Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future
Abstract
:1. Introduction
2. Heavy Metal Extraction in Soil
3. Pollution Levels in Various Environmental Compartments
3.1. Soil
3.2. Water
4. COVID-19
CO2 Emission
5. Challenges Associated with Waste
5.1. Waste Management Strategy
5.2. Waste Avoidance and Waste Minimization at Source
5.3. Reuse, Recovery, and Recycling of Hazardous Waste
5.4. Lessons Learned from Waste Disposal
6. The Role of Circular Economy (CE)
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Liu, Y.; Wang, H.; Zhang, H.; Liber, K. A comprehensive support vector machine-based classification model for soil quality assessment. Soil Tillage Res. 2016, 155, 19–26. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Anaman, R.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Li, M.S. Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: A review of research and practice. Sci. Total Environ. 2006, 357, 38–53. [Google Scholar] [CrossRef]
- Li, G.; Sun, G.X.; Williams, P.N.; Nunes, L.; Zhu, Y.G. Inorganic arsenic in Chinese food and its cancer risk. Environ. Int. 2011, 37, 1219–1225. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Feng, X.; Li, G.; Bi, X.; Sun, G.; Zhu, J.; Wang, J. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China. Appl. Geochem. 2011, 26, 160–166. [Google Scholar] [CrossRef]
- Chen, R.; De Sherbinin, A.; Ye, C.; Shi, G. China’s soil pollution: Farms on the frontline. Science 2014, 344, 691. [Google Scholar] [CrossRef]
- Zhao, F.J.; Ma, Y.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- He, Z.; Shentu, J.; Yang, X.; Baligar, V.C.; Zhang, T.; Stoffella, P.J. Heavy metal contamination of soils: Sources, indicators and assessment. J. Environ. Indic. 2015, 9, 17–18. [Google Scholar]
- Ernst, W.H.O. The origin and ecology ofecontaminated, stabilized and non-pristine soils. In Metal-Contaminated Soils: In Situ Inactivation and Phytorestoration; Landes BioScience/Springer: Heidelberg, Germany; New York, NY, USA, 1998; pp. 17–29. [Google Scholar]
- Soubrand, M.; Joussein, E.; Courtin-Nomade, A.; Jubany, I.; Casas, S.; Bahí, N.; Martínez-Martínez, S. Investigating the relationship between speciation and oral/lung bioaccessibility of a highly contaminated tailing: Contribution in health risk assessment. Environ. Sci. Pollut. Res. 2020, 27, 40732–40748. [Google Scholar]
- Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Zornoza, R.; Acosta, J.A. Assessment of metals behaviour in industrial soil using sequential extraction, multivariable analysis and a geostatistical approach. J. Geochem. Explor. 2017, 172, 174–183. [Google Scholar] [CrossRef]
- Wang, J.Y.; Long, J.X.; Lu, H.W. Heavy Metal Contamination of Soil in Zhuzhou Smelting. In Advanced Materials Research; Trans Tech Publications Ltd.: Kapellweg, Switzerland, 2014. [Google Scholar]
- Xing, W.; Cao, E.; Scheckel, K.G.; Bai, X.; Li, L. Influence of phosphate amendment and zinc foliar application on heavy metal accumulation in wheat and on soil extractability impacted by a lead smelter near Jiyuan, China. Environ. Sci. Pollut. Res. 2018, 25, 31396–31406. [Google Scholar] [CrossRef]
- Li, X.; Lv, G.; Ma, W.; Li, T.; Zhang, R.; Zhang, J.; Lei, Y. Review of resource and recycling of silicon powder from diamond-wire sawing silicon waste. J. Hazard. Mater. 2022, 424, 127389. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Vaish, B.; Singh, U.K.; Singh, P.; Singh, R.P. Recycling of organic wastes in agriculture: An environmental perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Rene, E.R.; Sethurajan, M.; Ponnusamy, V.K.; Kumar, G.; Dung, T.N.B.; Brindhadevi, K.; Pugazhendhi, A. Electronic waste generation, recycling and resource recovery: Technological perspectives and trends. J. Hazard. Mater. 2021, 416, 125664. [Google Scholar] [CrossRef]
