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Abstract: In this work, we an envision Home Energy Management System (HEMS) as a Cyber-
Physical System (CPS) architecture including three stages: Data Acquisition, Communication Net-
work, and Data Analytics. In this CPS, monitoring, forecasting, comfort, occupation, and other
strategies are conceived to feed a control plane representing the decision-making process. We sur-
vey the main technologies and techniques implemented in the recent years for each of the stages,
reviewing and identifying the cutting-edge challenges that the research community are currently
facing. For the Acquisition part, we define a metering device according to the IEC TS 63297:2021
Standard. We analyze the communication infrastructure as part of beyond 2030 communication era
(5G and 6G), and discuss the Analytics stage as the cyber part of the CPS-based HEMS. To conclude,
we present a case study in which, using real data collected in an experimental environment, we
validate proposed architecture of HEMS in monitoring tasks. Results revealed an accuracy of 99.2%
in appliance recognition compared with the state-of-the-art proposals.

Keywords: Cyber-Physical System; Home Energy Management System; Internet of Things; Machine
Learning; Smart Grids

1. Introduction

The continuous increase of the energy consumption in the residential sector has
opened the door to the arrival of new technologies that promise to change the way in which
electricity is produced, managed, and consumed [1]. To achieve sustainable development,
it is of high importance to drastically decrease the usage of fossil fuels, not only because of
their elevated costs, but for their polluting nature. In particular, the power sector has been
a major contributor to global warming, being responsible for a considerable amount (about
38%) of carbon emissions in the past years [2]. As a consequence, the electricity industry is
increasingly moving to a transformation, an evolution from a centralized network to a more
distributed one, which requires significant interaction on the consumer part. The smart
grid is a novel electric power system that supports a two-way energy and information flow
between consumers and service providers. Smart Grids aim to manage new applications
in the energy distribution system, such as smart meters, distributed energy resources
(DER), electric vehicles (EVs), and energy storage systems (ESS) [3]. Electric vehicles
provide several environmental and economic benefits; at the same time, they introduce
new challenges due to their bidirectional mode of operation. With large-scale integration of
EVs, the charging process can overload the power system mainly during peak hours. Other
factors that may affect the power grid include voltage fluctuation, harmonics, frequency
deviation, grid stability, and power outages [4].

In this context, in which smart homes and home automation arise, automatically
controlling different home appliances or devices is essential. Smart home devices are able
to acquire real-time information and improve customer safety and security [5]. Therefore,
an efficient residential energy management methodology is required, in which Home
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Energy Management Systems (HEMS) will allow households to effectively centralize the
management of services, and will provide smart homes with functionalities for the internal
and external information exchange. In this regard, HEMS must perform two main tasks:
(1) real-time monitoring of the energy usage of householders, and (2) scheduling the optimal
energy consumption of household appliances. In addition, through HEMS, electric utilities,
or a third party, will provide consumers with an efficient control of home appliances [1].

Facing the fifth generation (5G) wireless networks era, several problems arise which
affect the massive adoption of smart homes and HEMS. These are mainly related to inter-
ference, latency, and packet loss. At the same time, conventional Smart Grids are evolving
towards Smart Grid 2.0 or Energy Internet (EI), which envisages autonomous grid operation
replaces the current central authority governing the grid [6,7]. The 5G technology targets to
support diverse vertical applications by connecting heterogeneous devices and machines
with drastic improvements in terms of high quality of service, increased network capacity,
and enhanced system throughput [8]. On the other hand, the continuous evolution of
data acquisition systems, information technology (IT), and network technologies have led
to new manufacturing strategies, such as the advanced Industrial Internet, and Industry
4.0. Smart technologies including cyber–physical systems (CPS), digital twins (DTs), and
Internet of Things (IoT) technology are taking a central position [9–12]. The Cyber-Physical
System is created as a consequence of the increasing number of households connected to
the grid through multiple EI applications, which will result in countless access points and
data sets threatening the grid security and obstructing its performance [6].

As a typical application of machine-type communications among 5G technologies,
IoT was widely integrated into the grid, producing the so-called Power Internet of Things
(PIoT) [13]. PIoT and data-driven approaches have become attractive solutions for enabling
smart homes to achieve their goals in monitoring, protecting, and controlling through
the incorporation of sensors, actuators, and metering devices while supporting various
network functions and system automation [1,5,14–16]. In [13], the authors have discussed
the role of PIoT as part of a Cyber-Physical System. In this scenario, PIoT will implement
the interconnection of the wide-area devices and performs data collection, storage, and
aggregation, while the CPS is more related to data analysis, making effective, reliable,
accurate, and real-time control of the physical process in the smart grid. However, from the
smart home perspective, the role of CPS has received less attention. Therefore, analyzing
HEMS in this context—from home devices to data management and user interaction—
becomes a task of significant importance.

1.1. Motivation

Several approaches have been discussed about how to monitor [16–28], control [14,15,29–31],
and forecast [32–36] the main loads in a smart home, mainly focusing on Data Analytics
and Communication Network. However, this analysis has been mostly performed inde-
pendently. In order to fit the requirements of ”beyond 2030” communication (5G, 6G) and
Industry 4.0 technologies, a more holistic approach is necessary.

In this paper, we propose a cyber-physical approach for Home Energy Management
System (HEMS). The proposed architecture consists of three layers: Data Acquisition,
Communication Network, and Data Analytics. We review state-of-the-art solutions for each
layer highlighting and identifying the main challenges. In the Acquisition stage, we define
a metering device based on the standard IEC TS 63297:2021. For Communication Network,
we summarize different technologies deployed inside the house, and discuss the best
candidates for communication in the smart city. In addition, we define the Analytics stage as
the cyber part of a HEMS. We present a real case study in which a cyber-physical architecture
is implemented and validated for monitoring purposes using real data collected in a house
located in Valparaiso, Chile. To the best of our knowledge, no previous work has analyzed
the requirements of HEMS to be deployed in the advent of beyond 2030 communication
and CPS era.
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1.2. Contribution

The main contributions of this work can be summarized as follows:

• We provide a comprehensive review on key enabling technologies and techniques for
HEMS, defining these systems as CPS-based architectures of three main stages: Data
Acquisition, Communication Technologies, and Data Analytics.

• In terms of Data Acquisition, we revised the main components and defined the
main parameters of metering devices according to the IEC TS 63297:2021 standards,
reviewed available solutions in the market, and summarized the main characteristics
of available datasets.

• We reviewed available communication technologies for both HAN and WAN intercon-
nection, opening the discussion for the introduction of “beyond 2030” communication
(5G and 6G) in the context of HEMS.

• We identified Data Analytics as the cyber part of a CPS-based HEMS, in which several
processes such as monitoring, scheduling, and forecasting, are carried out.

• The described architecture was validated during a testbed for monitoring purposes.
This way, we established the guidelines for future work.

1.3. General Structure

The rest of this paper is organized as follows: in Section 2, recent relevant research work
is analyzed, discussing the main benefits and limitations of current solutions. Following this,
Section 3 defines the main stages of a HEMS. In Section 4, we discussed home appliances
and metering devices, providing a standard definition based on IEC TS 63297:2021. Then
Sections 5 and 6 discuss some of the most common technologies and techniques used for
Communication Network and Data Analytics, respectively, based on recent literature. In
Section 7, we present a case study of a cyber-physical approach for a HEMS. To validate this
system, we implemented a real-case scenario for monitoring purposes. Finally, Section 8
identifies a series of challenges which demand the attention of the research community,
arriving at conclusions presented in Section 9.

2. Related Work

Home Energy Management Systems (HEMS) have centered the attention of the
research community over the last decade. Since the emergence of Smart Grids, HEMS
have been defined to play a key role in centralizing the management of services. The
main idea behind this concept is to provide customers with complete functionalities for
internal information exchange. The authors of [3] pointed out, among other challenges,
the need of having a robust and large-bandwidth communication infrastructure that can
cope with the enormous volume of data, which indeed has been hardly discussed in recent
years [8,37–42].

In that sense, the authors of [38] identified interference and wall penetration losses as
the main challenges to be handled in smart homes. They built a simulator which allowed
them to prove that cognitive radio communication technologies can help overcome the
challenges by providing more flexibility in terms of unused spectrum. In addition, the
authors highlighted the need for a 5G network which connects the smart homes and joins
these into a smart city infrastructure. On the other hand, in [41], the authors discussed
on how conventional wireless communication technologies, such as WiFi or Zigbee, are
insufficient for communication range, energy consumption, and cost. As a solution, the
authors advise low power wide area networks (LPWAN) which can operate at low data
rates while covering kilometer ranges. Among these technologies, they remarked long
range (LoRaWAN), which is an open standard, with built-in security, GPS-free geolocation,
ability to have long range communication, low energy consumption, and options to have
private deployments. However, its deployment in real-time application is limited due to its
low data rate and duty cycle constraints.

The vast majority of previous works concerning HEMS is slightly related to Data
Analytics. The usage of power data has provided HEMS with different functionalities such
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as load monitoring, load forecasting, comfort-level analysis, and scheduling the use of
appliances in order to increase energy efficiency.

