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Abstract: Forest fires are among the most major causes of global ecosystem degradation. The integra-
tion of spatial information from various sources using statistical analyses in the GIS environment is
an original tool in managing the spread of forest fires, which is one of the most significant natural
hazards in the western region of Syria. Moreover, the western region of Syria is characterized by a
significant lack of data to assess forest fire susceptibility as one of the most significant consequences
of the current war. This study aimed to conduct a performance comparison of frequency ratio (FR)
and analytic hierarchy process (AHP) techniques in delineating the spatial distribution of forest
fire susceptibility in the Al-Draikich region, located in the western region of Syria. An inventory
map of historical forest fire events was produced by spatially digitizing 32 fire incidents during the
summers of 2019, 2020, and 2021. The forest fire events were divided into a training dataset with
70% (22 events) and a test dataset with 30% (10 events). Subsequently, FR and AHP techniques were
used to associate the training data set with the 13 driving factors: slope, aspect, curvature, elevation,
Normalized Difference Vegetation Index (NDVI), Normalized Difference Moisture Index (NDMI), To-
pographic Wetness Index (TWI), rainfall, temperature, wind speed, TWI, and distance to settlements,
rivers and roads. The accuracy of the maps resulting from the modeling process was checked using
the validation dataset and receiver operating characteristics (ROC) curves with the area under the
curve (AUC). The FR method with AUC = 0.864 achieved the highest value compared to the AHP
method with AUC = 0.838. The outcomes of this assessment provide constructive spatial insights for
adopting forest management strategies in the study area, especially in light of the consequences of
the current war.

Keywords: forest fire susceptibility; frequency ratio; analytic hierarchy process; Syria

1. Introduction

Forests are one of the main natural resources that represent the safety valve of the
global ecological balance and the sustainability of human civilization [1–4]. According to a
report by the Food and Agriculture Organization (FAO), the global forest area constitutes
4.06 billion hectares (30.06%) of the Earth’s surface area [5]. In addition to deforestation
and forest degradation, forest fires are among the most critical threats to forest systems
globally [6]. Forest fires are caused by natural causes such as lightning and volcanoes, or
human causes, such as arson, accidents, the absence of relevant authorities, and military
action [7,8]. However, the spatial response to fire incidents varies according to the different
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topographic, climatic, biological, and human characteristics [9–11]. In this regard, forest
fire events cause negative spatial impacts on biodiversity, ecological balance, wildlife,
climate change, geophysical and geochemical processes, atmospheric and hydrological
properties, soil, socio-economic and tourism productivity, and population well-being and
health [12–14].

The Mediterranean region is characterized by a very diverse wild vegetation that
preserves many endangered plant and animal species [15,16]. Moreover, forests represent
one of the most important pillars of bio-economic life in the countries of the Mediterranean
basin [17,18]. In the context of environmental change in the Mediterranean region, for-
est fires have recently been the biggest factor that has caused the degradation of large
forest areas [19]. Spatial technologies such as geographic information systems (GIS) and
remote sensing (RS) data, however, provide an advanced tool with reliable spatial out-
puts that effectively help in the management of fire risk, as indicated by several relevant
studies [2,20]. Additionally, forest fire susceptibility maps produced by the integration of
spatial techniques and statistical models represent one of the most common approaches to
investigating the impact of physical and human geographical characteristics on forest fire
propagation [1,21–23].

As a result of originality, diversity, high spatial density, socio-economic importance,
and variation of natural geographical characteristics, forests are foremost among the envi-
ronmental resources in the western region of Syria [24,25]. In this regard, more than 76% of
the forest area in Syria is concentrated in its western region [24]. Forests in western Syria
are acutely vulnerable to many manifestations of deterioration, especially high-frequency
forest fire incidents. Plant structure, topographical and climatic characteristics, drought
episodes, and lightning strikes, however, are among the most important physical factors
driving the occurrence of forest fires in western Syria. Unsustainable tourism activity,
coaling, wild cooking, and vandalism are among the most damaging human factors that
contribute to the increase in the frequency of forest fire incidents [7].

Moreover, the western region of Syria experienced the most serious incidents of forest
fires during the summers of 2019, 2020, and 2021 [26]. Those huge forest fires caused a
massive loss of forest area, tragic destruction of many wild habitats, deaths, burning of
homes, displacement of the population, and the total removal of many unique plant species,
especially in the Al-Draikich area. Thus, the problem of forest fires represents a critical
situation that requires a comprehensive spatial assessment of the susceptibility of forests to
fire incidents in the study area.

Nowadays, mapping the spatial distribution of forest fire susceptibility is one of the
most essential measures that render the management of this disaster at the national level.
The integration of fieldwork, RS data, GIS techniques, and statistical methods can build
reliable spatial prediction of the potential forest fire hazard area for different regions. Given
the environmental threat posed by forest fires in the Al-Draikich area, the ultimate objective
of this research is determined by the mapping of the spatial distribution of forest fire
susceptibility in the study area by comparing the performance of the frequency ratio (FR)
and analytic hierarchy process (AHP) techniques in producing the map of the current forest
fire incident inventory with 13 forest fire-causing factors. In light of the paucity of national
literature on in-depth studies of forest fires, the outputs of this study carry important values
for local decision-makers to produce a set of spatial procedures and strategies that can
contribute to managing this issue, especially in the post-war phase in Syria.