- Luo, C.; Liu, C.; Wang, Y.; Liu, X.; Li, F.; Zhang, G.; Li, X. Heavy metal contamination in soils and vegetables near an e-waste processing site, south China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef]
- Wu, Q.; Leung, J.Y.; Geng, X.; Chen, S.; Huang, X.; Li, H.; Lu, Y. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: Implications for dissemination of heavy metals. Sci. Total Environ. 2015, 506, 217–225. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Xing, P.; Liu, J. Environmental performance evaluation of different municipal solid waste management scenarios in China. Resour. Conserv. Recycl. 2017, 125, 98–106. [Google Scholar] [CrossRef]
- Kim, M.H.; Song, H.B.; Song, Y.; Jeong, I.T.; Kim, J.W. Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea. Int. J. Energy Environ. Eng. 2013, 4, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, H.; Huang, Z.; Wang, Z.; Xiong, R.; Jiang, S.; Luo, L. Comparison of atmospheric and gas-pressurized oxidative torrefaction of heavy-metal-polluted rice straw. J. Clean. Prod. 2021, 283, 124636. [Google Scholar] [CrossRef]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio Med. Atenei Parm. 2020, 91, 157. [Google Scholar]
- Skalny, A.V.; Lima, T.R.R.; Ke, T.; Zhou, J.-C.; Bornhorst, J.; Alekseenko, S.I.; Aaseth, J.; Anesti, O.; Sarigiannis, D.A.; Tsatsakis, A.; et al. Toxic metal exposure as a possible risk factor for COVID-19 and other respiratory infectious diseases. Food Chem. Toxicol. 2020, 146, 111809. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, L.; Ge, Y.; Abuduwaili, J. Health risk of heavy metal exposure from dustfall and source apportionment with the PCA-MLR model: A case study in the Ebinur Lake Basin, China. Atmos. Environ. 2022, 272, 118950. [Google Scholar] [CrossRef]
- Burges, A.; Epelde, L.; Garbisu, C. Impact of repeated single-metal and multi-metal pollution events on soil quality. Chemosphere 2015, 120, 8–15. [Google Scholar] [CrossRef]
- Zhang, P.; Qin, C.; Hong, X.; Kang, G.; Qin, M.; Yang, D.; Pang, B.; Li, Y.; He, J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Tack, F.M. Determination of Al, Cu, Fe, Mn, Pb and Zn in certified reference materials using the optimized BCR sequential extraction procedure. Anal. Chim. Acta 2002, 454, 249–257. [Google Scholar] [CrossRef]
- Bacon, J.R.; Davidson, C.M. Is there a future for sequential chemical extraction? Analyst 2008, 133, 25–46. [Google Scholar] [CrossRef]
- Gabarrón, M.; Faz, A.; Martínez-Martínez, S.; Acosta, J.A. Concentration and chemical distribution of metals and arsenic under different typical Mediterranean cropping systems. Environ. Geochem. Health 2019, 41, 2845–2857. [Google Scholar] [CrossRef]
- Clevenger, T.E. Use of sequential extraction to evaluate the heavy metals in mining wastes. Water Air Soil Pollut. 1990, 50, 241–254. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Qayyum, S.; Khan, I.; Zhao, Y.; Maqbool, F.; Peng, C. Sequential extraction procedure for fractionation of Pb and Cr in artificial and contaminated soil. Main Group Met. Chem. 2016, 39, 49–58. [Google Scholar] [CrossRef]