2.1. Load Monitoring Approaches

The process of load monitoring is conceived to facilitate the processes of identifying
and monitoring main loads in the household [21,25,43]. Literature has identified two main
categories to classify the methods to manage such processes: methods based on hardware,
known as intrusive load monitoring (ILM), and those based on software, i.e., non-intrusive
load monitoring (NILM) [44,45].

Most of the research work have been oriented to NILM, mainly motivated for its
low-cost implementation and easy deployment requirements, using only one single point
of sensing. This was the method selected in [19,21–28,46–59]. In contrast, in some coun-
tries, the access to smart meter is still limited. The main challenges lie in regulation and
implementation issues. Moreover, high-resolution data cannot be achieved with most
current commercial smart meters today having complexity in setup, data storage, and cost.
On the other hand, IoT technology has been gaining increasing popularity becoming an
affordable option to overcome the difficulty of implementing NILM solutions. However,
different requirements must be considered regarding data resolution, accuracy, real-time
operation, and the number of devices to be covered, which also have been openly discussed
in literature [16,18,22,43].

2.2. Load Forecasting Approaches

The authors of [32] explained that the need for load forecasting is given by the ad-
vanced metering infrastructure (AMI), which is a main component of the smart grid. It
encapsulates the main technological innovations in this domain: the smart meters. Then,
cutting-edge applications such as DR models can be implemented. To be successful, DR
campaigns need to profile and further forecast the energy usage reported by each smart
meter within each AMI. In addition, the authors identified a need for characterizing and
forecasting the usage patterns of individual appliances within a household, since it allows
to manage the daily electricity usage of each appliance, to engage further in the DR using
the smart meters over the AMI, and therefore select suitable price plans. The latter idea was
stated in [35], in which the authors conclude that load forecasting can be useful to provide
energy-efficient scheduling for smart homes.

Different from grid-level forecasting, which measures the total energy consumption in
a household, i.e., at smart meter level, appliance load forecasting has received less attention
in past years [32]. However, in recent publications, researchers have taken advantage of
the many benefits it can bring for smart grid applications [32,33,35,36]. In these works,
the authors agreed on the challenge of developing a single model that operates at the
device level.

2.3. Comfort Level in Literature

The comfort level of households has been increasingly raising many concerns in the
research community, being directly related to environmental indicators such as temperature,
humidity, and water control [13,60]. In [14], the authors presented a reinforcement learning
(RL) model to manage and control the heating system and domestic hot water (DHW), with
photovoltaic (PV) self-consumption optimization. This approach allowed to balance energy
savings and comfort according to the consumer’s preferences.

For the healthcare sector, comfort level analysis is one of the main concern in assistive
living applications. In [61], the authors gave an insight into different types of ambient-
sensor-based elderly monitoring technologies for the home. The authors emphasized on
the types of sensors, their characteristics, and costs which can be used in this regard. They
also presented a summary of previous research works that studied ambient sensors in
mobile robotics. They concluded that using wearable sensors can result in uncomfortable
for patients, especially if they are wearing the devices during extended hours on the body.
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This, in turn, may result in a high risk of rejection by the patient. In contrast, ambient
sensors do not suffer this drawback, and therefore they have greater acceptance.

2.4. Scheduling and Control Methods

Scheduling and control is one of the primary goals of HEMS. In [29], the authors
conceived HEMS as a way to build consumption schedules based on several factors such as
energy costs, environmental concerns, load profiles, and consumer comfort. In addition, the
authors claim that these systems allow to save energy and efficiently manage the distributed
energy resources and storage. They reviewed the evolution of HEMS from its emergence
in 1979.

There are various methods for scheduling and control in the context of HEMS which
have been discussed in literature throughout the years. Most of these methods have been
presented as an optimization problem, in which the main objective is to minimize the peak
load and electricity cost of a the smart home. The authors of [62] proposed a self-scheduling
model based on behavioral modeling and prospect theory. On the other hand, the authors
of [60] based their scheduling solution in optimizing thermal and visual comfort. In Table 1,
we present a summary of some of the most recent publications in this regard. From Table 1,
it is possible to notice that there are two main strategies to solve the problem: rule-based
algorithms (Heuristics Methods, Markov Chains) or deep reinforcement learning (Deep
RL) based approaches.

Table 1. Different methods to solve Scheduling and Control in HEMS.

Reference Year Method Type

[15] 2020 Policy gradients (DDPGs)-based energy management algorithm. RL-based
[1] 2020 Two-level distributed Deep RL (DRL) model. RL-based
[63] 2020 Optimization based on user preference. Rule-based
[14] 2020 Single/Multiple objective optimization. RL-based
[64] 2020 Indoor and domestic hot water tank temperature control. Rule-based
[65] 2020 Multi-objective optimization using discomfort index. Rule-based
[60] 2020 Human comfort-based model. Rule-based
[66] 2021 Fuzzy logic systems coupled with genetic algorithms. RL-based
[67] 2021 Optimization model for cost reduction. Rule-based
[35] 2021 Q-learning for offline optimization. RL-based
[68] 2021 Appliance Scheduling-based Residential Energy Management System (AS-REMS). RL-based
[69] 2021 Nonlinear models and adjustable parameters. Rule-based
[62] 2022 Mixed integer linear programming (MILP) model. Rule-based

As a consequence of appliance scheduling, comfort level of users may be affected.
The authors of [65,70] argue that the user inconvenience may be caused due to forcing
consumers to change the use of their home appliances, even when the economic factor does
not compensate for the discomfort. Therefore, this is a significant fact to consider when
deploying a HEMS. In [65], the authors proposed a multi-object optimization method for
both the electricity bill and Discomfort Index.

2.5. Other Applications

Occupancy, death, or anomaly detection applications have been related to HEMS and
also explored in literature. In [71], the authors proposed a method to tackle the problem of
detection indoor office occupancy based on statistical approaches and Machine Learning
techniques. The metering system was installed at the circuit breaker level in an office, thus
contributing to building context awareness energy-efficient buildings. The authors of [72]
proposed deep learning (DL) based approach to recognize daily activities performed in a
smart home. The model separates the normal from the anomalous activities. In addition,
they identify the anomalous days based on the number of activities performed in a day.
On the other hand, in [73], the authors proposed a model to detect abnormal inactivities
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that included immobilizing medical conditions or sudden deaths of elderly or disabled
occupants who live alone, which aroused the interest of the healthcare community.

2.6. Summary and Insights

The above analysis proves that HEMS is still undergoing research, in which, facing the
5G/6G communication era, it is undoubtedly in constant need of transformation. In [13],
the authors conceived future HEMS as a cyber-physical architecture in which the sensing is
oriented from appliances to the cloud, and the actuation is done in a reverse way.

3. Architecture for Home Energy Management Systems

A significant number of researchers has discussed IoT-based architectures for HEMS
and other smart grid applications, such as activity recognition [16]. Commonly, three to five
layers are needed including appliances, metering devices, communication technologies,
middleware technologies, and user interaction. The authors of [74] described traditional
three-layered architectures with a perception layer (including all meters and actuators),
a communication network, and an application layer. Four-layered architectures usually
define the communication system in two parts, one in the field (inside the house), and
the remote network (referring to the external network that allows data exchange with
the server in which data are processed) [74,75]. On the other hand, the authors of [16,76]
proposed a five-layered structure that separates home appliances in a physical things layer
from metering devices in the perception layer. These implementations are also known as
cloud-based architectures since they benefit from middleware technologies for processing
the data [74]. Table 2 summarizes the main characteristics of proposed architectures in the
revised literature. The ”Validation” column refers to the practical implementation of the
architecture, either a testbed or at a major scale.

Table 2. Main characteristics of previous IoT architectures for HEMS. Layers are represented as
follows: Data Acquisition [Appliances and Meters] Layer (DA), Data Acquisition [Appliances] Layer
(DAA), Data Acquisition [Meters] Layer (DAM), Communication Network Layer (CN), Middleware
Layer [Storage and Analytics] (M), Middleware Layer [Storage] (MS), Middleware Layer [Analytics]
(MA), Data Analytics (DAn), and Application Layer (A).

Reference Type Year Layers Validation

[77] Survey 2017 DA, M, A X
[78] Technical 2017 DA, CN, M, A X
[79] Survey 2019 DA, CN, MS, MA, A X
[80] Technical 2019 DAM, CN, M, A X
[75] Survey 2019 DAM, CN, M, A X
[81] Technical 2019 DA, CN, M X
[82] Technical 2020 DA, CN, A X
[83] Survey 2020 DA, CN, M, A, B X
[84] Survey 2021 DAA, DAM, CN, M, A X
[66] Technical 2021 DA, CN, M, A X
[85] Technical 2021 DA, CN, M X
[47] Technical 2021 DA, CN, M, A X
[16] Survey 2021 DAA, DAM, CN, M, A X
[86] Survey 2021 DA, M, A X
[13] Survey 2021 DA, CN, DAn, A X

This work Survey 2022 DA, CN, DAn X

Figure 1 highlights the main composition of the previous IoT architectures for HEMS.
The major goal of existing studies is layered architectures to control and manage home
appliances remotely. Four-layered architectures are an extension of three-layered archi-
tectures by dividing the communication network layer in home area network and remote
communication network, which are also defined inside the middleware technologies. There-
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fore, both representations are very generic. The authors of [74] argued on the benefits of
implementing three or four layers to the detriment of having five or more layers.