2. Material and Methods
2.1. Study Area

The Al-Draikich area is one of the six administrative regions in Tartous Governorate,
western Syria, with an area of 186 km2 representing 10% of the area of Tartous Governorate.
The study area is geographically located between 34◦58′ N to 35◦10′ N latitude and 35◦55′ E
to 36◦19′ E longitude (Figure 1). The Al-Draikich region is located in the east of the Tartus
Governorate, where it is bordered by the Tartous city administrative region to the west, to
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the north by the Sheikh Badr region, to the south by the Safita region, and to the east by the
administrative borders with the Hama Governorate. Geomorphologically, the elevation
in the Al-Draikich area ranges from 171 m to 1110 m. It can be divided into two terrain
sectors [27]: The first sector is hilly, whose height ranges from 171 m to 400 m, and the
second terrain sector includes the mountainous area, whose height ranges from 400 m
to 1110 m. The study area is subject to the mountainous Mediterranean climate: the Csa
and Csb patterns (Köppen climate classification), where the average annual temperature
reaches 16.6 ◦C with a relative humidity of 67.4% and the annual rainfall rate reaches
1152 mm [24]. The wild plant system in the study area consists particularly of Oaks,
Acacia, Terebinths, Carob, Brutia Pine, and Cypress [15,28]. The integration of physical and
human geographical characteristics has made the study area highly vulnerable to forest
fire incidents, especially in the dry season, which lasts for 6–7 months annually.

Figure 1. The location of the study area with training and validation sets of forest fires.

2.2. Data Used

The specific driving factors in this study imposed a multi-source data set, as shown
in Table 1. A digital elevation model (DEM) obtained from the USGC earth explorer
(https://earthexplorer.usgs.gov/) (accessed on 12 September 2021) was used to derive
topographic and hydrologic data such as slope, elevation, curvature, aspects, drainages, and
the Topographic Wetness Index (TWI). The spatial distribution of the Normalized Difference
Vegetation Index (NDVI) and Normalized Difference Moisture Index (NDMI) values was
mapped based on Landsat 8 (OLI-TIRS) data collected from the USGC EarthExplorer
(https://earthexplorer.usgs.gov/) (accessed on 14 September 2021) [29–31]. Data obtained
from the General Directorate of Meteorology in Damascus (GDM) provided the possibility
of mapping the spatial distribution of the most influential climatic elements in stimulating
forest fires, namely, rainfall, temperature, and wind speed.

The spatial distribution of climate-related factors was mapped using the interpola-
tion techniques at a resolution of 30 m. Data of the Directorate of Transport in Tartous
Governorate enabled the monitoring of the impact of the road network on stimulating the
occurrence of forest fires. The distance to the road network was mapping with Euclidean
distance tools at a resolution of 30 m. However, these data were entered and processed
in the GIS environment (ArcMap 10.3) by using the spatial analysis tools in the software:
resample, resize, Euclidean distance, interpolation, tabulation, conversion, raster calculator,
and reclassification tools at a resolution of 30 m.

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Table 1. Thematic layers of factors used and sources of data.

Factor Data Source Data Format Resolution

Slope (deg.)
Elevation (m)

Curvature
Aspect

Drainages
Topographic Wetness Index (TWI)

USGC EarthExplorer
(https://earthexplorer.usgs.gov/)
(accessed on 12 September 2021)

Spatial raster grid data 30 m

Settlements
Normalized Difference Vegetation

Index (NDVI)
Normalized Difference Moisture

Index (NDMI)

Landsat OLI-TIRS, August 2021
(USGS EarthExplorer)

(accessed on 14 September 2021)
Spatial raster grid data 30 m

Rainfall (mm)
Temperature (◦C)
Wind speed (m/s)

General Directorate of
Meteorology—Damascus Spatial vector data -

Roads Directorate of Transport and Public
Roads—Tartous Governorate Spatial vector data -

Based on the fieldwork, the spatial specificity of the study area, the relevant previous
literature, and the abundance of data, a number of driving factors were relied on upon
modeling the forest fire sensitivity. These factors, however, have been reported in several
relevant studies [6,9,21,32,33]. In a GIS environment, thematic layers representing the
factors of forest fires were generated using data from various sources, especially remote
sensing. The DEM with a resolution of 30 m used was projected to Universal Transverse
Mercator (UTM) zone 37 with World Geodetic System 1984 (WGS 84). Using this projected
DEM, maps of slope, elevation, curvature, aspects, and the drainage network were prepared.
A spatial distribution of the Topographic Wetness Index (TWI) values was mapped using
Equation (1).

TWI = ln(
CA

Slope
) (1)

where CA determines the local upslope basin area and Slope outlines the steepest outward
slope for each grid cell [34]. The Euclidean distance tool in the GIS software was used on
the derivation maps of the distance to settlement, drainage, and road. NDVI and NDMI are
among the most influential vital indicators of the presence and levels of moisture. Based on
data obtained from the USGC EarthExplorer, NDVI and NDMI values were mapped using
Equations (2) and (3).

NDVI =
NIR − Red
NIR + Red

(2)

NDVI =
SWIR − NIR
SWIR + NIR

(3)

where NIR represents the near-infrared band and SWIR represents the short-wave infrared
band, as NDVI and NDMI are normalized indicators ranging between −1 and + 1 [35,36].
The inverse distance weighted (IDW) method was used in delineating the spatial distribu-
tion of rainfall, temperature, and wind speed values.