- Tang, X.-Y.; Cui, Y.-S.; Duan, J.; Tang, L. Pilot study of temporal variations in lead bioaccessibility and chemical fractionation in some Chinese soils. J. Hazard. Mater. 2008, 160, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Ariza, J.G.; Giráldez, I.; Sánchez-Rodas, D.; Morales, E. Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Anal. Chim. Acta 2000, 414, 151–164. [Google Scholar] [CrossRef]
- Filgueiras, A.V.; Lavilla, I.; Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 2002, 4, 823–857. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken Under the Auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Maiz, I.; Arambarri, I.; Garcia, R.; Millán, E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ. Pollut. 2000, 110, 3–9. [Google Scholar] [CrossRef]
- Galán, E.; Ariza, J.G.; González, I.; Caliani, J.F.; Morales, E.; Giráldez, I. Utilidad de las tecnicas de extraccion secuencial en la mejora de la caracterización mineralogica por DRX de suelos y sedimentos con altos contenidos de oxidos de hierro. Libro de conferencias y Resumenes de la XV Reunion Cientifica de la Sociedad Española de Arcillas 1999, 15, 68–69. [Google Scholar]
- Benitez, L.N.; Dubois, J.-P. Evaluation of the Selectivity of Sequential Extraction Procedures Applied to the Speciation of Cadmium in Soils. Int. J. Environ. Anal. Chem. 1999, 74, 289–303. [Google Scholar] [CrossRef]
- Zimmerman, A.J.; Weindorf, D.C. Heavy Metal and Trace Metal Analysis in Soil by Sequential Extraction: A Review of Procedures. Int. J. Anal. Chem. 2010, 2010, 387803. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.L.; Alleoni, L.R.F.; O’Connor, G.A.; Chang, A.C. Heavy metal sequential extraction methods—A modification for tropical soils. Chemosphere 2006, 64, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, C.L.; Williamson, C.A.; Collins, W.K.; Dahlin, D.C. Sequential extraction versus comprehensive characterization of heavy metal species in brownfield soils. Environ. Forensics 2002, 3, 191–201. [Google Scholar] [CrossRef]
- Awad, M.; Liu, Z.; Skalicky, M.; Dessoky, E.; Brestic, M.; Mbarki, S.; Rastogi, A.; EL Sabagh, A. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Biomolecules 2021, 11, 448. [Google Scholar] [CrossRef] [PubMed]
- Vilar, S.; Gutierrez, A.; Antezana, J.; Carral, P.; Alvarez, A. A comparative study of three different methods for the sequential extraction of heavy metals in soil. Toxicol. Environ. Chem. 2005, 87, 1–10. [Google Scholar] [CrossRef]
- Elnazer, A.; Salman, S.; Seleem, E.M.; Abu El Ella, E.M. Assessment of Some Heavy Metals Pollution and Bioavailability in Roadside Soil of Alexandria-Marsa Matruh Highway, Egypt. Int. J. Ecol. 2015, 2015, 689420. [Google Scholar] [CrossRef] [Green Version]
- Kobielska, P.A.; Howarth, A.J.; Farha, O.K.; Nayak, S. Metal–organic frameworks for heavy metal removal from water. Co-ord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Chai, Y.; Bai, M.; Chen, A.; Peng, L.; Shao, J.; Shang, C.; Peng, C.; Zhang, J.; Zhou, Y. Thermochemical conversion of heavy metal contaminated biomass: Fate of the metals and their impact on products. Sci. Total Environ. 2022, 822, 153426. [Google Scholar] [CrossRef]
- Lin, S.; Ali, M.U.; Zheng, C.; Cai, Z.; Wong, M.H. Toxic chemicals from uncontrolled e-waste recycling: Exposure, body burden, health impact. J. Hazard. Mater. 2021, 426, 127792. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Singh, P.; Borthakur, A.; Singh, R.; Bhadouria, R.; Singh, V.K.; Devi, P. A critical review on the research trends and emerging technologies for arsenic decontamination from water. Groundw. Sustain. Dev. 2021, 14, 100607. [Google Scholar] [CrossRef]
