Responses of Urban Wetland to Climate Change and Human Activities in Beijing: A Case Study of Hanshiqiao Wetland
Abstract
:1. Introduction
2. Dataset and Method
2.1. Study Area
2.2. Dataset
2.3. Methods
2.3.1. IIC and PC
2.3.2. MSPA
2.3.3. Grey Relational Analysis (GRA)
3. Results
3.1. Changes in Hydrological Connectivity Based on the Connectivity Index from 2005 to 2020
3.2. Changes in Hydrological Connectivity Based on MSPA from 1990 to 2015
3.3. Spatial Pattern Evolution of Hydrological Connectivity
3.4. Driving Factors of Hydrological Connectivity Change in Hanshiqiao Wetland
3.4.1. Truncation of Water from Upstream Water Conservancy Projects Leads to Reduction of Water Reserves
3.4.2. Impacts of Land-Use Changes on Wetland Connectivity
3.4.3. Impacts of Climate Change on Wetland Connectivity
3.4.4. Grey Relational Analysis of Driving Factors and Wetland Connectivity
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cohen, M.J.; Creed, I.F.; Alexander, L.; Basu, N.B.; Calhoun, A.J.K.; Craft, C.; D’Amico, E.; DeKeyser, E.; Fowler, L.; Golden, H.E.; et al. Do geographically isolated wetlands influence landscape functions? Proc. Natl. Acad. Sci. USA 2016, 113, 1978–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grill, G.; Lehner, B.; Lumsdon, A.E.; MacDonald, G.K.; Zarfl, C.; Liermann, C.R. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 2015, 10, 015001. [Google Scholar] [CrossRef]
- Golden, H.E.; Creed, I.F.; Ali, G.; Basu, N.B.; Neff, B.P.; Rains, M.C.; McLaughlin, D.; Alexander, L.C.; Ameli, A.A.; Christensen, J.R.; et al. Integrating geographically isolated wetlands into land management decisions. Front. Ecol. Environ. 2017, 15, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Bracken, L.J.; Turnbull, L.; Wainwright, J.; Bogaart, P. Sediment connectivity: A framework for understanding sediment transfer at multiple scales. Earth Surf. Process. Landforms 2014, 40, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Fry, G.; Tveit, M.S.; Ode, A.; Velarde, M.D. The ecology of visual landscapes: Exploring the conceptual common ground of visual and ecological landscape indicators. Ecol. Indic. 2009, 9, 933–947. [Google Scholar] [CrossRef]
- Singh, M.; Tandon, S.K.; Sinha, R. Assessment of connectivity in a water-stressed wetland (Kaabar Tal) of Kosi-Gandak interfan, north Bihar Plains, India. Earth Surf. Process. Landforms 2017, 42, 1982–1996. [Google Scholar] [CrossRef]
- Western, A.W.; Bloschl, G.; Grayson, R.B. Toward capturing hydrologically significant connectivity in spatial patterns. Water Resour. Res. 2001, 37, 83–97. [Google Scholar] [CrossRef]
- Pringle, C. What is hydrologic connectivity and why is it ecologically important? Hydrol. Process. 2003, 17, 2685–2689. [Google Scholar] [CrossRef]
- Tischendorf, L.; Fahrig, L. How should we measure landscape connectivity? Landsc. Ecol. 2000, 15, 633–641. [Google Scholar] [CrossRef]
- Lehmann, P.; Hinz, C.; McGrath, G.; Meerveld, H.J.T.-V.; McDonnell, J.J. Rainfall threshold for hillslope outflow: An emergent property of flow pathway connectivity. Hydrol. Earth Syst. Sci. 2007, 11, 1047–1063. [Google Scholar] [CrossRef] [Green Version]