Appliances 

Communication Network 
[CN] 

Metering devices

Data Acquisition [DA]

Application [A]

Three-layered

Communication Network
[CN] 

HAN

Application [A]

Four-layered

HAN

WAN

Communication Network
[CN]

Middleware [M]

HAN

WAN

Five-layered

Metering devices [DAM]

Appliances [DAA]
Appliances 

Metering devices

Data Acquisition [DA]

Middleware [M]

WAN

Application [A]

Figure 1. Composition of previous IoT architectures for HEMS.

Based on the analysis given above, we can identify a HEMS by three main stages: Data
Acquisition, Communication Network, and Data Analytics, as shown in Figure 2. This is
also highlighted in the last row of Table 2. The first stage includes both appliances and
metering devices. A level up, the Communication Network Layer allows data exchange
between the sensing devices and a server. Data is transmitted inside the home area
network using WiFi, ZigBee, or other short-distance communication technologies. Then,
the information is forwarded to the upper Data Analytics Layer through long-distance
communication technologies such as 5G, allowing data transmission between physical
devices and middleware technologies in which Data Analytics processing is hosted (i.e.,
provide connectivity through the WAN). Middleware solutions are used to integrate and
coordinate the nodes, thus achieving a real-time status and management of the household.
The Data Analytics Layer provides data storage, management and analysis (monitoring,
forecasting, comfort-level analysis, etc.) to the data. Furthermore, at this stage, control
tasks and scheduling algorithms are executed. Machine Learning techniques and different
data processing strategies will translate the data to an easy and understandable form which
can be visualized by the user. In addition, data visualization and user interactions are
guaranteed in this layer through a user interface. The user interface provides consumers
with advanced energy management applications and services. First, data are sensed and
aggregated in the HAN, and once processed, actuation and control commands are sent
back to physical devices according to energy consumption cost and user satisfaction. The
proposed architecture shares the same basic structure of most traditional IoT-based HEMS.
However, a higher combination and coordination between physical and computational
elements is included, understanding data processing as a layer (Data Analytics), and thus,
becoming a cyber-physical architecture for HEMS. Figure 3 shows a relationship between
traditional IoT architectures and the cyber-physical based (CPS-based) ones. CPS includes
complex analytics strategies, such as data mining, inference, and decision making. These
systems benefit from massive wireless networks and physical devices (“things”), to provide
intelligent services based on the knowledge of the surrounding physical world. Traditional
IoT architectures focus on data acquisition and transmission, being less oriented to security
and data processing [87]. In the proposed platform, security is conceived in every layer;
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however, to deepen in this particular topic is out of the scope of this paper since it requires
significant research efforts, being considered an independent research field.

ESS

EV

Smart
meter

Data Acquistion

Communication Network

Local Area Network 
(LAN)

Wide Area Network
(WAN)

Data Analytics

Load Monitoring

Load Forecasting

Comfort Analysis

Occupancy Analysis

...

C 
O 
N 
T 
R 
O 
L

S 
E 
N 
S 
I 
N 
G

A 
C 
T 
U 
A 
T 
I 
O 
N

Figure 2. Schematic diagram of a Home Energy Management System (HEMS). Stages involved: Data
acquisition, Communication, and Data Analytics.

IoT

CPS

Devices Meters

Communication Network

Application

Data Analytics

Security

Figure 3. Relationship between traditional IoT architectures elements and the CPS-based.

The development of such systems benefits a wide variety of sectors ranging from re-
mote healthcare to commercial services. Among these services, demand response (DR) and
load planning programs focus on analyzing individual load levels in homes or buildings,
which is promising in terms of energy efficiency. This analysis allows the possibility of
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identifying the less efficient or malfunctioning devices and implementing the appropriate
actions intended for reducing consumption. In this scenario, consumers can have direct
feedback on real-time power consumption effectively participating in the sustainable smart
grid system. Additional useful information such as consumers’ behavior patterns including
occupation, sleep patterns, and other activities could also be inferred from appliance data.
These activities are commonly known as activities of daily living (ADL), with applica-
tions in customer profiling, targeted marketing, monitoring of curfews, detection of illegal
activities, and remote healthcare monitoring for elder people living alone, among other
fields [16,18,20,21,43].

In an economic perspective, HEMS have a direct impact on reducing electricity con-
sumption for households [30,88]. This can be mainly achieved through demand response
and demand side management programs. These programs will allow to obtain efficiency
and bill reduction in smart cities reducing the total energy consumption, or deferring
the operation of certain appliances, especially during off-peak hours. The authors of [88]
highlighted that HEMS is also eco-friendly technology that significantly impact environ-
mental conservation.

Summary and Insights

In this section, the existing IoT architectures for HEMS have been surveyed and
compared in Table 2 and Figure 1. Based on the given analysis, it was defined a CPS-based
architecture for HEMS of three layers: Data Acquisition, Communication Network, and
Data Analytics. The benefits of having such a system and the economic impact that it
represents are also commented. The next sections provide a comprehensive description of
each stage of the proposed architecture.

4. Data Acquisition

The Data Acquisition stage obtains the load measurement at an adequate rate, aiming
to identify distinctive load patterns in the next stages [44]. This phase is carried out to have
a generalized perception of the energy supply and the demand by sensors from different
energy manufacturers, being also responsible for a precise control by the actuators [76].
Therefore, in the Data Acquisition phase, two main entities collaborate. One is household
appliances, and the other is metering devices. Once data are collected, the measurements
are sent to the following stages to be processed, as shown in Figure 4.

Appliances Metering device

Data Analytics

Figure 4. Schematic diagram of the data acquisition stage in Home Energy Management System
(HEMS).

Household appliances have been classified in the literature depending on the target
application. Figure 5 shows the main categories for appliances. For load monitoring
systems, appliances are grouped in four categories, as proposed in [89]. These are as follows:

• ON/OFF: Devices with only two operational states, e.g., toaster, EVs, kettle, etc.
• Multi-state: Devices which are represented by finite state machines (FSMs), e.g.,

washing machines, refrigerators, heat pumps, etc.
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• Continuously variable: Appliances with variable power absorption characteristics,
e.g., electric drills, laptops, etc.

• Permanent consumer devices: Appliances which remain active for a long period
of time (weeks or days) consuming energy at a constant rate, e.g., TV receivers,
telephones set, smoke detectors, etc.

Monitoring Control

ON/OFF Multi-state Continuously
variable devices

Permanent
consumer devices

Uncontrollable Controllable

Appliances

Reducible Shiftable

Interruptible Non-
interruptible

Figure 5. Schematic diagram for appliance categorization according to the target application.

In terms of control, the authors of [1] defined it in two categories:

• Uncontrollable: Refers to appliances which cannot be managed by HEMS, e.g., TVs,
personal computers, and lighting.

• Controllable: Encompasses two subcategories: reducible appliances whose energy
consumption can be reduced, e.g., air conditioner; and shiftable appliances which has
two types of loads: interruptible (those whose functioning can be interrupted, such as
ESS) and non-interruptible (such as the washing machine).

The above categories have been widely discussed in literature [1,14,19,30,89,90]. The
authors of [90] modeled controllable appliances by a set of constraints. They claimed that
controllable appliances should achieve their duty cycles within allowable time windows. In
addition, they defined interruptible appliances as those whose operating cycle an be inter-
rupted for convenience. The authors also explored thermostatically controlled appliances.
On the other hand, metering devices have been less explored regarding standardization
and categorization.

4.1. Metering Devices

The basis of residential energy management lies in metering. In the IEC TS 63297:2021
standard (see https://webstore.iec.ch/publication/66131 (accessed on 15 March 2021),
https://webstore.iec.ch/publication/66131 (accessed on 15 March 2021)), sensing devices
have been defined as gateways between the physical electrical installation and the system’s
data analytical. This standard was originally conceived for NILM. Considering that in
every HEMS application, a certain number of points for sensing are needed, all with the
same functionality (sampling at an adequate rate), it is possible to generalize the definition
given in the IEC TS 63297:2021 standard to a more holistic approach related to HEMS.
Therefore, the characteristics of residential energy management sensing devices are defined
by three main parameters, shown in the schematic of metering device of HEMS in Figure 6:

• Input sampling frequency: The frequency at which the electrical signals are sam-
pled by the metering device. This parameter is essential to the electrical waveforms
production characterization.

