Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model
Abstract
:1. Introduction
2. Methodology and Data
2.1. Study Area
2.2. Method and Data
2.2.1. Calculation of WEPS
2.2.2. Calculation of Retention Rate of WEPS
2.2.3. Calculation of the WEPS Monetary Value
2.2.4. Geographical Detector
2.2.5. Data Source
3. Results
3.1. WEPS and Its Monetary Value in the QTP
3.2. WEPS and Its Monetary Value of Different Province and Cities in the QTP
3.3. WEPS and Its Monetary Value of Different Ecosystems in the QTP
3.4. Change of Spatial Pattern of WEPS in the QTP
3.5. WEPS in the QTP and the Detection of Its Driving Forces
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, G.D.; Lu, C.X.; Leng, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. (In Chinese) [Google Scholar]
- Li, X.W.; Li, M.D.; Dong, S.K.; Shi, J.B. Temporal-spatial changes in ecosystem services and implications for the conservation of alpine rangelands on the Qinghai-Tibetan Plateau. Rangel. J. 2015, 37, 31–43. [Google Scholar] [CrossRef]
- Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The effects of wind erosion depending on cropping system and tillage method in a semi-arid region. Agronomy 2020, 10, 732. [Google Scholar] [CrossRef]
- Chi, W.; Zhao, Y.; Kuang, W.; He, H. Impacts of anthropogenic land use/cover changes on soil wind erosion in China. Sci. Total Environ. 2019, 668, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Meng, N.; Yang, Y.-Z.; Zheng, H.; Li, R.-N. Climate change indirectly enhances sandstorm prevention services by altering ecosystem patterns on the Qinghai-Tibet Plateau. J. Mt. Sci. 2021, 18, 1711–1724. [Google Scholar] [CrossRef]
- Wang, X.; Lang, L.; Yan, P.; Wang, G.; Li, H.; Ma, W.; Hua, T. Aeolian processes and their effect on sandy desertification of the Qinghai-Tibet Plateau: A wind tunnel experiment. Soil Tillage Res. 2016, 158, 67–75. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Ping, Y.; Zhibao, D.; Guangrong, D.; Zhang, X.; Yiyun, Z. Preliminary results of using 137 Cs to study wind erosion in the Qinghai-Tibet Plateau. J. Arid Environ. 2001, 47, 443–452. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, C.; Zhou, N.; Shen, Y.; Wu, Y.; Zou, X.; Li, J.; Jia, W.; Wang, X. Spatial distribution of Aeolian desertification on the Qinghai-Tibet Plateau. J. Desert Res. 2018, 38, 690–700. [Google Scholar] [CrossRef]
- Teng, Y.M.; Zhan, J.Y.; Liu, W.; Sun, Y.; Boappeah Agyemang, F.; Zhihui, L. Spatiotemporal dynamics and drivers of wind erosion on the Qinghai-Tibet Plateau, China. Ecol. Indicators 2021, 123, 107340. [Google Scholar] [CrossRef]
- Bagnold, R.A.; Sandford, K.S.; Shaw, W.B.K. A further journey through the Libyan Desert (continued). Geogr. J. 1933, 82, 211–235. [Google Scholar] [CrossRef]
- Woodruff, N.P.; Siddoway, F.H. A Wind Erosion Equation. Proc. Soil Sci. Soc. Am. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Gregory, J.M.; Wilson, G.R.; Singh, U.B.; Darwish, M. TEAM: Integrated, process-based wind-erosion model. Environ. Model. Soft. 2004, 19, 205–215. [Google Scholar] [CrossRef]
- Lindstrom Usda-Ars, M.J. A description of devices used in the study of wind erosion of soils. Soil Sci. 1985, 140, 313. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Bilbro, J.D.; Saleh, A. RWEQ: Improved wind erosion technology. J. Soil Water Conserv. 2000, 55, 183–189. [Google Scholar]
- Hagen, L.J. Evaluation of the Wind Erosion Prediction System (WEPS) erosion submodel on cropland fields. Environ. Model. Soft. 2004, 19, 171–176. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Zobeck, T.M.; Potter, K.N.; Stout, J.E.; Popham, T.W. Validation of the wind erosion stochastic simulator (WESS) and the revised wind erosion equation (RWEQ) for single events. Environ. Model. Soft. 2004, 19, 191–198. [Google Scholar] [CrossRef]
