- Pérez-Núñez, R.; Hidalgo-Solórzano, E.; Híjar, M. Impact of Mexican Road Safety Strategies implemented in the context of the UN’s Decade of Action. Accid. Anal. Prev. 2021, 159, 106227. [Google Scholar] [CrossRef]
- Bliss, T.; Breen, J. Meeting the management challenges of the Decade of Action for Road Safety. IATSS Res. 2012, 35, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, A.; Wang, A.; Kitano, N. A conceptual framework for road traffic safety considering differences in traffic culture through international comparison. IATSS Res. 2021, 46, 3–13. [Google Scholar] [CrossRef]
- Ali, F.; Ali, A.; Imran, M.; Naqvi, R.A.; Siddiqi, M.H.; Kwak, K.S. Traffic accident detection and condition analysis based on social networking data. Accid. Anal. Prev. 2021, 151, 105973. [Google Scholar] [CrossRef]
- Scott, P.P. Modelling time–series of British road accident data. Accid. Anal. Prev. 1986, 18, 109–117. [Google Scholar] [CrossRef]
- Broughton, J. Forecasting road accident casualties in Great Britain. Accid. Anal. Prev. 1991, 23, 353–362. [Google Scholar] [CrossRef]
- Quddus, M.A. Time series count data models: An empirical application to traffic accidents. Accid. Anal. Prev. 2008, 40, 1732–1741. [Google Scholar] [CrossRef] [Green Version]
- Brüde, U. What is happening to the number of fatalities in road accidents? A model for forecasts and continuous monitoring of development up to the year 2000. Accid. Anal. Prev. 1995, 27, 405–410. [Google Scholar] [CrossRef] [Green Version]
- Dadashova, B.; Arenas–Ramírez, B.; Mira–McWilliams, J.; Aparicio–Izquierdo, F. Methodological development for selection of significant predictors explaining fatal road accidents. Accid. Anal. Prev. 2016, 90, 82–94. [Google Scholar] [CrossRef]
- Milenković, M.; Švadlenka, L.; Melichar, V.; Bojović, N.; Avramović, Z. SARIMA modelling approach for railway passenger flow forecasting. Transport 2018, 33, 1113–1120. [Google Scholar] [CrossRef] [Green Version]
- Lavrenz, S.M.; Vlahogianni, E.I.; Gkritza, K.; Ke, Y. Time series modeling in traffic safety research. Accid. Anal. Prev. 2018, 117, 368–380. [Google Scholar] [CrossRef]
- Carnis, L.; Blais, E. An assessment of the safety effects of the French speed camera program. Accid. Anal. Prev. 2013, 51, 301–309. [Google Scholar] [CrossRef]
- Commandeur, J.J.; Bijleveld, F.D.; Bergel-Hayat, R.; Antoniou, C.; Yannis, G.; Papadimitriou, E. On statistical inference in time series analysis of the evolution of road safety. Accid. Anal. Prev. 2013, 60, 424–434. [Google Scholar] [CrossRef]
- Quddus, M.A. Non–Gaussian interrupted time series regression analysis for evaluating the effect of smart motorways on road traffic accidents (No. 16–0157). In Proceedings of the TRB Annual Meeting, Washington, DC, USA, 10–14 January 2016. [Google Scholar]
- Sebego, M.; Naumann, R.B.; Rudd, R.A.; Voetsch, K.; Dellinger, A.M.; Ndlovu, C. The impact of alcohol and road traffic policies on crash rates in Botswana, 2004–2011: A time–series analysis. Accid. Anal. Prev. 2014, 70, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Vanlaar, W.; Robertson, R.; Marcoux, K. An evaluation of Winnipeg’s photo enforcement safety program: Results of time series analyses and an intersection camera experiment. Accid. Anal. Prev. 2014, 62, 238–247. [Google Scholar] [CrossRef]
- Ihueze, C.C.; Onwurah, U.O. Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria. Accid. Anal. Prev. 2018, 112, 21–29. [Google Scholar] [CrossRef]
