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Abstract: Aviation incident is a crucial approach for accident prevention and safety improvement. It
is of remarkable practical significance to clarify the relationship between aviation incidents and airline
capacity. In the present study, time-series analysis methods, such as cross-correlation, co-integration,
and causality analysis are employed to explore the longitudinal relationship between airline capacity
(measured by flight hours) and aviation incidents in seven different categories in China from 1994
to 2020. The obtained results indicate the existence of a substantial positive correlation between
the total number of incidents and flight hours in China’s civil aviation. Among the incidents with
various categories, there exists a remarkably positive correlation between flight hours and incidents
caused by environmental factors, ground support, and other factors. Additionally, the maximum
degree of positive correlation is detected between incidents caused by environmental factors and
flight hours. However, a negative correlation between flight hours and incidents caused by aircrew,
air traffic control, and aircraft maintenance is carefully displayed and discussed. More investigations
reveal that there would be no co-integration relationship between the total number of incidents and
flight hours. Among the incidents with different categories, a co-integration relationship between the
number of incidents caused by ground support and flight hours is also reported, demonstrating a
long-term equilibrium relationship between them. There is no Granger causality between the total
number of incidents and flight hours; nevertheless, there is a one-way Granger causality between
flight hours and incidents resulting from ground support and environmental factors. It implies that
the flight hours can be exploited to explain and predict the variations of these two categories of
incidents. This study clarifies the relationship between incidents and airline capacity from a statistical
point of view and provides a solid reference for policymakers to implement safety management.
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1. Introduction

Aviation safety is a key factor that determines the sustainable development of the civil
aviation system. Aviation accidents have a huge negative impact on economic development,
social stability, and national image [1]. Therefore, all countries, international organizations,
and aircraft manufacturers have paid great attention to the safety level of civil aviation
operations and have made great efforts to avoid aviation accidents [2]. In recent years, the
overall safety record of commercial aircraft continues to be improved [3]. According to the
statistics of the international civil aviation organization (ICAO), in 2020, only 22 accidents
of scheduled commercial transport airlines (i.e., aircraft with a weight greater than 5.7 t)
were reported, including four fatal accidents, indicating the lowest in history [4]. By the
end of 2021, China’s 121 scheduled passenger flights have operated safely without a fatal
accident for 11 years, and China’s civil aviation has established excellent safety records.

Although aviation accidents rarely occur, the rapid development of China’s air trans-
port market brings new challenges for accident prevention and safety improvement. In
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2005, China became the second-largest aviation market [5]. According to the international
aviation association, China will overtake the United States as the world’s largest aviation
market by 2024 [6]. Facing the rapid growth of airline capacity, namely the sharp increase
in flight hours and flight frequencies, the number of incidents in China’s civil aviation
presents an increasing trend year by year. In 2016, the annual number of incidents in
China’s civil aviation has exceeded 500 cases, bringing new hidden dangers to the safety
of civil aviation operations. Generally, incidents are considered as the precursors of ac-
cidents [7]. The accident pyramid model states that the control and reduction of a large
number of non-injurious events and incidents are highly required to prevent fatal and
serious accidents [8]. These events are related to the unsafe states of objects and workers’
unsafe behaviors, often identified as the source of accidents [9]. It is worth mentioning
that it is necessary to give full play to the role of the fuse of incidents in civil aviation
operation: an incident is similar to the fuse of the operation system blowing, and dealing
with incidents and learning from them is equivalent to checking the cause of system failure
and replacing the fuse. Therefore, scientific monitoring and timely dealing with incidents
can avoid further damage to the operating system in the future. Although the concept
of Safety-II points out that accidents cannot be prevented only from the accidents and
incidents that have occurred, it is necessary to take a more proactive approach to avoid
accidents, such as analyzing operation data [10]. At present, incidents are still a crucial and
effective means to prevent accidents.

From the industry level, the airline capacity is generally taken into account as a vital
factor affecting the number of incidents [11]. Given the obvious upward trend in the airline
capacity and the number of incidents in China’s civil aviation, one cannot help wondering:
what is the relationship between airline capacity and incidents? The clarification of the
relationship between the airline capacity and incidents, as well as the macrovariation
law, is a critical measure and breakthrough point for accident prevention. This issue will
surely help managers improve the foresight of accident prevention and implement more
scientific safety management. Therefore, it has very prominent practical significance for the
continuous improvement of civil aviation safety levels.

2. Literature Review

Few research works have been focused on the longitudinal variation of the number of
aviation accidents and incidents in China. As the number of aviation accidents in China is
limited and has apparent discontinuous characteristics on a time scale, it is difficult to carry
out in-depth scrutiny by statistical means. Although the number of incidents is larger, the
data collection is extremely challenging. The following is a brief overview of the research
on the law of accidents in other countries.