- Urban, D.; Keitt, T. Landscape Connectivity: A Graph-Theoretic Perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Cui, G.; Liu, Y.; Tong, S. Analysis of the causes of wetland landscape patterns and hydrological connectivity changes in Momoge National Nature Reserve based on the Google Earth Engine Platform. Arab. J. Geosci. 2021, 14, 1–16. [Google Scholar] [CrossRef]
- Tananaev, N.; Isaev, V.; Sergeev, D.; Kotov, P.; Komarov, O. Hydrological Connectivity in a Permafrost Tundra Landscape near Vorkuta, North-European Arctic Russia. Hydrology 2021, 8, 106. [Google Scholar] [CrossRef]
- Bergsten, A.; Galafassi, D.; Bodin, Ö. The problem of spatial fit in social-ecological systems: Detecting mismatches between ecological connectivity and land management in an urban region. Ecol. Soc. 2014, 19, 17–39. [Google Scholar] [CrossRef]
- Erős, T.; Olden, J.D.; Schick, R.S.; Schmera, D.; Fortin, M.-J. Characterizing connectivity relationships in freshwaters using patch-based graphs. Landsc. Ecol. 2011, 27, 303–317. [Google Scholar] [CrossRef]
- Hermoso, V.; Ward, D.P.; Kennard, M.J. Using water residency time to enhance spatio-temporal connectivity for conservation planning in seasonally dynamic freshwater ecosystems. J. Appl. Ecol. 2012, 49, 1028–1035. [Google Scholar] [CrossRef] [Green Version]
- McIntyre, N.E.; Wright, C.K.; Swain, S.; Hayhoe, K.; Liu, G.; Schwartz, F.W.; Henebry, G.M. Climate forcing of wetland landscape connectivity in the Great Plains. Front. Ecol. Environ. 2014, 12, 59–64. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2020, 36, 2059–2076. [Google Scholar] [CrossRef]
- Lin, J.; Huang, C.; Wen, Y.; Liu, X. An assessment framework for improving protected areas based on morphological spatial pattern analysis and graph-based indicators. Ecol. Indic. 2021, 130, 108138. [Google Scholar] [CrossRef]
- Rogan, J.; Wright, T.; Cardille, J.; Pearsall, H.; Ogneva-Himmelberger, Y.; Riemann, R.; Riitters, K.; Partington, K. Forest fragmentation in Massachusetts, USA: A town-level assessment using Morphological spatial pattern analysis and affinity propagation. GIScience Remote Sens. 2016, 53, 506–519. [Google Scholar] [CrossRef]
- Birk, S.; Chapman, D.; Carvalho, L.; Spears, B.M.; Andersen, H.E.; Argillier, C.; Auer, S.; Baattrup-Pedersen, A.; Banin, L.; Beklioğlu, M.; et al. Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nat. Ecol. Evol. 2020, 4, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Y.; Zhang, Y.-Z.; Jiang, Z.-Y.; Guo, C.-X.; Zhao, M.-Y.; Yang, Z.-G.; Guo, M.-Y.; Wu, B.-Y.; Chen, Q.-L. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Yang, R.; Bai, Z.; Shi, Z. Linking Morphological Spatial Pattern Analysis and Circuit Theory to Identify Ecological Security Pattern in the Loess Plateau: Taking Shuozhou City as an Example. Land 2021, 10, 907. [Google Scholar] [CrossRef]
- Yang, Z.G.; Jiang, Z.Y.; Guo, C.X.; Yang, X.J.; Xu, X.J.; Li, X.; Hu, Z.M.; Zhou, H.Y. Construction of ecological network using morphological spatial pattern analysis and minimal cumulative resistance models in Guangzhou City, China. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2018, 29, 3367–3376. [Google Scholar]
- Wang, J.; Xu, C.; Pauleit, S.; Kindler, A.; Banzhaf, E. Spatial patterns of urban green infrastructure for equity: A novel exploration. J. Clean. Prod. 2019, 238, 117858. [Google Scholar] [CrossRef]