2.3. Forest Fire Inventory Map

Preparing a point inventory map of the spatial distribution of forest fire events is
one of the critical initial procedures of spatial susceptibility mapping [1,2]. In the current
study, the locations of forest fire ignition points during 2019, 2020, and 2021 were collected
using extensive fieldwork and surveys of the Directorate of Agriculture in the Tartous
Governorate (Figure 2). The observation period (the last three years), however, saw the
most devastating fires in the study area [26]. These data were combined and digitized in

https://earthexplorer.usgs.gov/
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a GIS environment and a forest fire event inventory map was prepared. Figure 1 shows
that 32 forest fire points had been spatially recorded across the study area. A total of 70%
(22 points) of the total forest fire events were randomly assigned as training points that
were calibrated with 13 forest fire-triggering factors using the FR and AHP methods. A
total of 30% of the forest fire inventory events (10 points) were used to test the accuracy of
the resulting maps [37].

Figure 2. Photographs showing forest fire events during the summers of 2019, 2020, and 2021.

2.4. Causative Factor Layers

Thirteen layers in the raster output representing the spatial factors stimulating forest
fires in the study area were combined in the GIS environment using the FR and AHP meth-
ods. These cellular layers were classified using common spatial classification approaches,
including Natural Breaks, Equal interval-directional units, and Manual.

2.4.1. Slope (S)

The slope is one of the most important factors, and has a positive impact on the
increase of fire propagation [4,9]. Fire spread increases with a steep slope in high areas,
in contrast to gentle slope forests that feature low susceptibility to fire [2]. In the current
study, the slope degrees were categorized into six spatial classes (Figure 3a): <5◦, 5–10◦,
10–15◦, 15–20◦, 20–25◦, and >25◦.

2.4.2. Elevation (EI)

The elevation factor controls many topographic, climatic, and hydrologic parameters
that affect the spread and intensity of forest fires, such as wind speed and direction,
temperature, precipitation, humidity, and runoff [32,38]. Elevation also causes a critical
spatial variation in the spread of forest fires at the level of patterns and types of vegetation
cover and soil properties [10,39]. Thus, there is a direct relationship between an increase in
forest fire events and an increase in elevation. The study-area elevation map was classified
into five categories with an interval of 200 m (Figure 3b): <200, 200–400, 400–600, 600–800,
and >800 m.

2.4.3. Curvature (CV)

The curvature is one of the topographic indicators that may control fire spread, de-
pending on the change rate of the slope angle between negative slope (concave curvature)
and positive (convex curvature) [32,40–42]. In the current assessment, curvature values
were classified into three categories (Figure 3c): convex, flat, and concave.
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Figure 3. Forest fire-triggering factors: (a) slope, (b) aspect, (c) curvature, (d) elevation, (e) distance
to settlement, (f) distance to drainage, (g) distance to road, (h) NDVI, (i) NDMI, (j) TWI, (k) rainfall,
(l) temperature and (m) wind speed.
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2.4.4. Aspects (AS)

The slope aspect factor sets the micro-climatic condition of the slope, including the
amount of solar radiation absorbed, the temperature of the slope sheet, the abundance of
moisture, wind flow, and the extent of development of the vegetation system [43,44]. In the
northern hemisphere, the south and west slope aspects receive the maximum possible solar
radiation calories, unlike the northern aspects [45]. Slope aspects of the study area were
classified into nine orientations (Figure 3d): Flat, North, Northeast, East, Southeast, South,
Southwest, West, and Northwest.

2.4.5. Distance to Settlement (DS)

Distance to settlement is one of the most influential human spatial indicators that
reflect the intensity of human pressure on forest ecosystems [41]. In this regard, forest
dwellers can cause accidental or non-accidental fires in dry seasons as a result of cooking,
cigar butts, and coaling [46]. The Euclidean distance from the settlement map was divided
into five classes (Figure 3e): <100, 100–200, 200–300, 300–400, and >400 m.

2.4.6. Distance to Drainage (DD)

Distance to the drainage network leads to the development of a fire-retardant zone,
reducing the fire intensity and encircling the firing range [47,48]. The study area is charac-
terized by a rich and mature network of seasonal runoff streams. The Euclidean distance
from the drainage map was divided into five classes (Figure 3f): <100, 100–200, 200–300,
300–400, and >400 m.

2.4.7. Distance to Road (DR)

A road network is one of the most important infrastructure foundations in the frame-
work of forest management and investment [49]. Moreover, a road network develops a field
of direct contact between intensive human activities and the forest system, and thus, leads
to the formation of a surrounding spatial zone that increases the possibility of forest fire
events. The construction of a road network, excavations, the removal of vegetation cover,
and the movement of travelers and visitors are among the triggers for fires along a forest
road network [50]. With an interval of 100 m, the Euclidean distance from the road map was
divided into five classes (Figure 3g): <100, 100–200, 200–300, 300–400, and <400 m.

2.4.8. Normalized Difference Vegetation Index (NDVI)

Exploring the spatial distribution of vegetation density provides an accurate visual
interpretation of the intensity and extent of the forest fire. The NDVI reflects the plant
photosynthesis process—consequently, the soil and plant water content, which affects the
possibility of forest fire propagation [51,52]. As noted in Figure 3h, the NDVI value map
was classified within four levels: <0.1, 0.1–0.3, 0.3–0.6, and >0.6.