- Yin, N.; Zhang, Z.; Cai, X.; Du, H.; Sun, G.; Cui, Y. In Vitro Method to Assess Soil Arsenic Metabolism by Human Gut Microbiota: Arsenic Speciation and Distribution. Environ. Sci. Technol. 2015, 49, 10675–10681. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.Y.; Al-Ghouti, M.A. Approaches to achieve sustainable use and management of groundwater resources in Qatar: A review. Groundw. Sustain. Dev. 2020, 11, 100367. [Google Scholar] [CrossRef]
- Rodriguez, A.G.P.; López, M.I.R.; Casillas, D.; León, J.A.A.; Banik, S.D. Impact of pesticides in karst groundwater. Review of recent trends in Yucatan, Mexico. Groundw. Sustain. Dev. 2018, 7, 20–29. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kim, J.-W. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 2010, 408, 3998–4006. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Qi, S.; Li, X.; Kong, X.; Yuan, D.; Theodore, O.I. Distribution and potential sources of organochlorine pesticides in the karst soils of a tiankeng in southwest China. Environ. Earth Sci. 2013, 70, 2873–2881. [Google Scholar] [CrossRef]
- Di, X.; Xiao, B.; Dong, H.; Wang, S. Implication of different humic acid fractions in soils under karst rocky desertification. CATENA 2018, 174, 308–315. [Google Scholar] [CrossRef]
- Xiao, P.; Xiao, B.; Adnan, M. Effects of Ca 2+ on migration of dissolved organic matter in limestone soils of the southwest China karst area. Land Degrad. Dev. 2021, 32, 5069–5082. [Google Scholar] [CrossRef]
- Yang, M.; Chen, L.; Msigwa, G.; Tang, K.H.D.; Yap, P.-S. Implications of COVID-19 on global environmental pollution and carbon emissions with strategies for sustainability in the COVID-19 era. Sci. Total Environ. 2021, 809, 151657. [Google Scholar] [CrossRef]
- Liang, Y.; Yi, X.; Dang, Z.; Wang, Q.; Luo, H.; Tang, J. Heavy Metal Contamination and Health Risk Assessment in the Vicinity of a Tailing Pond in Guangdong, China. Int. J. Environ. Res. Public Health 2017, 14, 1557. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Janssen, A.B.G.; Bazin, J.; Strokal, M.; Ma, L.; Kroeze, C. Accounting for interactions between Sustainable Development Goals is essential for water pollution control in China. Nat. Commun. 2022, 13, 730. [Google Scholar] [CrossRef]
- Gallo, A., Jr.; Odokonyero, K.; Mousa, M.A.; Reihmer, J.; Al-Mashharawi, S.; Marasco, R.; Mishra, H. Nature-Inspired Superhydrophobic Sand Mulches Increase Agricultural Productivity and Water-Use Efficiency in Arid Regions. ACS Agric. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Martínez-Retureta, R.; Aguayo, M.; Abreu, N.; Stehr, A.; Duran-Llacer, I.; Rodríguez-López, L.; Sauvage, S.; Sánchez-Pérez, J.-M. Estimation of the Climate Change Impact on the Hydrological Balance in Basins of South-Central Chile. Water 2021, 13, 794. [Google Scholar] [CrossRef]
- Rodelo, C.G.; Salinas, R.A.; Jaime, E.A.; Armenta, S.; Galdámez-Martínez, A.; Castillo-Blum, S.E.; la Vega, H.A.-D.; Grace, A.N.; Aguilar-Salinas, C.A.; Rodelo, J.G.; et al. Zinc associated nanomaterials and their intervention in emerging respiratory viruses: Journey to the field of biomedicine and biomaterials. Co-ord. Chem. Rev. 2022, 457, 214402. [Google Scholar] [CrossRef]
- Arora, N.K.; Mishra, J. COVID-19 and importance of environmental sustainability. Environ. Sustain. 2020, 3, 117–119. [Google Scholar] [CrossRef]