• Output rate: The rate at which the metering device produces data that can be used
by the Data Analytics stage. Typically varies from 1 set of data-per-second to 1 set of
data-per-30 min.

https://webstore.iec.ch/publication/66131
https://webstore.iec.ch/publication/66131
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• Data bit rate: The average bit-per-second (bps) over an hour at which the electrical
signals are quantified by the metering device. Typically varies from a few bps to the
Mbps range.

Metering device 

- Input sampling rate 
- Output rate 
- Data bit rate

Electrical
installation

Samples for
Data Analytics

Figure 6. Schematic diagram of a metering device for HEMS according to IEC TS 63297:2021 standard.

In a household, there are current and voltage metering devices on the main power
supply to measure the electricity consumption in an entire household. Additionally, there
may be metering devices for specific appliances, as well as ambient sensors distributed
throughout the household. The measurements are either sent directly to a central data
server from the sensors or data are processed by the local data processing unit and then
sent to the central data server. A central data server can be in the household’s domains,
i.e., installed in the Home Area Network (HAN), or at the utility level, which receives load
data from multiple homes, i.e., the neighborhood area network (NAN) [43].

In a household, the metering devices can be installed at different levels. Therefore,
HEMS can be categorized into four different groups according to equipment deployment
granularity in the Data Acquisition stage. A general model of the three groups is shown in
Figure 7.

• Grid level: The metering device is set to measure the aggregated power consumption
of the household, i.e., the utility’s energy meter.

• Area level: The metering devices are used to monitor household areas, measuring the
consumption after the utility’s energy meter.

• Plug level: The metering devices are located next to the plugs to monitor directly
appliances connected to the outlet or multi-outlet.

• Appliance level: The metering devices are embedded directly in the appliances or
placed in a dedicated outlet (i.e., outlet for a specific appliance).

The smart meters are one of the key systems of future smart cities, forming an AMI.
These devices collect information on energy use and send it safely to the service center
or operations and control center of the smart grid [91]. Taking advantage of smart meter
readings, the consumer can know how much energy is consumed in real-time, and de-
cide whether to disconnect from the grid or not (depending on the price of electricity at
that time). For utilities, it reduced the need for many labor-intensive business processes,
such as manual meter reading, field trips for service connection and disconnection, on-
demand reads, power outage and restoration management, and other metering support
functions [3]. Smart meters have built-in current and voltage sensors to sense current and
voltage quantities, providing the single point of sensing needed for NILM. However, the
access to smart meter data is still limited in many countries due to regulations and privacy
concerns, hindering its use for load monitoring [43].

Current and voltage sensors are one of the most popular electrical sensors for load
control. Current transformers (CTs) are generally used for power measurement, thus both
sensors may not be enough for monitoring and forecasting requirements. The main cause
is that direct current (DC) and high frequency current signatures cannot be captured. To
achieve device-level measurement, a considerable amount of current sensors are required,
making it impossible to reach each individual device [43]. To overcome this constraint, the
electromagnetic field sensor was proposed by the authors of [52] to indirectly obtain gross
apparatus level operating states.
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Figure 7. Schematic diagram of the four groups in terms of deployment granularity in HEMS.

In [92], the authors developed their own metering system using an off-the-shelf
power strip using a voltage-sensing circuit, current sensors, and a single-board PC as a
data aggregator. The six-port monitoring unit can achieve up to 50 kHz for all signals
simultaneously. Two types of sensors (current and voltage sensors) were integrated to fully
capture the energy consumption data of appliances. In the case of [93], the authors designed
a smart socket composed of a common socket, a sampling module, and a processor. Among
them, the sampling module adopts the alternating current (AC) power transmitter SUI-
101A, which can measure parameters such as voltage, current, active power, power factor,
frequency, and cumulative power consumption in real-time. In [94], the authors introduced
a measurement system to capture the unique characteristics of the devices. Current and
voltage signals were captured with current sensors and voltage probes for all three phases.
These signals were input into a Siemens SENTRON PAC4200 network analyzer and an NI
USB-6259 acquisition module.

The energy used by household appliances can be highly dependent on environmental
conditions, such as temperature, humidity, light, and others. Therefore, ambient sensors
have also been introduced in HEMS. As an example, in the BLUED residential charging
dataset [95], light level, sound intensity, vibration, humidity, barometric pressure, and PIR
motion were measured. In the case of the PECAN Street Dataport (see https://dataport.
pecanstreet.org/ (accessed on 10 May 2021)), the water data was also taken into account.

https://dataport.pecanstreet.org/
https://dataport.pecanstreet.org/
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For some authors [43], the information on the occupation of a house is also important to
save residential energy because it involves the control of the heating, ventilation and air
conditioning (HVAC) system, water heater, lighting, as well as residential energy storage
such as batteries and electric vehicles (EV), in case there is any. A variety of sensors
can be used to detect the presence, including acoustics, lighting, camera, motion, CO2,
temperature, laser beam, Radio Frequency Identification (RFID), and humidity [34,51]. As
an economical solution, information from existing WiFi connections or HVAC sensors has
also been used for presence detection.

Recent studies, such as [43], argue that efforts to develop high-frequency smart plugs
to capture load signatures are not available for widespread deployment. However, in [96],
the authors perceive smart plug’s technology success addresses all aspects for effective
load monitoring, such as prosumers (original fusion of the words producer and consumer)
being able to make energy consumption and/or production changes, ensuring the security
and privacy of metering data, and enabling to manage and store vast quantities of the
collected data. Smart plugs were also highlighted in [97] as one of the leading technologies
for data acquisition.

The appearance of a smart plug is an important aspect regarding the acceptability
by users. It must be small, compact, and compatible with traditional plugs. Besides this,
it should not add more complexity when it comes to installation and use. The design of
commercially available smart plugs is possible when it largely satisfies the question of
aesthetic appeal and form factor. Therefore, an ideal smart plug will be a smart combination
of various technologies that have been routinely used independently until now [96].

With respect to healthcare applications, a recent approach in [17] aimed to design and
develop an IoT end-to-end solution based on CT sensors to recognize electric appliances
that could operate in real-time, considering low-cost hardware. Other approaches such
as [98,99] presented a solution based on wearable sensors, such as accelerometers and
smart devices, and in the case of [100], the authors used a camera to record the video and a
processor that performed the task of recognition. A different solution is illustrated in [101],
in which the authors designed a distributed platform to monitor patient’s movements
and the status during rehabilitation exercises. This information could be processed and
analyzed remotely by the doctor appointed to the patient.

To summarize the above discussion, Table 3 lists devices commonly used for Data
Acquisition in HEMS. The “Type” and “Category” columns refer to the nature of the
device. If the device is classified as a sensor, then it changes a physical parameter to an
electrical output. Otherwise, the actuator is a device that converts an electrical signal
to a physical output [102]. The category describes the kind of measurement that can be
expected using such devices. It could be either ambient (temperature, humidity, occupation,
etc.) or electrical (to obtain power measurements). In addition, the last column of Table 3
shows some of the main manufacturers and sellers in the market up to date. This list is
independent from the “References”, meaning that the authors of previous papers could
have used one device from these sellers or not.

Table 3. Commonly used consumer-side metering devices for data acquisition in HEMS.

Device Type Category References Manufactures

Temperature sensor Sensor Ambient [76,78,81,103–105] NCD, Ecobee, Sensibo, Google Nest
Humidity sensor Sensor Ambient [76,95,103,106] NCD, Aeotec, Aqara, Govee
Air quality sensor Sensor Ambient [76,107] Airthings, Eve, Awair, Bosch

Water sensor Sensor Ambient [76,108], Dataport Govee, Zircon, Fibaron, Moen
Occupancy sensor Sensor Ambient [76,104] Ecolink, Zooz, Fibaro, Apple,

Door sensor Sensor Ambient [76,80,109] Eve, Wyze, Geeni, Samsung
Current transformer (CT) Sensor Electrical [17,19,43,52,110,111] IoTaWatt, EmonLib, Schneider Electric, CrocSee

Smart Socket Actuator Electrical [43,46,76,112–115] YinQin, WeMo, TP-Link, Gosund
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Table 3. Cont.

Device Type Category References Manufactures

Smart relay Actuator Electrical [76,105,106] Sonoff, Fibaro, INSTEON, Espressif
Smart plug Actuator Electrical [20,76,96,97,106,116,117] WeMo, TP-Link, Sonoff, Samsung

Smart switch Actuator Electrical [76,118] Sonoff, Duluck, WeMo, Ecobee
Smart meter Sensor Electrical [19,21–28,46–59] Schneider Electric, Itron, Siemens, Badger Meter

Prosumer meter Sensor Electrical [76] Develco
eGauge data logger Sensor Electrical Dataport, [2] eGauge Systems LLC

4.1.1. Sampling Frequency

The data sampling can be classified into high-speed sampling and low-speed sampling.
Depending on the target application, the sampling rate for electricity consumption may
vary. Some authors [21,43,45] define a fairly high sample rate as from 1 kHz to almost
100 kHz. For higher sampling rates, the authors in [45] state that the identification results
are more precise, typically allowing to capture state transitions and eventually separating
brands in the same category. To monitor the electro-magnetic interference generated by the
switch-mode power supplies, the sampling frequency is required to be at least hundreds of
kilohertz [43].