2.4.9. Normalized Difference Moisture Index (NDMI)

Several studies indicate a strong positive correlation between plant and soil moisture
and the spread of fires in terms of plant water stress [53]. Moreover, the soil humidity has a
stronger effect than the dominant weather characteristics on the occurrence of forest fires.
The NDMI, which evaluates plant water stress, is one of the most widely used indicators in
fire susceptibility studies [54]. The abundance of plant moisture is distinguished using the
NDMI according to the color intensity that reflects higher humidity (values higher than 1)
and vice versa. Figure 3i shows the spatial distribution of NDMI values after classifying
them into four categories: <0.05, 0.05–0.1, 0.1–0.2, and >0.2.

2.4.10. Topographic Wetness Index (TWI)

The potential of a forest fire and its propagation increases with a decrease in the
topographical moisture and an increase in the water need to saturate the terrain [40,55].
The TWI reflects the abundance of surface moisture, thus controlling the spatial evolution
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of the spread of forest fire [6,56,57]. Figure 3j depicts the classification of spatial distribution
of TWI values: <5, 5–10, 10–15, and >15.

2.4.11. Rainfall (RF)

Rainfall is a critical climatic parameter in the spread of forest fires. Rainfall plays an
important role in the variability of fuel moisture abundance and surface saturation [58,59].
The prospect of forest fires increases as precipitation decreases, and vice versa [60]. The
spatial distribution of rainfall in the Al-Draikich area was derived based on the rainfall
data from 1990–2020 obtained from the General Directorate of Meteorology, Damascus.
Figure 3k illustrates the classification of the spatial distribution of rainfall values: <950,
950–1050, 1050–1150, 1150–1250, and >1250 mm.

2.4.12. Temperature (TM)

Similar to precipitation, an increase in temperature represents an influential climatic
factor in terms of the increase in the occurrence and forest fires [39]. Many scholars of fire risk
point to the direct spatial relationship between temperature and forest fires [32]. In this regard,
rising temperatures make forest systems more vulnerable to fires due to lower moisture
content. In the study area, the period from June to November passes with high suitability
for forest fire frequency [61]. The spatial distribution of temperature in the Al-Draikich area
was derived based on the rainfall data from 1990–2020 obtained from the General Directorate
of Meteorology, Damascus. Figure 3l shows the classification of the spatial distribution of
temperature values: <15 ◦C, 15–16 ◦C, 16–17 ◦C, 17–18 ◦C, and >18 ◦C.

2.4.13. Wind Speed (WS)

The wind speed has a strong effect on forest fire incidents because it reduces the
abundance of plants and the topographic and soil moisture [62]. In this context, the role
of wind speed increases in the effectiveness of forest fire propagation during the dry
season [63]. The spatial distribution of rainfall in the Al-Draikich area was derived on the
basis of the wind speed data from 1990–2020 obtained from the General Directorate of
Meteorology, Damascus. Figure 3m illustrates the classification of the spatial distribution
of wind speed values: <3.65, 3.65–3.95, 3.95–4.30, 4.30–4.66, and >4.66 m/s.

2.5. Statistical Analyses

Statistical analysis is considered the most critical step in mapping forest fire sensitivity
because this analysis determines the weights (i.e., importance) of the different classes of a
given factor on forest fire occurrence. The frequency ratio (FR) and the analytic hierarchy
process (AHP) are considered among the most widely used statistical methods that produce
reliable outputs [21,23,58]. Thus, forest fire susceptibility in the study area was analyzed
based on the FR and AHP methods, which are described in the following subsections.

2.5.1. Frequency Ratio (FR)

The FR method is one of the most widely used bivariate methods for mapping spatial
targeting to the occurrence of natural hazards, including forest fires [2,11,64]. The principle
of the FR method is to estimate the probability of recurring current risk events in the
future in proportional linking with the current geographical characteristics representing the
driving forest fire factors [65,66]. If the FR value is higher than 1, it indicates a significant
impact of the classification of the driving criterion on increasing the susceptibility of a
future forest fire event, and vice versa if it is less than 1. The FR calculated by using
Equation (4):

FR =
S/M
Q/R

(4)

where S determines the number of forest fire events for each class of each motivated
parameter, M determines the overall forest fire events, Q defines the number of pixels for
each class of the criterion, and R determines the total number of pixels.
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2.5.2. Analytic Hierarchy Process (AHP)

The AHP method is among the most widely applied methods globally with reliable re-
sults to assess the spatial susceptibility of natural hazards, including forest fires [1,21,23,58,67].
In the current study, the AHP method was used to produce the forest fire susceptibility map.
The hierarchical topographical, climatic, environmental, and anthropogenic criteria were
organized for a pair-wise comparison process [68,69]. According to Table 2, the relative
weightage of each individual criterion was determined by calibrating the effect intensity of
each criterion in relation to the other criteria in enhancing forest fire susceptibility.

Table 2. The fundamentals scale of absolute numbers for AHP.

Intensity of Importance Definition Explanation

1 Equal importance Two activities contribute equally to the objective.

2 Weak or slight

3 Moderate importance Experience and judgment slightly favor one
activity over another.

4 Moderate plus

5 Strong importance Experience and judgment strongly favor one
activity over another.

6 Strong plus

7 Very strong or demonstrated importance An activity is favored very strongly over another;
its dominance is demonstrated in practice.

8 Very, very strong

9 Extreme importance The evidence favoring one activity over another
is of the highest possible order of affirmation.

Reciprocals Opposites Used for inverse comparison.