- Martin, R.L.A.S.; Crochemore, T.; Savioli, F.A.; Coelho, F.O.; Passos, R.D.H. Thromboelastometry early identifies thrombotic complications related to COVID-19: A case report. SAGE Open Med. Case Rep. 2021, 9, 2050313X211033160. [Google Scholar] [CrossRef]
- International Monetary Fund. World Economic Outlook: The Great Lockdown; International Monetary Fund: Washington, DC, USA, 2020. [Google Scholar]
- Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Lee, T.X. COVID-19 Heavy Metal Hypothesis. Qeios 2020. [Google Scholar] [CrossRef]
- Hamad, M.N.M.; Al-Qahtni, A. Understand COVID-19 through Heavy Metals Pollution. J. Pharm. Res. Int. 2022, 34, 19–35. [Google Scholar] [CrossRef]
- Larsen, D.A.; Wigginton, K.R. Tracking COVID-19 with wastewater. Nat. Biotechnol. 2020, 38, 1151–1153. [Google Scholar] [CrossRef]
- Hart, O.E.; Halden, R.U. Computational analysis of SARS-CoV-2/COVID-19 surveillance by wastewater-based epidemiology locally and globally: Feasibility, economy, opportunities and challenges. Sci. Total Environ. 2020, 730, 138875. [Google Scholar] [CrossRef]
- Krantz, M.S.; Phillips, E.J. COVID-19 mRNA vaccine safety during the first 6 months of roll-out in the USA. Lancet Infect. Dis. 2022. [Google Scholar] [CrossRef]
- Xu, G.; Schwarz, P.; Yang, H. Adjusting energy consumption structure to achieve China’s CO2 emissions peak. Renew. Sustain. Energy Rev. 2020, 122, 109737. [Google Scholar] [CrossRef]
- Haidar, A.; Ferdous, N.; Soma, S.K.; Hossain, M.M.; Chowdhury, N.N.; Akter, T.; Hossain, I. Attenuation of Air Pollutants: A Blessing during COVID-19 Outbreak. Int. J. Recent Adv. Multidiscip. Top. 2021, 2, 42–46. [Google Scholar]
- Wang, R.; Xiong, Y.; Xing, X.; Yang, R.; Li, J.; Wang, Y.; Cao, J.; Balkanski, Y.; Peñuelas, J.; Ciais, P.; et al. Daily CO2 Emission Reduction Indicates the Control of Activities to Contain COVID-19 in China. Innovation 2020, 1, 100062. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.; Zhu, B.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 5172. [Google Scholar] [CrossRef]
- Khan, I.; Shah, D.; Shah, S.S. COVID-19 pandemic and its positive impacts on environment: An updated review. Int. J. Environ. Sci. Technol. 2020, 18, 521–530. [Google Scholar] [CrossRef]
- Erans, M.; Sanz-Pérez, E.S.; Hanak, D.P.; Clulow, Z.; Reiner, D.M.; Mutch, G.A. Direct air capture: Process technology, techno-economic and socio-political challenges. Energy Environ. Sci. 2022, 15, 1360–1405. [Google Scholar] [CrossRef]
- Classen, A.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.; Cregger, M.A.; Patterson, C.M. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 2015, 6, 1–21. [Google Scholar] [CrossRef]
- Deng, G.; Chen, H.; Wang, S. Risk Assessment and Prediction of Rainstorm and Flood Disaster Based on Henan Province, China. Math. Probl. Eng. 2022, 2022, 5310920. [Google Scholar] [CrossRef]
- Wang, J.; Yu, C.W.; Cao, S.-J. Urban development in the context of extreme flooding events. Indoor Built Environ. 2021, 31, 3–6. [Google Scholar] [CrossRef]
- Zhao, X.; Li, H.; Qi, Y. Are Chinese Cities Prepared to Manage the Risks of Extreme Weather Events? Evidence from the 2021.07. 20 Zhengzhou Flood in Henan Province. SSRN 2021, 20, 38. [Google Scholar] [CrossRef]
- Vaccari, M.; Torretta, V.; Collivignarelli, C. Effect of Improving Environmental Sustainability in Developing Countries by Upgrading Solid Waste Management Techniques: A Case Study. Sustainability 2012, 4, 2852–2861. [Google Scholar] [CrossRef] [Green Version]