At present, most commercial devices cannot achieve high-speed sampling. Further-
more, the complexity of data storage, transmission and processing for high-speed sampling
is significantly increased compared to low-speed sampling. Therefore, high-speed sampling
is not currently considered a practical approach for large-scale solutions. The low-speed
sampling rate is usually set to 1 Hz or even less. As a result, the resolution of the data drops
significantly. With low-speed sampling, the transient state of the electrical information
can no longer be captured and features may overlap [43]. The type of information that
can be inferred from metering devices data has proven to be slightly related to the sam-
pling frequency [21]. Figure 8 illustrates the common sampling frequencies used in Data
Acquisition, including the features which can be extracted from the data at each sampling
frequency. This figure was built based on the information given in [21].

Sampling frequency & features extracted

1 hour- 15 min 1 min- 1secSampling frequency

Data visualization

DFT, FFT Higher order
harmonics

kHz MHz

Average consumption,
time of use

Time-dependant
features

Figure 8. Visualization of the collected data and features which can be extracted at different sampling
frequency ranges.

4.1.2. Publicly Available Energy Datasets

Energy datasets are vital for validation in energy-related problems. These datasets are
the result of measurement campaigns in homes, buildings, or industrial facilities. Data are
collected in such a way that it is transparent for the users, i.e., without interrupting the
daily routines within the monitored space. In this way, the measurement will be as close as
possible to reality. Commonly, ML models are tested on multiple datasets to demonstrate
versatility and generalization skills [119]. The main reason why publicly available datasets
are indispensables is that the implementation of high-resolution monitoring and control
systems are still a challenge. Some factors such as complexity of setup, data storage, and
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cost make the practical implementation of these systems rather unreliable. The lack of
real-world data is one of the main challenges in related studies [43]. Table 4 shows a
comprehensive comparative study of the available energy datasets in terms of different
attributes, including data acquisition granularity. With the information given, it is possible
to analyze the devices used by the authors during the measuring campaigns.

Table 4. Details of most commonly used Energy Datasets.

Dataset Resolution Number of Houses Duration Features Location Metering Devices

REDD [120] 1 Hz, 15 kHz 6 2 weeks p, i, v USA Enmetric wireless plug system
AMPds [121] 1 min 1 2 years p, q, s, i, v Canada 18 units DENT PowerScout

UK-DALE [122] 1 s, 16 kHz 5 3–51 months p, i, v UK CT sensors
DRED [123] 1 Hz 1 2 months p Netherlands Without specification

Dataport 1 min 1000 2012 present p USA eGauge data logger
GREEND [124] 1 Hz 9 1 year p Italy & Austria Plugwise kit

ECO [125] 1 Hz 6 8 months p, q Switzerland Without specification
PLAID [126] 30 kHz 56 Summer 2013 i, v USA Without specification
REFIT [127] 8 s 20 2013–2015 p UK EnviR aggregator

GREEN Grid [128] 1 min 45 2014–2018 p New Zealand Without specification
BLUED [95] 12 kHz 1 7 days i, v New Zealand Plug-level FireFly sensors

SustDataED [129] 12.8 kHz 1 10 days i, v Portugal Plugwise system
LabJack U6

iAWE [130] 1 Hz 1 73 days p, f, Φ, i, v India EM6400 smart meter
CT sensors

jPlug water meter
COMBED [131] 30 s - 1 month p, i, e India Schneider Electric EM6400

Schneider Electric EM6436
smart meters

SmartCity 30 min - 2010–2014 - Australia Plug level equipment
Smart [132] 1 Hz 3 3 months p, s USA eGauge data loggers

Smart Energy Switch
thermostats
CT sensors

motion sensors
door sensors

IDEAL [133] 1 s, 12 s 255 23 months p UK Temperature sensors
humidity sensors

light sensors
current/gas pulse plug-in probes

Note: i, v, p, q, s, f, e, and Φ represent current, voltage, real power, reactive power, apparent power, frequency,
energy, and phase, respectively. SmartCity: Refers to Smart-Grid SmartCity Customer Trial Data. See https://data.
gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details (accessed on 18 April 2021) Smart: Refers
to UMass Smart Home Data Set.

4.2. Summary and Insights

In this section, a comprehensive description of the Data Acquisition stage, which
involves both appliances and metering devices, has been performed. Appliances has been
categorized in literature according to the target application of the HEMS, either monitoring
or control. The schematic for appliance categorization can be in found in Figure 5. Metering
devices, on the other hand, have been less explored in literature regarding standardization
and categorization. In Figure 6, it is shown a schematic diagram of a metering device for
HEMS according to IEC TS 63297:2021 standard. Publicly available datasets have been also
analyzed, reviewing current solutions in the market and revising its main characteristics.
The impact of the sampling frequency and its relationship with the feature extraction is
also shown in Figure 8.

https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details
https://data.gov.au/dataset/ds-dga-4e21dea3-9b87-4610-94c7-15a8a77907ef/details


Sustainability 2022, 14, 4639 16 of 33

5. Communication Network

Communication is indispensable for Smart Grids and residential energy management.
In order to connect metering devices to an application host or service provider, a communi-
cation network must be deployed. Inside a household, the home area network is used to
provide monitoring and control over energy usage. The communication network carries
control data generated by the metering devices and home appliances to the middleware
technology in which the post-processing (monitoring, control, comfort analysis, occupancy,
and other HEMS applications) is performed. Examples of communication technologies
include wire field network IEEE 802.3 family, power line communications (PLC), serial
communication RS-232/485, wireless field network (IEEE 802.11 family, IEEE 802.15 family,
mobile field network) (GSM-based 2G, CDMA-based 3G, LTE-based 4G, NR-based 5G), and
low power network (NarrowBand IoT, LoRa, Sigfox) [76,134]. Table 5 compares different
technologies deployed in the context of smart homes. Wireless technologies have shown to
be preferred over wire field technologies, mainly due to their ease of installation and their
cost-efficiency and speed capabilities [135].

Table 5. Communication technologies deployed for residential energy management.

Technology Type Standard Distance Covered Data Rate

2G [13] Wireless GSM 35 km Low
3G [13] Wireless UMTS 35 km High
4G [13] Wireless LTE 35 km High
5G [13] Wireless 5G NR 200–500 m Very high

Bluetooth [43] Wireless IEEE 802.15.1 100 m Low
EnOcean [43] Wireless EnOcean 30 m Low
Ethernet [43] Wired IEEE.802.3 100 m High

HomePNA [43] Wired HomePNA 300 m High
IEEE 802.15.3a [43] Wireless IEEE 802.15.3 10 m Very high

ITU-T G.hn [43] Wired ITU-T G.hn N/A High
MoCA [43] Wired MoCA - High

ONE-NET [43] Wireless ONE-NET 100 m Low
PLC [43] Wired Insteon, IEEE P1901 1–5 km High
RFID [43] Wireless RFID 200 m Medium
Serial [43] Wired RS-232/422/485 15–1.2 km Low-Medium

6LoWPAN [43] Wireless IEEE 802.15.4 100 m Low
Wave2M [43] Wireless Wave2M 1 km Low

WiFi [43] Wireless IEEE 802.11n/11g/11ac/11ax 50–100 m Medium-High-Very high
ZigBee [43] Wireless IEEE 802.15.4, ZigBee (Pro) 100 m–1000 m Low
Z-Wave [43] Wireless Z-Wave 30 m Low

Note: Data rate: Low (<1 Mbps), Medium (1–100 Mbps), High (100 Mbps–1 Gbps), and Very high (<1 Gbps).

Figure 9 shows a schematic diagram for HAN. The HAN network carries the control
commands from the middleware to the appliances, energy generation, and storage devices,
and from the utility to the appliances registered in the gateway. The home gateway serves
mainly as an interface between consumers and the outside world. It also ensures a secure
communication between the utility and consumers.

Middleware technologies can be located in the household domains (as part of the HAN)
or in a cloud platform. In this last case, the communication between the home gateway and
the cloud server can be carried out over the internet, connecting the neighborhood area and
wide area networks. A smart city communication infrastructure must interconnect smart
homes and cloud based service technologies handling the smart city big data load. The
requirements of this communication infrastructure were detailed in [38]. As it is expected
that smart homes produce a considerable amount of data, and the vast majority of smart
grid applications are conceived to operate in real-time, e.g., real-time pricing, demand
response, demand side management [3], achieving low latency communication is vital
for the communication infrastructure. The 5G technologies rise as a potential candidate
since they benefit from virtualization-based and software-defined architectures to provide
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end-to-end, and a multi-service ecosystem in which users share the physical infrastructure
resources and use virtualization method to efficiently meet the requirements of a variety
of applications. The main limitation relies on how to efficiently use the physical network,
providing a reliable and secure data exchange at the same time [13]. A general overview of
the smart city network infrastructure using 5G technologies in shown in Figure 10.

Appliances

Meters

Home
Gateway

HAN

EC TS23063297:2021 

Figure 9. Schematic diagram of a Home Area Network (HAN).