Experts’ opinions, extensive field study, an understanding of the driving factors, and
the characteristics of the study area were among the rules that were taken into consideration
when determining the relative weightage of each individual criterion. The experts’ team
(14 experts) was formed from the General Authority for Remote Sensing in Damascus and
the Biodiversity Division in the Directorate of Agriculture in Tartous, Syria. These pair-wise
comparisons enable the development of a pair-wise comparison matrix that assesses the
susceptibility of each criterion in forest fire susceptibility (Equation (5)):

C1
C2
C3
.
.
.

Cn



Ps1/Ps2
Ps2/Ps1
Ps3/Ps1

.

.

.
Psn/Ps1

Ps1/Ps2
Ps2/Ps2
Ps3/Ps2

.

.

.
Psn/Ps2

. . . Ps1/Psn

. . . Ps2/Psn

. . . Ps3/Psn
.
.
.

. . . Psn/Psn


(5)

where C is the selected criteria and Ps is the priority score given to each criterion. After
determining the final weights for each criterion, it is important to carry out a process of
consistency evaluation of the experts’ suggestions (Equation (6)):

CR =
CI
RI

(6)

where CR is the consistency ratio (CR is utilized to specify the value of likelihood), CI is
the consistency index (CI relies on the order of the matrix specified by Saaty [70]), and RI
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is the random index (random inconsistency) (Table 3). CI is measured with the following
equation (Equation (7)):

CI = λmax − n/(n − 1) (7)

where, CI is the consistency index, λ is the consistency vector (greatest or principal eigen-
value of the matrix), and n refers to the number of total criteria.

Table 3. The random inconsistency values.

Number of Criteria 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Random Inconsistency 0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.54 1.56 1.57

2.6. Accuracy Assessment of Forest Fire Susceptibility Maps

Validation is an essential procedure in forest fire susceptibility assessment for specify-
ing the predictive performance of these selected methods [6,9,53]. The receiver operating
characteristic–area under the curve (ROC–AUC) is a widely used method for evaluating
the accuracy of utilized models, and it is commonly used in forest fire hazard-mapping
studies due to its flexibility of explanation of degree susceptibility studies [71,72]. The
ROC curve is a graphic method for testing the trade-off between specificity and sensitivity,
with the x-axis illustrating a false-positive rate (specificity—1) and the y-axis displaying
a true-positive rate (sensitivity) in order to assess the quality of the model’s forecasting
ability [64,73–76].

3. Results
3.1. Forest Fire Susceptibility Mapping
3.1.1. Forest Fire Susceptibility Mapping with the FR Method

Using the logic of relative calibration between the specific forest fire events as training
points and as a set of driving factors, or the FR method, a forest fire susceptibility map was
produced in the study area. Table 4 presents the result of applying the FR index of forest
fire training events for each causative sub-factor. By using the Raster Calculator tool in the
GIS environment, a map of forest fire susceptibility was produced and classified using the
Natural Breaks tool as very low (12%), low (26.07%), moderate (28.27%), high (21.85%), and
very high (11.82%) (Figure 4).

Table 4. The spatial association between the classes of causative factors and current forest fire sites
extracted from the FR.

No. Factor Class No. of
Forest Fires % of Forest Fires No. of Pixels

in Domain % of Domain FR

1 Slope (SL) (deg.) <5 1 4.55 78,901 6.61 0.69
5–10 2 9.09 225,232 18.87 0.48

10–15 7 31.82 311,353 26.09 1.22
15–20 5 22.73 313,773 26.29 0.86
20–25 4 18.18 172,842 14.48 1.26
>25 3 13.64 91,244 7.65 1.78

2 Elevation (El) (m) <200 0 0 2244 0.19 0
200–400 5 22.73 386,567 32.39 0.7
400–600 12 54.55 432,655 36.26 1.5
600–800 4 18.18 265,559 22.25 0.82

>800 1 4.55 106,320 8.91 0.51

3 Curvature (CV) Concave 7 31.82 449,983 37.71 0.84
Flat 4 18.18 290,548 24.35 0.75

Convex 11 50 452,814 37.94 1.32
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Table 4. Cont.

No. Factor Class No. of
Forest Fires % of Forest Fires No. of Pixels

in Domain % of Domain FR

4 Aspects (AS) Flat 0 0 2430 0.2 0
North 0 0 62,626 5.25 0

Northeast 1 4.55 67,936 5.69 0.18
East 3 13.64 91,840 7.7 0.39

Southeast 7 31.82 179,250 15.02 0.47
South 3 13.64 216,539 18.15 0.17

Southwest 5 22.73 174,690 14.64 0.34
West 1 4.55 153,288 12.85 0.08

Northwest 2 9.09 172,575 14.46 0.14
North 0 0 72,171 6.05 0

5 Distance to settlement (DS) (m) <100 4 18.18 314,685 26.37 0.69
100–200 5 22.73 203,579 17.06 1.33
200–300 7 31.82 174,913 14.66 2.17
300–400 5 22.73 140,437 11.77 1.93

>400 1 4.55 359,731 30.14 0.15

6 Distance to drainage (DD) (m) <100 12 54.55 515,300 43.18 1.26
100–200 8 36.36 400,678 33.58 1.08
200–300 2 9.09 218,759 18.33 0.5
300–400 0 0 51,924 4.35 0