- Sangare, M.; Gupta, S.; Bouzefrane, S.; Banerjee, S.; Muhlethaler, P. Exploring the forecasting approach for road accidents: Analytical measures with hybrid machine learning. Expert Syst. Appl. 2020, 167, 113855. [Google Scholar] [CrossRef]
- Almeida, A.; Brás, S.; Oliveira, I.; Sargento, S. Vehicular traffic flow prediction using deployed traffic counters in a city. Future Gener. Comput. Syst. 2022, 128, 429–442. [Google Scholar] [CrossRef]
- Olayode, I.O.; Tartibu, L.K.; Okwu, M.O. Prediction and modeling of traffic flow of human–driven vehicles at a signalized road intersection using artificial neural network model: A South African road transportation system scenario. Transp. Eng. 2021, 6, 100095. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, X.; Fei, G.; Sun, Q.; Li, X.; Stallones, L.; Xiang, H. Forecasting deaths of road traffic injuries in China using an artificial neural network. Traffic Inj. Prev. 2020, 21, 407–412. [Google Scholar] [CrossRef]
- Rahim, M.A.; Hassan, H.M. A deep learning based traffic crash severity prediction framework. Accid. Anal. Prev. 2021, 154, 106090. [Google Scholar] [CrossRef]
- Fu, X.; Liu, J.; Jones, S.; Barnett, T.; Khattak, A. From the past to the future: Modeling the temporal instability of safety performance functions. Accid. Anal. Prev. 2022, 167, 106592. [Google Scholar] [CrossRef]
- Afrin, T.; Yodo, N. A Long Short–Term Memory–based correlated traffic data prediction framework. Knowl.-Based Syst. 2022, 237, 107755. [Google Scholar] [CrossRef]
- Slimani, N.; Slimani, I.; Amghar, M.; Sbiti, N. Road traffic forecasting using a real data set in Morocco. Procedia Comput. Sci. 2020, 177, 128–135. [Google Scholar] [CrossRef]
- Naqvi, N.K.; Quddus, M.A.; Enoch, M.P. Do higher fuel prices help reduce road traffic accidents? Accid. Anal. Prev. 2020, 135, 105353. [Google Scholar] [CrossRef]
- Katrakazas, C.; Michelaraki, E.; Sekadakis, M.; Ziakopoulos, A.; Kontaxi, A.; Yannis, G. Identifying the impact of the COVID–19 pandemic on driving behavior using naturalistic driving data and time series forecasting. J. Saf. Res. 2021, 78, 189–202. [Google Scholar] [CrossRef]
- Park, J.; Abdel-Aty, M.; Wang, J.H. Time series trends of the safety effects of pavement resurfacing. Accid. Anal. Prev. 2017, 101, 78–86. [Google Scholar] [CrossRef]
- Vipin, N.; Rahul, T. Road traffic accident mortality analysis based on time of occurrence: Evidence from Kerala, India. Clin. Epidemiol. Glob. Health 2021, 11, 100745. [Google Scholar]
- Roland, J.; Way, P.D.; Firat, C.; Doan, T.N.; Sartipi, M. Modeling and predicting vehicle accident occurrence in Chattanooga, Tennessee. Accid. Anal. Prev. 2021, 149, 105860. [Google Scholar] [CrossRef] [PubMed]
- Shannon, D.; Fountas, G. Extending the Heston model to forecast motor vehicle collision rates. Accid. Anal. Prev. 2021, 159, 106250. [Google Scholar] [CrossRef]
- Al-Hasani, G.; Khan, A.M.; Al-Reesi, H.; Al-Maniri, A. Diagnostic time series models for road traffic accidents data. Int. J. Appl. Stat. Econom. 2019, 2, 26. [Google Scholar]
- Rashidi, M.H.; Keshavarz, S.; Pazari, P.; Safahieh, N.; Samimi, A. Modeling the accuracy of traffic crash prediction models. IATSS Res. 2022; in press. [Google Scholar] [CrossRef]
- Lunacek, M.; Williams, L.; Severino, J.; Ficenec, K.; Ugirumurera, J.; Eash, M.; Ge, Y.; Phillips, C. A data-driven operational model for traffic at the Dallas Fort Worth International Airport. J. Air Transp. Manag. 2021, 94, 102061. [Google Scholar] [CrossRef]
- Sarmento, P.; Motta, M.; Scott, I.J.; Pinheiro, F.L.; de Castro Neto, M. Impact of COVID-19 lockdown measures on waste production behavior in Lisbon. Waste Manag. 2022, 138, 189–198. [Google Scholar] [CrossRef]