Smart Building

Smart Home

Service
Provider

Utility

WAN

Smart
Home

Smart City

Figure 10. Deployment of Wide Area Network (WAN) using 5G technologies.

5G includes different slices, defined in [136] as a collection of logically customized
network functions. These are:
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• enhanced Mobile Broadband (eMBB) delivering peak data rates up to 10 Gbps and
coverage requirements [136,137].

• ultra Reliable Low Latency Communication (uRLLC), also known as critical commu-
nications, which minimizes the delays up to 1 ms [136,137].

• massive Machine Type Communication (mMTC) which supports over 100 times more
devices per unit area compared to the previous generation (4G) [136,137].

The support of machine-type communication (MTC) via wireless technology is a very
demanding challenge in cellular communications. MTC collects a series of distinctive
requirements compared to most internet traffic. Among them low or no mobility, time-
controlled operation, tolerance to delay, and requirements for a secure connection to
maintain data privacy, are a set of the main concerns in this regard [138].

The need for very low latency communication networks such as 5G imposes new
requirements over HANs. According to [38], key challenges lie in wall penetration losses,
path losses, and the handling of interference. Therefore, the infrastructure deployed inside
the household will necessarily need to adapt and evolve. In [13], the authors proposed a
case study in which data generated by household appliances are transmitted to the home
gateway using a short-distance communication technology, such as WiFi or Zigbee. Then,
the data is sent using long-distance 5G communication technologies to a cloud service
provider (middleware). Once there, data storage, management, and analysis take place.
The authors of [8] remarked that artificial intelligence (AI) will become indispensable in
the near future to make residences more adaptive instead of “just automated”. In [139],
the authors highlighted the usage of cognitive radios in Smart Grids. They implemented
different Zigbee configurations with energy-efficient spectrum-aware algorithms.

In the near future, IoT is expected to grow to become the Internet of Everything (IoE),
which aims to trigger the massive deployment of metering devices, appliances, and CPS
beyond the capabilities of 5G. Faced with this difficulty, the scientific community has started
researching and envisioning sixth generation (6G) mobile communication networks. In
the 6G era, applications such as holographic telepresence (HT), unmanned aerial vehicles
(UAV), extended reality (XR), smart grid 2.0, industry 5.0, space and deep-sea tourism, and
hyper-intelligent IoT are expected to become a reality. These applications require a Tbps
data rate and around 0.1 ms of latency [137]. In [137], the authors gave a comprehensive
review of the development towards 6G highlighting socio-technological trends, emerging
applications, and the requirements to achieve the aforementioned applications. The authors
explained that the launch of 6G communication networks by 2030 with a network reliability
of over 99.999%.

Summary and Insights

This section has described the Communication Network Stage, comparing available
solutions for HAN and WAN. The analysis for HAN is available in Table 5 and Figure 9,
and in the case of WAN in Figure 10. The introduction of “beyond 2030” communication
technologies has opened the discussion for facing new challenges in the context of HEMS.

6. Data Analytics

The hardcore of the Data Analytics stage is decision making (i.e., control plane).
This stage consists of a cloud computing–based central processing mechanism and dis-
tributed computing intelligence to optimize both computing and control strategies. In the
decision-making process, AI models are implemented, enabling personalize local energy
management plans, and adapting the system to the routine and life habits of multiples
householders. By this way, the data can be reused, accumulated, and visualized at any
time [13]. To successfully develop a control plane for a HEMS, three main tasks need to be
accomplished [91]:

1. Collect data from different metering devices, including at the grid level through
the HAN.

2. Provide monitoring and analysis of the main loads inside a household.
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3. Schedule the consumption of different appliances and resources aiming to use energy
efficiently and satisfy user comfort and satisfaction expectancy.

Therefore, load monitoring and forecasting strategies need to be deployed in order to
first identify major appliances in the household which are responsible for a higher electrical
consumption, and then to build a consumer profile which provide useful information such
as behavior patterns and other activities. These activities or patterns are commonly known
as activities of daily living (ADL) [16,18]. Major appliances are mostly used by consumers
for routine housekeeping tasks such as cooking, doing laundry, or food preservation. Using
the information collected from ambient sensors is complementary specifically for load
monitoring and forecasting, but it could be very useful for other HEMS applications such
as comfort analysis. As an example, in [140], the authors conducted a study to evaluate the
impact of ambient sensors in the appliance recognition process. They evaluated a set of
features calculated from ambient sensor readings considering their relevance in different
decision scenarios. All selected and evaluated features were shown to be relevant for at least
one of the considered evaluations. Considering the usage of electrical and ambient features,
results showed that systems integrating ambient measurements should consider electrical
and ambient features at the same time and not within different decision mechanisms.

6.1. Understanding HEMS as a CPS

According to the above discussion, in the Data Analytics stage, a cyber-infrastructure
analyzes the data following a model and/or operating mechanism, and sends instructions
back to the physical devices. In [9], the authors defined CPSs as systems which embed the
sensing, communication, computing, and control abilities into physical devices, allowing
to achieve distributed sensing, reliable data transmission, and comprehensive information
processing of the external environment. This way, real-time control is offered through an
external loop. Based on this definition of CPS, a HEMS can be understood as a CPS which
relates physical devices such as appliances and meters, with energy data. Measurements
are collected, processed, and send to the cyber-system through a communication network,
and then, control commands will be sent back once analyzed in the cyber-entity, as shown
in Figure 11.

Sensing

Actuation

Physical  
devices 

Cyber
system 

Figure 11. CPS framework for HEMS.

In more details, a control mechanism which can be either rule-based or RL-based will
benefit from the data coming from different campaigns (energy monitoring, forecasting,
comfort analysis), and signals originated in the grid (utility) to successfully carry out the
decision-making process. Figure 12 depicts this idea of the Data Analytics scheme in
a HEMS.



Sustainability 2022, 14, 4639 20 of 33

Utility

Price

Offers

Alarms

...

Load monitoring

Feature Extraction

Data Acquition

Classification

Non-Intrusive 
(NILM)

Intrusive 
(NILM)

Single Point
(Smart Meters)

Distributed
Sensing

Smart
Appliances

Steady/Transient
States

Time/Frequency
dependant

Machine
Learning

Machine
Learning

Load forecasting

Pre-Processing

Regression model

vSTLF 
STLF 
NTLF 
LTLF

Appliance-Level Grid-Level

...

Control & Decision Making

Real-time monitoring Scheduling Activity Recognition ... Demand Response

Data Analytics

User comfort

Figure 12. Data Analytics scheme in a HEMS.

The authors of [13] claim that compared to traditional HEMS, CPS-based solutions
improved essential parameters such as efficiency and planning, which are very low in
conventional HEMS mainly motivated by the inadequate collection of information on
energy consumption and analysis, which leads to high energy cost. By integrating CPS
strategies in the system, the HEMS acquires powerful capacities for awareness and auto-
matic control. This is achieved through an advanced network infrastructure and Machine
Learning techniques, becoming smart HEMS.

6.2. Monitoring Appliances

The process of load monitoring facilitates identifying and monitoring main loads
in the household [21,25,43]. There are two main categories to classify the methods to
manage such processes: methods based on hardware and those based on software. In
both, the goal is to recognize individual appliance loads through two stages, in addition
to Data Acquisition: Feature extraction, and Classification [44,45]. In feature extraction,
an additional process is performed on the collected samples to obtain a signature that
corresponds to the appliance electrical consumption. Lastly, in the classification stage, the
resultant features are frequently classified through ML models. The use of ML techniques
for predicting the behavior of appliances and translating raw data (e.g., current waveforms,
voltage, and power) into an easy and understandable form, are common processes which
both methods share [44]. On the other hand, the main difference lies in the Data Acquisition
stage. Software-based methods (NILM) collect measurements from a single point of sensing
(generally the smart meter device), while hardware-based methods (ILM) usually have
more than two points of collection. NILM offers an attractive solution essentially due to its
low-cost implementation.

The feature extraction in NILM is mainly divided into two classes, namely, steady-state
and transient features. Although these solutions have centered the attention of most studies
in the field over the last five years, they have shown less precision and higher difficulty
to its deployment in real-world scenarios compared to hardware-based methods. NILM’s
methodology is primarily based on event detection. It samples the aggregate signal to
obtain individual signatures of electrical appliances. The aggregated power signal is usually
very noisy, and therefore, only some electrical appliances can be detected, depending on
the sampling frequency (e.g., oven, washing machine, air-conditioner, and EV) [23,25].
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When facing these kinds of scenarios in terms of the type of appliance used, performance
is still inconclusive on most common datasets. Techniques based on ILM consist of two
sub-categories. One is the method in which energy appliances’ power consumption is
obtained using metering devices attached to appliances, also known as distributed sensing.
The other is smart appliances (SA) which are devices with integrated capabilities to monitor
and report their energy usage.