- Hakovirta, M.; Denuwara, N. How COVID-19 Redefines the Concept of Sustainability. Sustainability 2020, 12, 3727. [Google Scholar] [CrossRef]
- Pareek, N. Climate Change Impact on Soils: Adaptation and Mitigation. MOJ Ecol. Environ. Sci. 2017, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Hossain, I.; Mullick, A.R.; Khan, M.H. Food security and the coronavirus disease 2019 (COVID-19): A systemic review. J. Med. Sci. Clin. Res. 2020, 8, 180–184. [Google Scholar]
- Hasselriis, F.; Constantine, L. Characterization of today’s medical waste. In Medical Waste Incineration and Pollution Prevention; Springer: Berlin, Germany, 1992; pp. 37–52. [Google Scholar]
- Ziolo, M.; Fidanoski, F.; Simeonovski, K.; Filipovski, V.; Jovanovska, K. Business and sustainability: Key drivers for business success and business failure from the perspective of sustainable development. In Value of Failure: The Spectrum of Challenges for the Economy; Union Bridge Books: London, UK, 2017; p. 55. [Google Scholar]
- Ferasso, M.; Bares, L.; Ogachi, D.; Blanco, M. Economic and Sustainability Inequalities and Water Consumption of European Union Countries. Water 2021, 13, 2696. [Google Scholar] [CrossRef]
- Tong, X.; Wang, T.; Chen, Y.; Wang, Y. Towards an inclusive circular economy: Quantifying the spatial flows of e-waste through the informal sector in China. Resour. Conserv. Recycl. 2018, 135, 163–171. [Google Scholar] [CrossRef]
- Chi, X.; Streicher-Porte, M.; Wang, M.; Reuter, M. Informal electronic waste recycling: A sector review with special focus on China. Waste Manag. 2011, 31, 731–742. [Google Scholar] [CrossRef]
- Wong, M.H.; Wu, S.C.; Deng, W.J.; Yu, X.Z.; Luo, Q.; Leung, A.O.W.; Wong, A.S. Export of toxic chemicals–a review of the case of uncontrolled electronic-waste recycling. Environ. Pollut. 2007, 149, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Bhutta, M.K.S.; Omar, A.; Yang, X. Electronic waste: A growing concern in today’s environment. Econ. Res. Int. 2011, 8, 474230. [Google Scholar] [CrossRef]
- Tang, X.; Shen, C.; Shi, D.; Alam Cheema, S.; Khan, M.I.; Zhang, C.; Chen, Y. Heavy metal and persistent organic compound contamination in soil from Wenling: An emerging e-waste recycling city in Taizhou area, China. J. Hazard. Mater. 2010, 173, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, L.; Zhong, Y.; Ren, W.; Tobias, M.; Mu, Z.; Xue, B. An overview of e-waste management in China. J. Mater. Cycles Waste Manag. 2015, 17, 1–12. [Google Scholar] [CrossRef]
- Bertram, M.; Graedel, T.; Rechberger, H.; Spatari, S. The contemporary European copper cycle: Waste management subsystem. Ecol. Econ. 2002, 42, 43–57. [Google Scholar] [CrossRef]
- Zhang, K.; Schnoor, J.L.; Zeng, E.Y. E-waste recycling: Where does it go from here? Environ. Sci. Technol. 2012, 46, 10861–10867. [Google Scholar] [CrossRef] [PubMed]
- Heacock, M.; Kelly, C.B.; Asante, K.A.; Birnbaum, L.S.; Bergman, Å.L.; Bruné, M.-N.; Buka, I.; Carpenter, D.O.; Chen, A.; Huo, X.; et al. E-Waste and Harm to Vulnerable Populations: A Growing Global Problem. Environ. Health Perspect. 2016, 124, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liu, L.; Zhang, Y.; Tan, Q.; Li, J. An overview of global power lithium-ion batteries and associated critical metal recycling. J. Hazard. Mater. 2021, 425, 127900. [Google Scholar] [CrossRef] [PubMed]