- Song, S.; Albert, C.; Prominski, M. Exploring integrated design guidelines for urban wetland parks in China. Urban For. Urban Green. 2020, 53, 126712. [Google Scholar] [CrossRef]
- Kumwimba, M.N.; Li, X.; Wang, W.; De Silva, L.; Bao, L.; Mihiranga, H.; Su, J.; Li, X. Large-scale hybrid accidental urban wetland for polluted river purification in northern China: Evidence and implications for urban river management. Environ. Technol. Innov. 2021, 22, 101542. [Google Scholar] [CrossRef]
- Xia, J.; Zheng, F.; Tang, H.; Li, J.; Li, Y. Chemical speciation and risks of heavy metals in sediment of urban wetlands in southeastern China. Soil Sediment Contam. Int. J. 2018, 28, 15–27. [Google Scholar] [CrossRef]
- Meng, W.; He, M.; Hu, B.; Mo, X.; Li, H.; Liu, B.; Wang, Z. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Cui, L.; Zuo, X.; Dou, Z.; Huang, Y.; Zhao, X.; Zhai, X.; Lei, Y.; Li, J.; Pan, X.; Li, W. Plant identification of Beijing Hanshiqiao wetland based on hyperspectral data. Spectrosc. Lett. 2021, 54, 381–394. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, L.; Li, H.; Sun, D.; Zhou, L. Research on Land Use Change in Beijing Hanshiqiao Wetland Nature Reserve Using Remote Sensing and GIS. Procedia Environ. Sci. 2011, 10, 583–588. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, Y.; Wu, S.; Li, Z.; Zhang, Y.; Qin, Y.; Yin, X. Construction and application of an aquatic ecological model for an emergent-macrophyte-dominated wetland: A case of Hanshiqiao wetland. Ecol. Eng. 2016, 96, 214–223. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Y.; Lei, T.; Chen, J.; Cui, G. Inter-specific relations of the dominant plant populations in the Hanshiqiao Wet-land in Beijing. Wetl. Sci. 2007, 5, 146. [Google Scholar]
- Liu, S.; Hong, J.M.; Hu, D.; Jiang, Z.Q. Vegetation classification and the change of vegetation pattern from 2003 to 2006 in the Hanshiqiao Wetland Nature Reserve, Beijing. Wetl. Sci. 2008, 6, 19–28. [Google Scholar]
- Zhang, J. Primary Studies on Plants and Vegetation in Hanshiqiao Wetland Nature Reserve in Beijing. Master’s Thesis, Beijing Forestry University, Beijing, China, 2007; pp. 10–11. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD2007&filename=2007077207.nh&uniplatform=NZKPT&v=TLfYQ0ssVGVogJ5KJWhqmuuiakL2N6KHDpPUtL87mQZjwHXBQQe7r2GIUvECbWQB (accessed on 1 June 2007).
- Cai, J.; Liu, Y.; Lei, T.; Pereira, L.S. Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages. Agric. For. Meteorol. 2007, 145, 22–35. [Google Scholar] [CrossRef]
- Haijun, L.; Yan, L.; Ruihao, Z.; Guanhua, H. Evaluation and modification of potential evapotranspiration methods in Beijing, China. Int. J. Agric. Biol. Eng. 2013, 6, 9–18. [Google Scholar]
- Yang, Q.; Ma, Z.; Zheng, Z.; Duan, Y. Sensitivity of potential evapotranspiration estimation to the Thornthwaite and Penman–Monteith methods in the study of global drylands. Adv. Atmos. Sci. 2017, 34, 1381–1394. [Google Scholar] [CrossRef]