In ILM, the feature extraction consists of the resultant unique vectors (e.g., sliding
window) which are set as input of Machine Learning classifier models. Although the main
constraint of ILM is cost, it provides greater efficiency and reliability in place of NILMs.
Direct sensors have the sensing and controlling operation of various devices and appliances
since they can be collocated (i.e., be placed next to the target appliance). An additional
benefit is related to the classification stage. In this regard, the ILM appliance recognition
system assigns a label that corresponds to the appliance being used. However, in the future,
load monitoring techniques are expected to be hybrid, which means that it will combine
the benefits of both NILM and ILM to make a more efficient HEMS [43]. Nowadays, smart
appliances usage has been limited due to the high market prices and interoperability issues
of these devices. Therefore, distributed sensing becomes an attractive solution for a massive
deployment, but it needs to take advantage of communication technologies to allow the
integration of all electrical devices.

6.3. Forecasting Appliance Consumption

On the other hand, load forecasting can be performed at two different levels: grid
level or appliance level. For the utility, the prediction of the load allows better management
of the energy generation and distribution resources, and can inform dynamic pricing to
reduce the peak demand. For the individual consumers, predicting the load allows the
identification of energy loads that can be shifted to off-peak hours, therefore reducing the
energy bill. In terms of control, load forecasting can be key to provide energy-efficient
scheduling plans for smart homes [36]. In [33], the authors classified forecasting methods
based on the prediction period:

• Very Short-Term Load Forecast (vSTLF): Referring to forecasting the load for the next
several minutes.

• Short-Term Load Forecast (STLF): Refers to load prediction for the next several hours
or a week ahead.

• Medium-Term Load Forecast (MTLF): Refers to predictions made for a week or a
year ahead.

• Long-Term Load Forecast (LTLF): Referring to predictions made for the next sev-
eral years.

Load forecasting is modeled as a time series problem in which ML techniques have
shown promising results in recent years, especially those based on convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks. The input of the models
are generally features which are based on the history of the householders. This means that
these features can be based on historical power consumption or others more related to
environmental parameters and economy. The output of the model can be either a single
value or a sequence representing the future power consumption at a given time resolution
(month, day, hours) [36]. In [141], the authors used continuous and categorical data of each
consumer as input of three different models: feed-forward neural network (FFNN), a CNN,
and an LSTM network. The model’s objective is to predict monthly consumption at the
grid level. The categorical data represents the months is to be predicted, the number of
phases of the power and the class of the consumer (e.g., residential, industrial). The authors
of [142] benchmarked a CNN and an LSTM model to estimate the peak demand at the grid
level. They used historical demand records as input, along with temperature and economic
index information. Moreover, in [142], the authors gave a literature review comparing the
methods and resolutions used for forecasting.



Sustainability 2022, 14, 4639 22 of 33

Forecasting at the appliance level can be very useful for HEMS since it allows to iden-
tify usage patterns of individual appliances, which is a key fact for scheduling and control
mechanisms. However, this is still a challenge, being a motivation for the ongoing research
in recent years. In [36], the authors built an LSTM-based sequence-to sequence (seq2seq)
learning model that could capture the load profiles of appliances. The LSTM network
mapped a sequence of past-24-hours data to a fixed-size vector, then the appliance type was
detected, and the input sequence was regenerated in a reverse form using another LSTM
network. The output produced a sequence of energy consumption with resolution for the
next hour. Different from this work, in [32], the authors performed a principal component
analysis (PCA) feature selection, whose output is then passed to different ML models.
The best results were shown by recurrent deep neural network (R-DNN). The selected
features are based on historical consumption as well as environmental measurements such
as temperature.

6.4. Utility Feedback and Other Applications

Finally, HEMS can benefit from certain instructions offered by the utility, which can be
determinant for appliance scheduling. Examples include price signals, offers, or alarms.
This information is also important for demand-side management or demand response
campaigns. The commands or instructions given by the control plane of the HEMS have
a wide spectrum of applicability. For example, the gathered information can be used for
energy savings, such as in [14]. Other applications may depend on the context in which the
system is being deployed. This is the case of remote monitoring, activity recognition and
other healthcare services. In [2], the authors presented broad applications and used the view
of Appliance-Level Energy Characterization (ALEC) including feedback, recommendations
and customized marketing, energy-efficient appliances and labeling standards, utility and
grid operations, flexibility for renewable energy integration, energy management and
conservation, equipment manufacturing and technology development, smart security,
surveillance and healthcare, in addition to social sciences and economics benefits.

6.5. Summary and Insights

This section has provided a detailed description of the Data Analytics stage. In this
layer, the HEMS must accomplish three main tasks: data collection, monitoring, and
decision making. By this way, real-time control is performed in a closed loop, in which two
main entities interact: physical devices (appliances and meters) and a cyber system that
process the data, thus defining a CPS-based HEMS. The framework of such a system is
shown in Figure 11. The schematic for the Data Analytics stage of the CPS-based HEMS
is shown in Figure 12. In addition, an insight to some of the most significant applications
offered at this stage is provided. Among them, appliance monitoring and forecasting are
emphasized due to their impact in the decision-making process.

7. Case Study: Appliance Monitoring

Based on the given definitions and discussion presented in the previous sections,
we envisioned a cyber-physical approach for a HEMS. To validate our statement we
proposed a platform tested in a real-case scenario. To validate the proposed architecture
we implemented a testbed in a house in Valparaiso, Chile. The testbed is a proof of concept
demonstration which allows to assess the performance of the system. It consists of the
implementation of the short-scale in a laboratory environment presenting a considerable
higher degree of complexity when compared to simple simulation. Dealing with real-time
data causes some new challenging, especially in the pre-processing and early manipulation
stages of data. In the current stage, we focus only on monitoring purposes.

Based on the discussion given in Section 4, smart plugs have become a reliable option
for smart metering in the data collection phase. Their relatively low market prices make
them a very attractive solution. In the Chile market, some devices are usually mislabeled as
smart plugs, having only capabilities to turn on or off the power supplied to the appliance
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connected directly instead of collecting readings regarding their power consumption. In
the case of Sonoff S31, although it fits the required features for the Data Acquisition stage,
it is incompatible with the Chilean electric plug socket (C and L). With this consideration in
mind, none of the available smart plugs in Chile were useful for Data Acquisition stage.
To overcome this issue, we modified one device available on the market, the Sonoff Pow
R2, shown in Figure 13A. This device is able to acquire power readings from an appliance,
but its form factor does not provide a plug. As a solution, the modified version can be
seen in Figure 13B,C. Sonoff devices have some limitations with the provided firmware,
not having the capability for being plug and play. Therefore, we chose Tasmota (see
https://tasmota.github.io/docs/ (accessed on 15 July 2021)), an open-source firmware, for
configuring the Sonoff devices. This firmware allows controlling the Sonoff device through
a web interface, called Web UI, where different parameters can be configured, such as the
Message Queue Telemetry Transport (MQTT) communication protocol.

Figure 13. Equipment for Data Acquisition stage: Sonoff Pow R2 (A) and customized version used as
smart plug (B,C).

Following a cloud service-oriented approach, we developed a five-domain architecture
using Amazon Web Services (AWS). The IoT domain encompasses AWS IoT Core, which
serves as a message broker allowing to connect multiple IoT devices through MQTT
protocol. The Log and Metrics domain is a monitoring and observability domain which
uses CloudWatch services to collect and process input data in the form of a record provided
by the IoT domain. On the other hand, the Data Stream domain provides IoT Analytics and
IoT Events. IoT Analytics allows to clean, transform, and enrich IoT data before storing
it in a database. In the case of IoT Events, it enables early detection of events to activate
alerts and automatic actions to respond to events. The serverless backend domain includes
a DynamoDB, an AWS non-SQL database service to store data from the IoT devices, and
an API Gateway, which guarantees access to applications (End User Frontend domain),
and to logic or functionalities from the backend services, including Lambda functions
that facilitate table updates in DynamoDB. The End User, Frontend domain, includes a S3
Bucket, which stores a CloudFront web app that uses Cognito to provide control of user
authentication. Figure 14 shows a plot with the power consumption from the refrigerator
and the washing machine over a 3 h interval.

https://tasmota.github.io/docs/
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Figure 14. Power consumption of a refrigerator and a washing machine collected through Sonoff
Pow R2 devices.

In addition to the refrigerator and the washing machine, data from two more appli-
ances were stored, including a kettle and a microwave. Using the data from these last three
devices (washing machine, kettle, and microwave) we extracted a set of seven features
every for 10-samples window. These features are: the mean, the maximum, and the mini-
mum values, in addition to the kurtosis, the skewness, the coefficient of variation, and the
number of samples above the mean inside the windows. The features, which are given
in [16,18], were used to train a FFNN classifier aiming to recognize the appliances attached
to the Sonoff devices. Figure 15 shows the confusion matrix obtained after identifying
appliances with data coming from the test set.
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Figure 15. Confusion matrix obtained after training a FFNN classifier using the data coming from
three different appliances: a washing machine, a kettle, and a microwave. The data was collected
using Sonoff Pow R2 devices.