- Melchior, C.; Zanini, R.R.; Guerra, R.R.; Rockenbach, D.A. Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches. Int. J. Forecast. 2021, 37, 825–837. [Google Scholar] [CrossRef]
- Chang, F.; Huang, H.; Chan, A.H.; Man, S.S.; Gong, Y.; Zhou, H. Capturing long-memory properties in road fatality rate series by an autoregressive fractionally integrated moving average model with generalized autoregressive conditional heteroscedasticity: A case study of Florida, the United States, 1975–2018. J. Saf. Res. 2022, in press. [Google Scholar] [CrossRef]
- Barcellos, R.; Bernardini, F.; Viterbo, J. Towards defining data interpretability in open data portals: Challenges and research opportunities. Inf. Syst. 2022, 106, 101961. [Google Scholar] [CrossRef]
- Feng, Y.; Shah, C. Unifying telescope and microscope: A multi–lens framework with open data for modelling emerging events. Inf. Processing Manag. 2022, 59, 102811. [Google Scholar] [CrossRef]
- De Souza, A.A.C.; d’Angelo, M.J.; Lima Filho, R.N. Effects of Predictors of Citizens’ Attitudes and Intention to Use Open Government Data and Government 2.0. Gov. Inf. Q. 2022, 39, 101663. [Google Scholar] [CrossRef]
- Gutierrez–Osorio, C.; Pedraza, C. Modern data sources and techniques for analysis and forecast of road accidents: A review. J. Traffic Transp. Eng. 2020, 7, 432–446. [Google Scholar] [CrossRef]
- Veljković, N.; Bogdanović–Dinić, S.; Stoimenov, L. Benchmarking open government: An open data perspective. Gov. Inf. Q. 2014, 31, 278–290. [Google Scholar] [CrossRef]
- Portal Otvorenih Podataka, Podaci o Saobraćajnim Nezgodama za Teritoriju Grada Beograda. Available online: https://data.gov.rs/sr/datasets/podatsi-o-saobratshajnim-nezgodama-za-teritoriju-grada-beograda/ (accessed on 15 December 2021).
- Portal Otvorenih Podataka. Podaci o Saobraćajnim Nezgodama po Policijskim Upravama i Opštinama. Available online: https://data.gov.rs/sr/datasets/podatsi-o-saobratshajnim-nezgodama-po-politsijskim-upravama-i-opshtinama/ (accessed on 15 December 2021).
- Pravno Informacioni System. Zakon o Elektronskoj Upravi. Službeni Glasnik 27. 6 April 2018. Available online: http://www.pravno–informacioni–sistem.rs/SlGlasnikPortal/eli/rep/sgrs/skupstina/zakon/2018/27/4/reg (accessed on 15 December 2021).
- Sekadakis, M.; Katrakazas, C.; Michelaraki, E.; Kehagia, F.; Yannis, G. Analysis of the impact of COVID–19 on collisions, fatalities and injuries using time series forecasting: The case of Greece. Accid. Anal. Prev. 2021, 162, 106391. [Google Scholar] [CrossRef]
- Box, G.E.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Sun, J.; Tang, M. The Programming Languages: Introduction of R. Syst. Med. Integr. Qual. Comput. Approaches 2021, 1, 1–8. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; Available online: http://www.stats.ox.ac.uk/pub/MASS4/ (accessed on 15 December 2021).
- Trapletti, A.; Hornik, K. Tseries: Time Series Analysis and Computational Finance. R Package Version 0.10–50. Available online: https://cran.r-project.org/web/packages/tseries/index.html (accessed on 15 December 2021).
- Hyndman, R.; Athanasopoulos, G.; Bergmeir, C.; Caceres, G.; Chhay, L.; O’Hara-Wild, M.; Petropoulos, F.; Razbash, S.; Wang, E.; Yasmeen, F. Forecast: Forecasting Functions for Time Series and Linear Models. R Package Version 8.13. Available online: https://pkg.robjhyndman.com/forecast/ (accessed on 15 December 2021).
- Stoffer, D. Astsa: Applied Statistical Time Series Analysis. R Package Version 1.12. Available online: https://CRAN.R–project.org/package=astsa (accessed on 15 December 2021).