- Jiang, L.; Xiao, Y.; Ouyang, Z.; Xu, W.; Zheng, H. Estimate of the wind erosion modules in Qinghai Province based on RWEQ model. Res. Soil Water Conserv. 2015, 22, 21–25. (In Chinese) [Google Scholar] [CrossRef]
- Huang, L.; Cao, W.; Wu, D.; Gong, G. The temporal and spatial variations of ecological services in the Tibet Plateau. J. Nat. Resour. 2016, 31, 543–555. [Google Scholar]
- Jiang, C.; Li, D.; Wang, D.; Zhang, L. Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover change. Ecol. Ind. 2016, 66, 199–211. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Gong, J.; Zou, X.; Dong, G.; Li, X.; Dong, Z.; Qing, Z. Estimates of soil movement in a study area in Gonghe Basin, north-east of Qinghai-Tibet Plateau. J. Arid Environ. 2003, 53, 285–295. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.B.; Peng, J.; Zhao, C.N.; Xu, Z.H.; Dong, J.Q.; Gao, Y. Wind speed in spring dominated the decrease in wind erosion across the Horqin Sandy Land in northern China. Ecol. Indic. 2021, 127, 107599. [Google Scholar] [CrossRef]
- Jiang, C.; Yang, Z.; Wang, X.; Dong, X.; Li, Z.; Li, C. Examining the reversal of soil erosion decline in the hotspots of sandstorms: A non-linear ecosystem dynamic perspective. J. Arid Environ. 2021, 186, 104421. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, J.G.; Zhang, H.Y.; Zhang, Z.D.; Wang, D.W. China’s progress towards sustainable land degradation control: Insights from the northwest arid regions. Ecol. Eng. 2019, 127, 75–87. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.B.; Wang, H.; Gong, J.R.; Li, S.K.; Dou, H.S.; Dang, D.L. Soil wind erosion evaluation and sustainable management of typical steppe in Inner Mongolia, China. J. Environ. Manag. 2021, 277, 111488. [Google Scholar] [CrossRef] [PubMed]
- Aubault, H.; Webb, N.P.; Strong, C.L.; Mc Tainsh, G.H.; Leys, J.F.; Scanlan, J.C. Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition. Aeolian Res. 2015, 17, 89–99. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Fan, J.W.; Cao, W.; Harris, W.; Li, Y.Z.; Chi, W.F.; Wang, S.Z. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef]
- Latocha, A.; Szymanowski, M.; Jeziorska, J.; Stec, M.; Roszczewska, M. Effects of land abandonment and climate change on soil erosion—An example from depopulated agricultural lands in the Sudetes Mts., SW Poland. CATENA 2016, 145, 128–141. [Google Scholar] [CrossRef]
- Garbrecht, J.D.; Nearing, M.A.; Steiner, J.L.; Zhang, X.J.; Nichols, M.H. Can conservation trump impacts of climate change on soil erosion? Anassessment from winter wheat cropland in the Southern Great Plains of the United States. Weather Clim. Extrem. 2015, 10, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Li, D.J.; Xu, D.Y.; Wang, Z.Y.; You, X.G.; Zhang, X.Y.; Song, A.L. The dynamics of sand—Stabilization services in Inner Mongolia, China from 1981 to 2010 and its relationship with climate change and human activities. Ecol. Indicators 2018, 88, 351–360. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Tatarko, J.; Abatzoglou, J.T.; Fox, F.A.; Huggins, D. Implications of climate change on wind erosion of agricultural lands in the Columbia plateau. Weather Clim. Extrem. 2015, 10, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Xu, C.D. Geo-detector: Principle and prospective. Acta Geogr. Sinica 2017, 72, 116–134. [Google Scholar]
- Polykretis, C.; Alexakis, D.D. Spatial stratified heterogeneity of fertility and its association with socio-economic determinants using Geographical Detector: The case study of Crete Island, Greece. Appl. Geogr. 2021, 127, 102384. [Google Scholar] [CrossRef]