As shown in Figure 15, only five samples were incorrectly classified, which is rea-
sonable since they correspond to the minority class (i.e., the class with the lower amount
of samples). An accuracy of 0.992 was achieved, which represents a very good result
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compared to [16,18] regarding appliance recognition and load monitoring. The samples
have been collected for several months using these data for training. With this smart HEMS
implementation, comprehensive visibility, flexibility, and monitoring of home appliances is
given can guarantee user satisfaction and comfort.

Summary and Insights

Based on the analysis performed in the previous sections, a case study was carried out
in one house in Valparaiso, Chile. This way, it was developed a testbed implementation
to validate the proposed architecture, shown in Figure 2, for monitoring purposes. The
equipment used can be seen in Figure 13. The results are shown in Figures 14 and 15.
Future work will be focused on implementing the control part, thus closing the loop of the
CPS-based HEMS.

8. Challenges and Main Research Directions

In a general perspective, the main challenges to be handled in HEMS are related to
achieving energy efficiency and dealing with implementation costs. To this end, a standard
approach which allows to attend every HEMS application based on the collected data, is
still a source of discussion in the research community. According to the aforementioned
stages, a series of challenges were identified.

Considering Data Acquisition, the following challenges exist:

• Access to smart meter measurements is still limited in some countries due to regulation
and implementation issues.

• High-resolution data cannot be achieved with most commercial smart meters today
with complexity in setup, data storage, and cost.

• Smart appliances usage has been limited due to the high market prices and interoper-
ability issues of these devices.

• Sensors capable of measuring at high sampling rates are needed to satisfy large-scale
implementation requirements of HEMS.

In terms of Communication Network, the following challenges were identified:

• Interference and wall penetration losses are the main challenges to be handled in
smart homes.

• More flexibility is needed, which translates into taking advantage of the unused spectrum.
• There is a need for technology which connects the smart homes toward developing a

smart city infrastructure, and allowing real-time operation of multiple applications.
The 5G and 6G technologies are strong candidates. However, identifying the require-
ments for embracing these technologies at different levels (home or city) is still a
subject of debate.

• Conventional wireless communication technologies, such as WiFi or Zigbee, are
insufficient for communication range, energy consumption, and cost of most HEMS
applications today.

Regarding Data Analytics, the following issues were found:

• Different requirements must be considered regarding data resolution, accuracy, real-
time, and the number of devices to be covered.

• NILM methods have less precision and higher difficulty to their deployment in real-
world scenarios compared to ILM. The latter, in contrast, offer more reliability at
expenses of cost. Therefore, developing a hybrid solution is an attractive solution for
load monitoring. However, it introduces several challenges that need to be attended.

• Appliance level can be very useful for HEMS since it allows to identify usage patterns
of individual appliances. However, this task has received less attention from the
research community. Building a unique model which forecasts the consumption of
different appliances is still more complicated to achieve.



Sustainability 2022, 14, 4639 26 of 33

• Although reinforcement learning and rule-based approaches have been proposed for
scheduling and control mechanisms, a detailed comparison (through a sensitivity
analysis and/or evaluation) of both cases is needed.

• Consumer privacy can hinder the deployment of Smart Grids and HEMS since energy
data expose the common habits and routines of users. Therefore, secure access to authen-
ticated parties must be provided through cybersecurity and encryption mechanisms.

9. Conclusions

The continuous increase in energy demand in recent years has led to the appearance of
Smart Grids, which promise to change the way in which electricity is produced, managed,
and consumed. At the user end, the smart grid aims to manage several entities such as
smart meters, electric vehicles (EVs), and energy storage systems (ESS). Thus, an efficient
residential energy management methodology is required in which Home Energy Manage-
ment Systems (HEMS) allow households to effectively centralize the service management
and provide users with functionalities for the internal and external exchange of information.
In that sense, HEMS must perform two main tasks: real-time energy monitoring of con-
sumers using meters and smart devices, and scheduling the optimal energy consumption
of household appliances. Recently, data-driven approaches, based on various Machine
Learning (ML) methods and Internet of Things (IoT) technologies represent an attractive
solution to achieve the goals in monitoring, protection, and control by incorporating sen-
sors, actuators, and measuring devices. The development of such systems brings benefits
in a wide variety of sectors from remote healthcare to business services.

In this paper, a survey on state-of-the-art concepts and techniques regarding residential
energy management are given. We proposed a cyber-physical approach consisting of three
stages: Data Acquisition, Communication Network, and Data Analytics. In terms of Data
Acquisition, a thorough review of the relevant literature yielded different available solutions
and products which represent safe options for smart metering devices in the data collection
phase. IEC TS 63297:2021 Standard has opened the door for standardization providing
the main parameters for a device that should be considered as a meter, which represents a
huge advantage to be adapted in future solutions. For the Communication stage, different
technologies were reviewed in terms of HAN and WAN. The wireless data exchange using
WiFi, Zigbee, and LoRa are well-known technologies offering reliable connection between
appliances and metering devices. However, to meet the requirements of beyond 2030
communication technologies, such as 5G and 6G, these solutions will need to evolve to
allow the implementation of new smart grid applications. Regarding Data Analytics, we
analyzed relevant literature highlighting this stage as the cyber part of the HEMS.

Based on the performed analysis, we proposed a three-layered architecture for HEMS.
The proposed cyber-physical platform was capable of providing monitoring of the main
appliances inside a household. To validate the system operation, we deployed the testbed
in a house in Valparaiso, Chile. The results showed an accuracy above 99% for appliance
recognition. Future work will focus on expanding this proof of concept, adding more
capabilities such as energy consumption forecasting and real-time control of appliances.
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Abbreviations
The following abbreviations are used in this paper:

EVs Electric Vehicles
ESS Energy Storage Systems
HEMS Home Energy Management Systems
ML Machine Learning
IoT Internet of Things
CPS Cyber-Physical Systems
5G Fifth Generation
6G Sixth Generation
DER Distributed Energy Resources
EI Energy Internet
IT Information Technology
DT Digital Twins
PIoT Power Internet of Things
HAN Home Area Network
WAN Wide Area Network
DR Demand Response
ADL Activities of Daily Living
LPWAN Low Power Wide Area Networks
LoRaWAN/LoRa Long Range
ILM Intrusive Load Monitoring
NILM Non-Intrusive Load Monitoring
AMI Advanced Metering Infrastructure
RL Reinforcement Learning
DHW Domestic Hot Water
PV Photovoltaic
DDPGs Policy Gradient
DRL Deep Reinforcement Learning
AS-REMS Appliance Scheduling-based Residential Energy Management System
MILP Mixed Integer Linear Programming
DL Deep Learning
FSM Finite State Machines
TV Television
NAN Neighborhood Area Network
CT Current Transformer
DC Direct Current
PC Personal Computer
AC Alternating Current
BLUED Building-Level fUlly-labeled dataset for Electricity Disaggregation
HVAC Heating, Ventilation and Air Conditioning
CO2 Carbone Dioxide
RFID Radio Frequency Identification
REDD Reference Energy Disaggregation Dataset
AMPds Almanac of Minutely Power Dataset
UK-DALE United Kingdom Domestic Appliance-Level Electricity
DRED Dutch Residential Energy Dataset
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GREEND GREEND ENergy Dataset
ECO Electricity Consumption and Occupancy
PLAID Plug Load Appliance Identification Dataset
REFIT Electrical Load Measurements dataset
GREEN Grid Renewable Energy and the Smart Grid
SustDataED SustData for Energy Disaggregation
iAWE Indian Dataset for Ambient Water and Energy
COMBED Commercial Building Energy Dataset
SmartCity Smart-Grid SmartCity Customer Trial Data
Smart UMass Smart Home Dataset
IDEAL IDEAL Household Energy Dataset
USA United States of America
UK United Kingdom
IEEE Institute of Electrical and Electronics Engineers
PLC Power Line Communications
RS-232/485 Recommended Standard 232/485
GSM Global Communication System
CDMA Code Division Multiple Access
3G Third Generation
LTE Long Term Evolution
4G Fourth Generation
NR New Radio
NarrowBand IoT Narrowband Internet of Things
2G Second Generation
ITU International Telecommunication Union
MoCA Multimedia over Coax Alliance
eMBB enhanced Mobile Broadband
uRLLC ultra Reliable Low Latency Communication
mMTC massive Machine Type Communication
AI Artifitial Intelligence
IoE Internet of Everything
HT Holographic Telepresence
UAV Unmanned Aerial Vehicles
XR Extended Reality
vSTLF Very Short-Term Load Forecast
STLF Short-Term Load Forecast
MTLF Medium-Term Load Forecast
LTLF Long-Term Load Forecast
CNNs Convolutional Neural Networks
LSTM Long Short-Term Memory
FFNN Feed Forward Neural Network
R-DNN Recurrent Deep Neural Network
ALEC Appliance-Level Energy Characterization
Web UI Web User Interface
MQTT Message Queue Telemetry Transport
AWS Amazon Web Services
SQL Structured Query Language
API Application Programming Interface
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