- Lütkepohl, H.; Xu, F. The role of the log transformation in forecasting economic variables. Empir. Econ. 2012, 42, 619–638. [Google Scholar] [CrossRef] [Green Version]
- Lewis, C.D. Industrial and Business Forecasting Models; Butterworths: London, UK, 1982. [Google Scholar]
- Yaffee, R.A.; McGee, M. Introduction to Time Series Analysis and Forecasting: With Applications of SAS and SPSS; Academic Press Inc.: Orlando, FL, USA, 2000. [Google Scholar]
- Knežević, N.; Glišović, N.; Milenković, M.; Bojović, N. Prognoziranje prihoda od poštanskih usluga korišćenjem neuronskih mreža zasnovanih na metaheuristikama. In Proceedings of the XXXVI Simpozijum o Novim Tehnologijama u Poštanskom i Telekomunikacionom Saobraćaju—PosTel 2018, Beograd, Serbia, 4–5 December 2018; pp. 33–42. [Google Scholar]
- Milenković, M.; Bojović, N. Handbook of Research on Emerging Innovations in Rail Transportation Engineering; Railway Demand Forecasting; Rai, B., Umesh, Eds.; IGI Global: Hershey, PA, USA, 2016; pp. 100–129. [Google Scholar] [CrossRef]
- Towards Data Science. An Overview of Time Series Forecasting Models. Available online: https://towardsdatascience.com/an-overview-of-time-series-forecasting-models-a2fa7a358fcb (accessed on 23 March 2022).
- García-Ferrer, A.; Bujosa, M.; de Juan, A.; Sánchez-Mangas, R. Revisiting the relationship between traffic accidents, real economic activity and other factors in Spain. Accid. Anal. Prev. 2020, 144, 105549. [Google Scholar] [CrossRef]
- Ramírez, A.F.; Valencia, C. Spatiotemporal correlation study of traffic accidents with fatalities and injuries in Bogota (Colombia). Accid. Anal. Prev. 2021, 149, 105848. [Google Scholar] [CrossRef]
- Comi, A.; Polimeni, A.; Balsamo, C. Road Accident Analysis with Data Mining Approach: Evidence from Rome. Transp. Res. Procedia 2022, 62, 798–805. [Google Scholar] [CrossRef]
Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2016 | 1282 | 1220 | 1496 | 1471 | 1446 | 1429 | 1255 | 1290 | 1499 | 1640 | 1533 | 1727 |
2017 | 1380 | 1129 | 1480 | 1472 | 1516 | 1543 | 1334 | 1304 | 1591 | 1726 | 1723 | 1776 |
2018 | 1410 | 1332 | 1618 | 1540 | 1542 | 1415 | 1400 | 1399 | 1487 | 1733 | 1495 | 1705 |
2019 | 1529 | 1310 | 1529 | 1426 | 1500 | 1451 | 1414 | 1299 | 1408 | 1627 | 1565 | 1659 |
Series: log(accidents) | |||
---|---|---|---|
ARIMA (0,1,2) × (1,1,0)12 (2016–2018) | |||
Coefficients: | |||
ma1 | ma2 | sar1 | |
−0.7383 | 0.1002 | −0.7593 | |
s.e. | 0.2315 | 0.2232 | 0.1257 |
sigma^2 estimated as 0.002289 | log likelihood = 33.6 | ||
AIC = −59.19 | AICc = −56.97 | BIC = −54.65 |
Month.Year | ||||||||
---|---|---|---|---|---|---|---|---|
1.2019 | 1529 | 1379 | 2337,841 | 1901,641 | 150 | 22,500 | 150 | 0.0981 |
2.2019 | 1310 | 1165 | 1716,100 | 1357,225 | 145 | 21,025 | 145 | 0.1107 |
3.2019 | 1529 | 1499 | 2337,841 | 2247,001 | 30 | 900 | 30 | 0.0196 |