- Cao, L.; Zhu, Y.; Tang, G.; Yuan, F.; Yan, Z. Climatic warming in China according to a homogenized data set from 2419 stations. Int. J. Climatol. 2016, 36, 4384–4392. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Wang, K.; Wang, J.; Ma, Q. Contributions of surface solar radiation and precipitation to the spatiotemporal patterns of surface and air warming in China from 1960 to 2003. Atmos. Chem. Phys. 2017, 17, 4931–4944. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Z.; Xu, X.; Kuang, W.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; Yu, D.; Wu, S.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Velázquez, J.; Gutiérrez, J.; Hernando, A.; García-Abril, A. Evaluating landscape connectivity in fragmented habitats: Cantabrian capercaillie (Tetrao urogallus cantabricus) in northern Spain. For. Ecol. Manag. 2017, 389, 59–67. [Google Scholar] [CrossRef]
- Xiao, R.; Wang, Q.; Zhang, M.; Pan, W.; Wang, J.J. Plankton distribution patterns and the relationship with environmental gradients and hydrological connectivity of wetlands in the Yellow River Delta. Ecohydrol. Hydrobiol. 2020, 20, 584–596. [Google Scholar] [CrossRef]
- Vogt, P.; Ferrari, J.R.; Lookingbill, T.R.; Gardner, R.H.; Riitters, K.H.; Ostapowicz, K. Mapping functional connectivity. Ecol. Indic. 2009, 9, 64–71. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, T.-T.; Zheng, X. A method of linking functional and structural connectivity analysis in urban green infrastructure network construction. Urban Ecosyst. 2022, 1–17. [Google Scholar] [CrossRef]
- Dai, J.; Liu, X.; Hu, F. Research and Application for Grey Relational Analysis in Multigranularity Based on Normality Grey Number. Sci. World J. 2014, 2014, 1–10. [Google Scholar] [CrossRef]
- Huimin, L. The impact of human behavior on ecological threshold: Positive or negative?—Grey relational analysis of ecological footprint, energy consumption and environmental protection. Energy Policy 2013, 56, 711–719. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, Q.; Wu, J.; He, Y.; Yang, G.; Zhang, X.; Li, L.; Yu, X.; Peng, H.; Wang, L. Grey relational analysis for evaluating the effects of different rates of wine lees-derived biochar application on a plant–soil system with multi-metal contamination. Environ. Sci. Pollut. Res. 2017, 25, 6990–7001. [Google Scholar] [CrossRef]
- Kuo, Y.; Yang, T.; Huang, G.-W. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Du, J.; Wang, K.; Cui, B.; Jiang, S. Correction of Inhomogeneities in Observed Land Surface Temperatures over China. J. Clim. 2020, 33, 8885–8902. [Google Scholar] [CrossRef]
- Cao, R.; Jia, X.; Huang, L.; Zhu, Y.; Wu, L.; Shao, M. Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China. Sci. Rep. 2018, 8, 12346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, G.; Zhou, G.; Zhang, Z.; Wei, X.; McNulty, S.; Vose, J.M. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, S.; Wang, J.; Wei, X.; Schuler, J.; Sun, P.; Harper, R.; Zegre, N. Natural forests exhibit higher carbon sequestration and lower water consumption than planted forests in China. Glob. Chang. Biol. 2018, 25, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Fierro, A.; Grez, A.A.; Vergara, P.M.; Ramírez-Hernández, A.; Micó, E. How does the replacement of native forest by exotic forest plantations affect the diversity, abundance and trophic structure of saproxylic beetle assemblages? For. Ecol. Manag. 2017, 405, 246–256. [Google Scholar] [CrossRef]