- Huang, J.X.; Wang, J.F.; Bo, Y.C.; Xu, C.D.; Hu, M.G.; Huang, D.C. Identification of health risks of hand, foot and mouth disease in China using the geographical detector technique. Int. J. Environ. Res. Public Health 2014, 11, 3407–3423. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, N.; Gexigeduren, H.B.; Liu, C.Y.; Li, Y.; Zhang, H.Y.; Chen, X.Y.; Lin, H. Construction of a GeogDetector-based model system toindicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats. Bull. Entomol. Res. 2015, 105, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Deng, L.Y.; Zuo, S.D.; Song, X.D.; Liao, Y.L.; Xu, C.D.; Chen, Q.; Hua, L.Z.; Li, Z.W. Quantifying the influences of various ecological factors on land surface temperature of urban forests. Environ. Pollut. 2016, 216, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Yang, X.P. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. CATENA 2016, 145, 321–333. [Google Scholar] [CrossRef]
- Tian, F.; Liu, L.Z.; Yang, J.H.; Wu, J.J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indicators. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, J.; Liu, C.; He, S.; Liu, L. Growing-season vegetation coverage patterns and driving factors in the China-Myanmar Economic Corridor based on Google Earth Engine and geographic detector. Ecol. Indic. 2022, 136, 108620. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, D.Y.; Wang, Z.Y.; Zhang, X.Y. The interaction of driving factors for the change of windbreak and sand-fixing service function in Xilingol League between 2000 and 2015. Acta Ecol. Sinica 2021, 41, 603–614. [Google Scholar]
- Du, H.Q.; Dou, S.T.; Deng, X.H.; Xue, X.; Wang, T. Assessment of wind and water erosion risk in the watershed of the Qinghai-Qinghai-Tibet Plateau Reach of the Yellow River, China. Ecol. Indicators 2016, 67, 117–131. [Google Scholar] [CrossRef]
- Skaggs, T.H.; Arya, L.M.; Shouse, P.J.; Mohanty, B.P. Estimating particle-size distribution from limited soil texture data. Soil Sci. Soc. Am. J. 2001, 65, 1038–1044. [Google Scholar] [CrossRef]
- Lv, C.Q. Study on Soil Carbon Stock and Its Spatial Distribution, Influence Factors in Tibetan Plateau. Master’s Thesis, Nanjing University, Nanjing, China, 2006. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geograph. Inform. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Che, T.; Li, X.; Jin, R.; Armstrong, R.; Zhang, T. Snow depth derived from passive microwave remote-sensing data in China. Ann. Glaciol. 2008, 49, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.B.; Qu, J.J.; Wang, T. Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau. Sci. Cold Arid Reg. 2016, 8, 187–195. [Google Scholar]
- Li, J.; Ma, X.; Zhang, C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Sci. Total Environ. 2020, 709, 136060. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar]
- Wang, C.; Zhan, J.; Xin, Z. Comparative analysis of urban ecological management models incorporating low-carbon transformation. Technol. Forecast. Soc. Chang. 2020, 159, 120190. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Are, K.; Huang, Z.; Yu, H.; Zhang, Q. Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: Evidenced from 137Cs and 210Pbex measurements. Agric. Ecosyst. Environ. 2019, 285, 106643. [Google Scholar] [CrossRef]
- Pan, T.; Zou, X.; Liu, Y.; Wu, S.; He, G. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 2017, 108, 307–317. [Google Scholar] [CrossRef]
Factor | Class Break Value | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
Y | 0.67 | 2.24 | 4.26 | 7.95 | 28.56 | |||||||||
X1 | PL | PLA | H | SRM | MRM | BRM | EBRM | - | - | - | - | - | - | - |
X2 | Ls | SLs | Cs | Drs | Des | Ps | Sas | Wfs | Ses | Ms | As | Fa | Ur | Os |