4.2019 | 1426 | 1475 | 2033,476 | 2175,625 | −49 | 2401 | 49 | 0.0344 |
5.2019 | 1500 | 1509 | 2250,000 | 2277,081 | −9 | 81 | 9 | 0.0060 |
6.2019 | 1451 | 1498 | 2105,401 | 2244,004 | −47 | 2209 | 47 | 0.0324 |
7.2019 | 1414 | 1338 | 1999,396 | 1790,244 | 76 | 5776 | 76 | 0.0537 |
8.2019 | 1299 | 1315 | 1687,401 | 1729,225 | −16 | 256 | 16 | 0.0123 |
9.2019 | 1408 | 1552 | 1982,464 | 2408,704 | −144 | 20,736 | 144 | 0.1023 |
10.2019 | 1627 | 1712 | 2647,129 | 2930,944 | −85 | 7225 | 85 | 0.0522 |
11.2019 | 1565 | 1650 | 2449,225 | 2722,500 | −85 | 7225 | 85 | 0.0543 |
12.2019 | 1659 | 1743 | 2752,281 | 3038,049 | −84 | 7056 | 84 | 0.0506 |
Total | 17,717 | 17,835 | 26,298,555 | 26,822,243 | −118 | 97,390 | 920 | 0.6266 |
Model | MAE/MAD | MAPE | Theil’s U1 Statistics |
---|---|---|---|
77 | 5.22% | 0.0303 |
MAPE | Interpretation |
---|---|
<10 | Highly accurate forecasting |
10–20 | Good forecasting |
20–50 | Reasonable forecasting |
>50 | Inaccurate forecasting |
SARIMA | AIC |
---|---|
SARIMA (2,1,2) × (1,1,1)12 | Inf |
SARIMA (0,1,0) × (0,1,0)12 | −46.66586 |
SARIMA (1,1,0) × (1,1,0)12 | Inf |
SARIMA (0,1,1) × (0,1,1)12 | Inf |
SARIMA (0,1,0) × (1,1,0)12 | Inf |
SARIMA (0,1,0) × (0,1,1)12 | Inf |
SARIMA (0,1,0) × (1,1,1)12 | Inf |
SARIMA (1,1,0) × (0,1,0)12 | −50.33068 |
SARIMA (1,1,0) × (0,1,1)12 | Inf |
SARIMA (1,1,0) × (1,1,1)12 | Inf |
SARIMA (2,1,0) × (0,1,0)12 | −49.97647 |
SARIMA (1,1,1) × (0,1,0)12 | −51.32873 |
SARIMA (1,1,1) × (1,1,0)12 | −59.1354 |
SARIMA (1,1,1) × (1,1,1)12 | Inf |
SARIMA (1,1,1) × (0,1,1)12 | Inf |
SARIMA (0,1,1) × (1,1,0)12 | Inf |
SARIMA (2,1,1) × (1,1,0)12 | −57.37561 |
SARIMA (1,1,2) × (1,1,0)12 | Inf |
SARIMA (0,1,2) × (1,1,0)12 | −59.19096 |
SARIMA (0,1,2) × (0,1,0)12 | −51.33234 |
SARIMA (0,1,2) × (1,1,1)12 | Inf |
SARIMA (0,1,2) × (0,1,1)12 | Inf |
SARIMA (0,1,3) × (1,1,0)12 | −57.33942 |
SARIMA (1,1,3) × (1,1,0)12 | Inf |
Best model: | SARIMA (0,1,2)(1,1,0) [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deretić, N.; Stanimirović, D.; Awadh, M.A.; Vujanović, N.; Djukić, A. SARIMA Modelling Approach for Forecasting of Traffic Accidents. Sustainability 2022, 14, 4403. https://doi.org/10.3390/su14084403
Deretić N, Stanimirović D, Awadh MA, Vujanović N, Djukić A. SARIMA Modelling Approach for Forecasting of Traffic Accidents. Sustainability. 2022; 14(8):4403. https://doi.org/10.3390/su14084403
Chicago/Turabian StyleDeretić, Nemanja, Dragan Stanimirović, Mohammed Al Awadh, Nikola Vujanović, and Aleksandar Djukić. 2022. "SARIMA Modelling Approach for Forecasting of Traffic Accidents" Sustainability 14, no. 8: 4403. https://doi.org/10.3390/su14084403
APA StyleDeretić, N., Stanimirović, D., Awadh, M. A., Vujanović, N., & Djukić, A. (2022). SARIMA Modelling Approach for Forecasting of Traffic Accidents. Sustainability, 14(8), 4403. https://doi.org/10.3390/su14084403