>400 0 0 6684 0.56 0

7 Distance to road (DR) (m) <100 8 36.36 584,659 48.99 0.74
100–200 10 45.45 313,772 26.29 1.73
200–300 2 9.09 152,051 12.74 0.71
300–400 1 4.55 74,051 6.21 0.73

>400 1 4.55 68,812 5.77 0.79

8 NDVI <0.1 1 4.55 17,383 1.46 3.12
0.1–0.3 3 13.64 264,964 22.2 0.61
0.3–0.6 15 68.18 688,852 57.72 1.18

>0.6 3 13.64 222,146 18.62 0.73

9 NDMI <0.05 13 59.09 605,701 50.76 1.16
0.05–0.1 5 22.73 316,206 26.5 0.86
0.1–0.2 4 18.18 254,833 21.35 0.85

>0.2 0 0 16,605 1.39 0

10 Topographic Wetness Index (TWI) <5 8 36.36 387,855 32.5 1.12
5–10 13 59.09 771,304 64.63 0.91

10–15 1 4.55 28,410 2.38 1.91
>15 0 0 5776 0.48 0

11 Rainfall (RF) (mm) <950 0 0 2244 0.19 0
950–1050 3 13.64 314,981 26.39 0.52

1050–1150 15 68.18 388,447 32.55 2.09
1150–1250 2 9.09 292,709 24.53 0.37

>1250 2 9.09 194,964 16.34 0.56

12 Temperature (TM) (◦C) <15 7 31.82 482,874 40.46 0.79
15–16 11 50 391,289 32.79 1.52
16–17 4 18.18 226,069 18.94 0.96
17–18 0 0 81,499 6.83 0
>18 0 0 11,614 0.97 0

13 Wind speed (WS) (m/s) <3.65 2 9.09 243,083 20.37 0.45
3.65–3.95 14 63.64 543,309 45.53 1.4
3.95–4.30 4 18.18 173,464 14.54 1.25
4.30–4.66 1 4.55 130,006 10.89 0.42

>4.66 1 4.55 103,483 8.67 0.52
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Figure 4. Forest fire susceptibility map produced using the FR method.

3.1.2. Forest Fire Susceptibility Mapping with the AHP Method

Based on a number of considerations, especially the opinions of experts, a pair-wise
comparison matrix was developed that evaluates the effect of each factor in enhancing the
probability of forest fires compared to another factor, with the final weights as shown in
Tables 5–7, which also illustrate the scores of the factor classes. It was necessary to examine
the consistency of expert opinions for 13 driving factors.

Table 5. Pair-wise comparison matrix by AHP.

Factors SL EL CR AS DS DD DR NDVI NDMI TWI RF TM WS

Slope (SL) 1 5.00 7.00 5.00 6.00 6.00 5.00 4.00 3.00 6.00 5.00 6.00 3.00

Elevation (El) 0.20 1 2.00 3.00 2.00 5.00 4.00 4.00 3.00 5.00 3.00 5.00 3.00

Curvature (CV) 0.14 0.50 1 3.00 2.00 3.00 4.00 3.00 2.00 3.00 4.00 3.00 2.00

Aspects (AS) 0.20 0.33 0.33 1 1.00 3.00 2.00 4.00 3.00 4.00 2.00 3.00 2.00

Distance to settlement (DS) 0.17 0.50 0.50 1.00 1 2.00 1.00 2.00 4.00 3.00 2.00 4.00 2.00

Distance to drainage (DD) 0.17 0.20 0.33 0.33 0.50 1 1.00 2.00 1.00 2.00 2.00 4.00 1.00

Distance to road (DR) 0.20 0.25 0.25 0.50 1.00 1.00 1 2.00 2.00 3.00 4.00 3.00 2.00

NDVI 0.25 0.25 0.33 0.25 0.50 0.50 0.50 1 1.00 2.00 1.00 3.00 1.00

NDMI 0.33 0.33 0.50 0.33 0.25 1.00 0.50 1.00 1 2.00 1.00 2.00 1.00

Topographic Wetness Index (TWI) 0.17 0.20 0.33 0.25 0.33 0.50 0.33 0.50 0.50 1 1.00 2.00 1.00

Rainfall (RF) 0.20 0.33 0.25 0.50 0.50 0.50 0.25 1.00 1.00 1.00 1 3.00 2.00

Temperature (TM) 0.17 0.20 0.33 0.33 0.25 0.25 0.33 0.33 0.50 0.50 0.33 1 1.00

Wind speed (WS) 0.33 0.33 0.50 0.50 0.50 1.00 0.50 1.00 1.00 1.00 0.50 1.00 1

The CR value was 6.25%, which is less than 10%, indicating that the judgments were
consistent and could be used for mapping the forest fire susceptibility. In addition, Table 6
shows the proposed weights of the factors’ classes. In this context, it can be noted that the
slope and elevation factors were among the most influential factors for predicting forest
fires in the study area. This can be explained by the strong association of the extreme spatial
variability of the other factors with slope and elevation, which increase the susceptibility of
forest fires. Using the Reclassify and Weighted Sum tools, all the trigging factor layers were
combined to produce a forest fire susceptibility map in the study area, which was classified
using the Natural Breaks method as very low (15.83%), low (17.91%), moderate (34.75%),
high (21.79%), and very high (9.73%) (Figure 5).
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Table 6. Normalized pair-wise comparison matrix and computation of factor weights.