- Shammi, M.; Rahman, M.; Ali, L.; Khan, A.S.M.; Siddique, A.B.; Ashadudzaman; Doza, B.; Alam, G.M.; Tareq, S.M. Application of short and rapid strategic environmental assessment (SEA) for biomedical waste management in Bangladesh. Case Stud. Chem. Environ. Eng. 2021, 5, 100177. [Google Scholar] [CrossRef]
- Mangindaan, D.; Adib, A.; Febrianta, H.; Hutabarat, D.J.C. Systematic Literature Review and Bibliometric Study of Waste Management in Indonesia in the COVID-19 Pandemic Era. Sustainability 2022, 14, 2556. [Google Scholar] [CrossRef]
- Kothari, R.; Sahab, S.; Singh, H.M.; Singh, R.P.; Singh, B.; Pathania, D.; Singh, A.; Yadav, S.; Allen, T.; Singh, S.; et al. COVID-19 and waste management in Indian scenario: Challenges and possible solutions. Environ. Sci. Pollut. Res. 2021, 28, 52702–52723. [Google Scholar] [CrossRef]
- Agamuthu, P.; Barasarathi, J. Clinical waste management under COVID-19 scenario in Malaysia. Waste Manag. Res. J. Sustain. Circ. Econ. 2020, 39 (Suppl. 1), 18–26. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Mustapha, K.B.; Godsell, J.; Adamu, Z.; Babatunde, K.A.; Akintade, D.D.; Acquaye, A.; Fujii, H.; Ndiaye, M.M.; Yamoah, F.A.; et al. A critical analysis of the impacts of COVID-19 on the global economy and ecosystems and opportunities for circular economy strategies. Resour. Conserv. Recycl. 2021, 164, 105169. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.M.; Kim, J.; Laratte, B. Disruption in Circularity? Impact analysis of COVID-19 on ship recycling using Weibull tonnage estimation and scenario analysis method. Resour. Conserv. Recycl. 2020, 164, 105139. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.M.; Kim, J. Circular economy, proximity, and shipbreaking: A material flow and environmental impact analysis. J. Clean. Prod. 2020, 259, 120681. [Google Scholar] [CrossRef]
- Veenstra, A.; Wang, C.; Fan, W.; Ru, Y. An analysis of E-waste flows in China. Int. J. Adv. Manuf. Technol. 2010, 47, 449–459. [Google Scholar] [CrossRef] [Green Version]
Tessier Scheme a | |||
---|---|---|---|
Stage | Operationally-Defined Phase | Reagent | Operating Conditions |
1 | Exchangeable | 8 mL of MgCl2 1 mol L−1 (pH = 7) | 1 h at 25 °C |
2 | Acid soluble | 25 mL of NaOAc 1 mol L−1 (pH = 5) | 5 h at 25 °C |
3 | Reducible | 20 mL NH2OH·HCl 0.04 mol L−1 in HOAc 25% w/w | 6 h at 96 °C |
4 | Oxidizable | 3 mL HNO3 0.02 mol L−1 + 5 mL H2O2 30% w/v | 2 h at 85 °C |
3 mL H2O2 30% w/v + | 3 h at 85 °C | ||
5 mL NH4OAc 3.2 mol L−1 | 30 min at 25 °C | ||
BCR Scheme a | |||
1 | Acid soluble | 40 mL HOAc 0.11 mol L−1 | 16 h at 25 °C |
2 | Reducible | 40 mL NH2OH·HCl 0.1 mol L−1 (pH = 2) | 16 h at 25 °C |
3 | Oxidizable | 10 mL H2O2 30% w/v (evaporation) | 1 h at 25 °C |
10 mL H2O2 30% w/v (evaporation) | 1 h at 85 °C | ||
50 mL NH4OAc 1 mol L−1 | 16 h at 25 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Bibi, S. Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability 2022, 14, 4746. https://doi.org/10.3390/su14084746
Adnan M, Xiao B, Xiao P, Zhao P, Bibi S. Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability. 2022; 14(8):4746. https://doi.org/10.3390/su14084746
Chicago/Turabian StyleAdnan, Muhammad, Baohua Xiao, Peiwen Xiao, Peng Zhao, and Shaheen Bibi. 2022. "Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future" Sustainability 14, no. 8: 4746. https://doi.org/10.3390/su14084746
APA StyleAdnan, M., Xiao, B., Xiao, P., Zhao, P., & Bibi, S. (2022). Heavy Metal, Waste, COVID-19, and Rapid Industrialization in This Modern Era—Fit for Sustainable Future. Sustainability, 14(8), 4746. https://doi.org/10.3390/su14084746