- Valipour, M. Importance of solar radiation, temperature, relative humidity, and wind speed for calculation of reference evapotranspiration. Arch. Agron. Soil Sci. 2014, 61, 239–255. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. Trend analysis of reference evapotranspiration in Northwest China: The roles of changing wind speed and surface air temperature. Hydrol. Process. 2013, 27, 3941–3948. [Google Scholar] [CrossRef]
Year | Satellite | Resolution | Passing Time |
---|---|---|---|
2005 | Quickbird | 0.6 m | 10.3 |
2007 | Quickbird | 0.6 m | 6.20 |
2009 | GeoEye1 | 0.6 m | 6.20 |
2011 | GeoEye1 | 0.6 m | 07.3 |
2014 | WorldView-2 | 0.5 m | 10.17 |
2020 | GeoEye2 | 0.5 m | 6.14 |
Type | 2005 | 2007 | 2009 | 2011 | 2014 | 2020 |
---|---|---|---|---|---|---|
Core | 329,681 | 378,800 | 836,726 | 931,703 | 1,119,637 | 1,194,745 |
Islet | 474,912 | 439,127 | 258,741 | 6843 | 5294 | 4779 |
Perforation | 59,321 | 53,194 | 51,270 | 49,480 | 48,921 | 47,712 |
Edge | 79,175 | 94,318 | 126,373 | 164,673 | 15,451 | 159,836 |
Loop | 12,967 | 12,967 | 12,967 | 12,967 | 12,967 | 8967 |
Bridge | 95,041 | 126,738 | 15,959 | 181,697 | 186,321 | 185,045 |
Branch | 37,893 | 35,307 | 29,893 | 25,698 | 24,470 | 24,984 |
Background | 1,347,210 | 1,295,749 | 1,104,271 | 1,063,139 | 1,023,139 | 923,139 |
2020 | ||||||||
---|---|---|---|---|---|---|---|---|
Cropland | Forest | Grassland | Wetland | Buildings | Bare Land | Total | ||
2005 | Cropland | 4224.0 | 289.8 | 376.8 | 33.1 | 248.1 | 9.0 | 5198.0 |
Forest | 235.1 | 13,960.1 | 1202.2 | 13.5 | 34.2 | 7.8 | 15,495.8 | |
Grassland | 521.7 | 1361.6 | 6636.2 | 21.4 | 93.8 | 21.0 | 8667.0 | |
Wetland | 45.6 | 19.4 | 16.6 | 204.5 | 11.8 | 2.1 | 301.3 | |
Building | 5.4 | 2.9 | 2.6 | 5.7 | 154.2 | 0.4 | 175.6 | |
Bare land | 3.0 | 0.4 | 0.5 | 0.4 | 0.9 | 7.1 | 12.6 | |
Total | 5036.5 | 15,672.5 | 8236.1 | 279.8 | 550.9 | 47.7 | 29,864.4 |
Reservoir | Land-Use Change | Climate Change | |||||
---|---|---|---|---|---|---|---|
Water Release | Forest | Urban | Temperature | Precipitation | ET | ||
IIC | All year | 0.857 | 0.654 | 0.637 | 0.574 | 0.849 | 0.731 |
Warm | 0.823 | 0.741 | 0.558 | 0.522 | 0.894 | 0.836 | |
Cold | 0.916 | 0.592 | 0.715 | 0.597 | 0.798 | 0.645 | |
PC | All year | 0.861 | 0.661 | 0.643 | 0.581 | 0.841 | 0.729 |
Warm | 0.839 | 0.764 | 0.561 | 0.530 | 0.890 | 0.841 | |
Cold | 0.928 | 0.607 | 0.709 | 0.614 | 0.803 | 0.652 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Cao, B.; Zhang, Q.; Cui, S.; Cui, B.; Du, J. Responses of Urban Wetland to Climate Change and Human Activities in Beijing: A Case Study of Hanshiqiao Wetland. Sustainability 2022, 14, 4530. https://doi.org/10.3390/su14084530
Zhang Y, Cao B, Zhang Q, Cui S, Cui B, Du J. Responses of Urban Wetland to Climate Change and Human Activities in Beijing: A Case Study of Hanshiqiao Wetland. Sustainability. 2022; 14(8):4530. https://doi.org/10.3390/su14084530
Chicago/Turabian StyleZhang, Yong, Bo Cao, Qiyue Zhang, Shifeng Cui, Baoshan Cui, and Jizeng Du. 2022. "Responses of Urban Wetland to Climate Change and Human Activities in Beijing: A Case Study of Hanshiqiao Wetland" Sustainability 14, no. 8: 4530. https://doi.org/10.3390/su14084530
APA StyleZhang, Y., Cao, B., Zhang, Q., Cui, S., Cui, B., & Du, J. (2022). Responses of Urban Wetland to Climate Change and Human Activities in Beijing: A Case Study of Hanshiqiao Wetland. Sustainability, 14(8), 4530. https://doi.org/10.3390/su14084530