SL EL CR AS DS DD DR NDVI NDMI TWI RF TM WS Weight Rank

SL 0.283 0.531 0.513 0.313 0.379 0.242 0.245 0.155 0.130 0.179 0.186 0.150 0.136 0.265 1

El 0.057 0.106 0.147 0.188 0.126 0.202 0.196 0.155 0.130 0.149 0.112 0.125 0.136 0.141 2

CV 0.040 0.053 0.073 0.188 0.126 0.121 0.196 0.116 0.087 0.090 0.149 0.075 0.091 0.108 3

AS 0.057 0.035 0.024 0.063 0.063 0.121 0.098 0.155 0.130 0.119 0.075 0.075 0.091 0.085 4

DS 0.048 0.053 0.037 0.063 0.063 0.081 0.049 0.077 0.174 0.090 0.075 0.100 0.091 0.077 5

DD 0.048 0.021 0.024 0.021 0.032 0.040 0.049 0.077 0.043 0.060 0.075 0.100 0.045 0.049 7

DR 0.057 0.027 0.018 0.031 0.063 0.040 0.049 0.077 0.087 0.090 0.149 0.075 0.091 0.066 6

NDVI 0.071 0.027 0.024 0.016 0.032 0.020 0.024 0.039 0.043 0.060 0.037 0.075 0.045 0.039 10

NDMI 0.093 0.035 0.037 0.021 0.016 0.040 0.024 0.039 0.043 0.060 0.037 0.050 0.045 0.042 8

TWI 0.048 0.021 0.024 0.016 0.021 0.020 0.016 0.019 0.022 0.030 0.037 0.050 0.045 0.028 12

RF 0.057 0.035 0.018 0.031 0.032 0.020 0.012 0.039 0.043 0.030 0.037 0.075 0.091 0.040 9

TM 0.048 0.021 0.024 0.021 0.016 0.010 0.016 0.013 0.022 0.015 0.012 0.025 0.045 0.022 13

WS 0.093 0.035 0.037 0.031 0.032 0.040 0.024 0.039 0.043 0.030 0.019 0.025 0.045 0.038 11

λ 14.17

n 13

CI 0.097

RI: n = 13 1.56

CR 0.062

CR% 6.25

λ: Maximum eigenvalue, CI: consistency index, CR: consistency ratio.

Table 7. Weights of the criteria and scores of the sub-criteria.

No. Factor Sub-Criteria Susceptibility Class of FRS Rating AHP Weight

1 Slope (SL) (deg.) <5 Very low 1 0.265
5–10 Low 2

10–15 Moderate 3
15–20 High 4
20–25 Very high 5
>25 Very high 5

2 Elevation (El) (m) <200 Very high 5 0.141
200–400 High 4
400–600 Moderate 3
600–800 Low 2

>800 Very low 1

3 Curvature (CV) Concave Moderate 3 0.108
Flat Very high 5

Convex High 4

4 Aspects (AS) Flat Very high 5 0.085
North Moderate 3

Northeast Low 2
East Very high 5

Southeast Very high 5
South High 4

Southwest High 4
West Very high 5

Northwest Moderate 3
North Low 2



Sustainability 2022, 14, 4668 14 of 20

Table 7. Cont.

No. Factor Sub-Criteria Susceptibility Class of FRS Rating AHP Weight

5 Distance to settlement (DS) (m) <100 Very high 5 0.077
100–200 High 4
200–300 Moderate 3
300–400 Low 2

>400 Very low 1

6 Distance to drainage (DD) (m) <100 Very high 5 0.049
100–200 High 4
200–300 Moderate 3
300–400 Low 2

>400 Very low 1

7 Distance to road (DR) (m) <100 Very high 5 0.066
100–200 High 4
200–300 Moderate 3
300–400 Low 2

>400 Very low 1

8 NDVI <0.1 Low 2 0.039
0.1–0.3 Moderate 3
0.3–0.6 High 4

>0.6 Very high 5

9 NDMI <0.05 Low 1 0.042
0.05–0.1 Moderate 3
0.1–0.2 High 4

>0.2 Very high 5

10 Topographic Wetness Index (TWI) <5 Low 2 0.028
5–10 Moderate 3

10–15 High 4
>15 Very high 5

11 Rainfall (RF) (mm) <950 Very high 5 0.04
950–1050 High 4

1050–1150 Moderate 3
1150–1250 Low 2

<1250 Very low 1

12 Temperature (TM) (◦C) <15 Very low 1 0.022
15–16 Low 2
16–17 Moderate 3
17–18 High 4
>18 Very high 5

13 Wind speed (WS) (m/s) <3.65 Very low 1 0.038
3.65–3.95 Low 2
3.9–4.30 Moderate 3
4.30–4.66 High 4

>4.66 Very high 5

Figure 5. Forest fire susceptibility map utilizing the AHP method.
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3.2. Validation

Evaluating the accuracy of prediction outputs is a critical and complementary measure
to achieve the maximum benefit of modeling studies. In the current analysis, ROC–AUC
was used to test the accuracy of the produced forest fire susceptibility maps. The results
showed that the FR method achieved the highest accuracy of spatial prediction, followed
by the AHP method, with AUC values of 0.864 and 0.838, respectively (Figure 6). Although
the FR method achieved the best accuracy in producing a map of forest fire susceptibility
in the study area, it did not prevent the AHP method from producing an objective and
constructive susceptibility map.

Figure 6. ROC plots for FR and AHP.