X3 | 2.06 | 4.5 | 7.13 | 9.76 | 12.58 | 15.58 | 18.76 | 22.34 | 27.03 | 47.68 | - | - | - | - |
X4 | 0.1 | 0.17 | 0.24 | 0.33 | 0.43 | 0.53 | 0.62 | 0.7 | 0.77 | 0.91 | - | - | - | - |
X5 | 2126.31 | 3506.49 | 4523.47 | 5685.72 | 6847.98 | 8010.24 | 9390.42 | 11,279.09 | 13,894.16 | 18,979.04 | - | - | - | - |
X6 | −0.95 | 0.68 | 2.01 | 3.34 | 4.67 | 6.07 | 7.77 | 9.54 | 11.24 | 14.57 | - | - | - | - |
X7 | 0.64 | 1.07 | 1.41 | 1.70 | 2.00 | 2.33 | 2.64 | 2.94 | 3.31 | 5.04 | - | - | - | - |
X8 | 2050 | 2624 | 3110 | 3597 | 4038 | 4426 | 4761 | 5074 | 5458 | 8313 | - | - | - | - |
X9 | 1.00 | 2.00 | 3.00 | 4.00 | >5.00 | - | - | - | - | - | - | - | - | - |
X10 | 1.00 | 2.00 | 3.00 | 4.00 | >5.00 | - | - | - | - | - | - | - | - | - |
Detected Factor | Landform Type | Soil Type | Slope | Average Annual NDVI | Average Annual Precipitation | Average Annual Temperature | Average Annual Wind Speed | DEM | Average Annual GDP | Average Annual Population Density |
---|---|---|---|---|---|---|---|---|---|---|
q statistic | 0.276 | 0.053 | 0.440 | 0.142 | 0.223 | 0.057 | 0.186 | 0.071 | 0.076 | 0.124 |
Detecting Factor | Landform Type | Soil Type | Slope | Average Annual NDVI | Average Annual Precipitation | Average Annual Temperature | Average Annual Wind Speed | DEM | Average Annual GDP | Average Annual Population Density |
---|---|---|---|---|---|---|---|---|---|---|
Landform type | ||||||||||
Soil type | N | |||||||||
Slope | N | N | ||||||||
Average annual NDVI | Y | N | N | |||||||
Average annual precipitation | Y | Y | Y | Y | ||||||
Average annual temperature | Y | Y | Y | Y | Y | |||||
Average annual wind speed | N | N | Y | Y | Y | N | ||||
DEM | N | N | N | N | Y | Y | N | |||
Average annual GDP | Y | Y | Y | Y | Y | Y | Y | Y | ||
Average annual population density | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y |
Detecting Factor | Landform Type | Soil Type | Slope | Average Annual NDVI | Average Annual Precipitation | Average Annual Temperature | Average Annual Wind speed | DEM | Average Annual GDP | Average Annual Population Density |
---|---|---|---|---|---|---|---|---|---|---|
Landform type | 0.28 | |||||||||
Soil type | 0.34 | 0.05 | ||||||||
Slope | 0.46 | 0.50 | 0.44 | |||||||
Average annual NDVI | 0.39 | 0.19 | 0.57 | 0.14 | ||||||
Average annual precipitation | 0.38 | 0.25 | 0.55 | 0.26 | 0.22 | |||||
Average annual temperature | 0.32 | 0.12 | 0.48 | 0.22 | 0.29 | 0.06 | ||||
Average annual wind speed | 0.37 | 0.22 | 0.53 | 0.22 | 0.27 | 0.23 | 0.19 | |||
DEM | 0.32 | 0.13 | 0.46 | 0.22 | 0.28 | 0.14 | 0.26 | 0.07 | ||
Average annual GDP | 0.31 | 0.14 | 0.46 | 0.17 | 0.24 | 0.14 | 0.20 | 0.14 | 0.08 | |
Average annual population density | 0.33 | 0.18 | 0.47 | 0.18 | 0.24 | 0.19 | 0.21 | 0.19 | 0.14 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xiao, Y.; Xie, G.; Xu, J.; Qin, K.; Liu, J.; Niu, Y.; Gan, S.; Huang, M.; Zhen, L. Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model. Sustainability 2022, 14, 4635. https://doi.org/10.3390/su14084635
Wang Y, Xiao Y, Xie G, Xu J, Qin K, Liu J, Niu Y, Gan S, Huang M, Zhen L. Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model. Sustainability. 2022; 14(8):4635. https://doi.org/10.3390/su14084635
Chicago/Turabian StyleWang, Yangyang, Yu Xiao, Gaodi Xie, Jie Xu, Keyu Qin, Jingya Liu, Yingnan Niu, Shuang Gan, Mengdong Huang, and Lin Zhen. 2022. "Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model" Sustainability 14, no. 8: 4635. https://doi.org/10.3390/su14084635
APA StyleWang, Y., Xiao, Y., Xie, G., Xu, J., Qin, K., Liu, J., Niu, Y., Gan, S., Huang, M., & Zhen, L. (2022). Evaluation of Qinghai-Tibet Plateau Wind Erosion Prevention Service Based on RWEQ Model. Sustainability, 14(8), 4635. https://doi.org/10.3390/su14084635