4. Discussion

The environmental threats posed by forest fires to ecological sustainability and the
biodiversity of ecosystems are increasing globally, especially in light of climate change and
rapid population growth. In this regard, the need to determine the spatial susceptibility
of forest fires has become crucial in the context of integrated management of global forest
wealth. In this study, a comprehensive spatial assessment of the potential susceptibility
of forest fires in the Al-Draikich area was conducted using a combination of FR/AHP
and GIS/RS techniques. These final spatial outputs allowed the grading of the spatial
distribution of potential forest fire susceptibility in the study area (Table 8) based on five
categories: very low, low, moderate, high, and very high.

Table 8. Spatial classes of forest hazard susceptibility utilizing the FR and AHP methods.

Degree Forest Fire Susceptibility
FR AHP

Area (km2) % Area (km2) %

1 Very low 22.32 12.00 29.46 15.83
2 Low 48.51 26.07 33.33 17.91
3 Moderate 52.61 28.27 64.66 34.75
4 High 40.65 21.85 40.54 21.79
5 Very high 21.99 11.82 18.10 9.73

The produced maps indicate that high and very high spatial distribution of fire suscep-
tibility could be observed in the slopes of the central, northern, and northeastern regions of
the study area. In the analysis, these areas were characterized by a combination of different
factors that can promote forest fires, especially steep slopes, high elevation, dense forest
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cover, fuel heating, moisture, high wind velocity, and proximity to settlements and road
networks. These results are consistent with the various forest fire susceptibility studies
worldwide [1,2,4,21,25,66,77]. In this context, the mapping process for forest fire suscepti-
bility based on the FR and AHP methods showed high flexibility and reliability. ROC with
AUC provided satisfactory evidence of the quality of the outputs of this study.

Moreover, the application of the FR and AHP methods provided a rich evaluation
that enables a comparison of the obtained spatial outcomes. The FR method involves
conducting a spatial association analysis between fire events and the driving factors,
whereas the AHP method provides a spatial analysis of the views of a selected number of
experts on the spatial variability of forest fire sensitivity. Nevertheless, the FR method was
more accurate in deriving a fire susceptibility map than the AHP method. Similar results
were reported in related studies [78]. However, the forest fire susceptibility literature shows
a high objective reliability in deriving maps using FR and AHP, such as in Turkey [79],
Ethiopia [80], and Brazil [81]. In the context of explaining the higher accuracy of the FR
method than that of the AHP method, it needs to be stated that the FR method took into
account the true spatial distribution of forest fire events in relation to sub-classifications of
the driving factors, thus determining the effectiveness of each sub-classification’s influence
in enhancing the probability of forest fires. On the other hand, the AHP method, in
determining the final weights of the causative factors, was based on expert opinions with
varying consistency factors.

The present assessment shows the spatial behavior of the future development of forest
fires that will threaten the remnants of degraded forest cover in the study area. In this
setting, these fires will constitute an additional factor enhancing the loss of forest cover
under the current war conditions in the country. Moreover, the patterns of indiscriminate
exploitation of forest wealth will increase the probability of forest fires in the study area
through negative friction between forests and humans [80]. In detail, the current war
conditions in the country have led to a severe shortage of fossil energy resources, with
almost a complete disruption of electrical power over the past decade [81]. Thus, the
locals have resorted to forest resources to find alternative energy for heating, cooking,
and lighting. Moreover, the deteriorating economic conditions have led some residents to
resort to charcoal production to ensure financial support [82,83]. In the case of the study
area, charcoal production is carried out in a traditional way, causing huge fires within the
forests that often go out of control. However, investigations carried out by local authorities
showed that charring was one of the most significant causes of forest fires during 2019,
2020, and 2021. These results were reported in studies conducted by [7,26].

The fieldwork provided evidence of the spatial output reliability presented in this
study, especially areas with high and very high susceptibility to forest fires. These areas
included the most dangerous incidents of forest fires in terms of spread and catastrophic
consequences, especially the villages of Dahr, Genena Raslan, Al-Afsunah, and Ain Hajja.

The final outputs of this study provided a reliable spatial basis within the framework
of managing and maintaining the sustainability of the forest system in the study area. Areas
of high and very high forest fire susceptibility must be targeted with a set of measures—
for example, establishing an early fire-warning system, constructing watchtowers, or
facilitating access through the construction and maintenance of off-roads. In addition,
the guarding system must be improved by activating the forestry control and patrolling
systems. Friction between humans and the forest must also be reduced as much as possible
through the establishment of reserves with administrative control.

5. Conclusions

Forest fires are one of the most significant manifestations of global forest system
degradation. The aim of this evaluation was to target the spatial susceptibility of forest
fires in the western region of Syria (Al-Draikish region), which is frequently exposed to
forest fire incidents. The integration of field surveys, remote sensing and GIS techniques,
and related statistical analyses (FR and AHP methods) were used to produce two forest
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fire susceptibility maps in a flexible and effective manner. The results of the current study
reported that the factors of topography, climate, moisture, plant diversity, and random
urbanization were among the factors that stimulate the susceptibility of forest fires in
the study area. Moreover, the results of mapping accuracy assessment indicate that the
selection of individual driving factors was satisfactory, taking into account the specificity
of the study area and the relevant literature. In addition, the resulting forest susceptibility
map using FR was found to be more accurate than the AHP method. The results of this
study enhance the ability of forest planners and managers in the study area to improve
forest protection and prevention services.
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