In the field of aviation safety, Raghavan and Rhoades [12] analyzed the relationship
between airlines’ profitability and accident rates in the US airline industry from 1955 to
2002. The regression results exhibited an inverse relationship between the profitability and
the rate of air carrier accidents, particularly for small regional air carriers.

Bazargan and Guzhva [13] collected general aviation accidents in the US within the
time interval 1983–2002 and assessed the influences of gender, age, and the experience of
pilots on general aviation accidents. The employed Chi-square tests and logistic regression
models revealed that male pilots, those older than 60 years, and with more experience,
were more likely to be involved in a fatal accident.

Di Gravio et al. [14] scrutinized the safety of the Italian air traffic management system,
the safety indices included accidents, events, and relevant issues. They exploited historical
fit, time-series analysis, and causal fit to forecast the safety performance of the air traffic
management system. The obtained results suggested that the causal fit analysis provides
the best forecasting power.

Aguiar et al. [15] analyzed the rates and causes of general aviation accidents that
occurred in mountainous terrain and high elevation terrain (MEHET) from 2001 to 2014.
By employing the Pearson chi-square test, the study indicated that the MEHET-related
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accident rate declined by 57% in the US; however, the high proportion of fatal accidents
showed little reduction, and controlled flight into terrain and wind gusts and shear were
the most frequent causes of and factor categories for MEHET-related accidents.

Gao et al. [16] examined the co-integration relationship between aviation safety reports,
traffic volume, and aviation accidents in the US throughout 1998–2019. The obtained results
proposed a significant and stable long-run relationship between the number of accidents
and the number of safety reports. Nevertheless, there is no evidence to support the inference
from the traffic volume to either the number of accidents or the number of safety reports.

Due to the frequent occurrence of accidents in other fields (i.e., road and occupational
accidents), many scholars have conducted extensive research on accident trends in these
fields, and the relationship between accidents and their associated factors has been cul-
tivated. SONG et al. [17] investigated the relationship between economic development
and occupational accidents in China from 1953 to 2008. The obtained results indicated that
there would be no causal relationship between economic scale and occupational accidents
during the planning economy period (before 1978); however, after 1979, the economic
speed considerably caused the occupational accidents fatality rate.

Yannis et al. [18] exploited mixed linear models to examine the relationship between
the GDP growth and road traffic fatalities of 27 European countries during the time interval
1975–2011. Their study revealed that the GDP per capita has positive contributions to
mortality rates and these effects are statistically significant overall, as well as in various
groups of countries. Li et al. [19] applied a dynamic time-series approach to address the
relationship between social-economic development and the number of road accidents in
Hong Kong from 1984 to 2015. The analysis confirmed a long-run relationship between
four social-economic variables, GDP, population, road network length, and private car
ownership, and road accidents frequency. Specifically, it was shown that the increase in
the population could lead to a long-run increment in road accidents, while an increase
in licensed private car ownership yields more road accidents in both short-run and long-
run terms.

As can be concluded from the above research works, time-series analysis methodolo-
gies, such as regression, co-integration analysis, and Granger causality, are employed to
scrutinize the longitudinal relationship between accidents and related factors. The incident
is a crucially developed approach to enhance operation safety [20] based on the growth
of the incidents and airline capacity. A brief literature survey indicates that a particular
empirical study on the relationship between airline capacity and incidents in China civil
aviation is not available now. In this view, the following important questions are raised:

(1) What is the relationship between airline capacity and incidents?
(2) Is there a long-term equilibrium relationship between airline capacity and incidents?

In other words, is there a co-integration relationship between them?
(3) Is there a statistical causality between airline capacity and incidents?

In line with the research questions above, this paper aims to fill these scientific gaps
by utilizing cross-correlation, co-integration, and causality analyses. The vital final goal is
to systematically explore the relationship between airline capacity and incidents in China’s
civil aviation. Since incidents have different categories, they have different causations. This
study will also reveal the statistical relationship between airline capacity and incidents
caused by various causes.

3. Data and Method
3.1. Data Description

The data used in this study are the annual airline capacity data and 6357 incidents of
China’s civil aviation from 1994 to 2020. In general, the airline capacity can be represented
by two indicators: flight frequency and flight hours. However, the CAAC did not officially
publish flight frequency data before 2005; the airline capacity data is represented by flight
hours in the present work. In addition, for China’s civil aviation, the average time of a
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single flight from 2005 to 2020 is about 2 h, and flight hours can be converted to flight
frequency according to this relationship. Flight hour data are collected from the civil
aviation industry development statistics bulletin that is published annually on the official
website of the China civil aviation administration. The incident data are collected from the
statistical analysis report of the China civil aviation safety information issued by the China
civil aviation safety office.

According to the China civil aviation incident standard, the incident is defined as an
event related to an aircraft that occurs during the aircraft operation phase or in the airport
activity area, which does not constitute an accident but may affect operation safety [21]. This
definition is consistent with that given in Annex 13 accident and incident investigation of the
international civil aviation convention [22]. Generally, aviation incidents are classified into
seven categories according to the direct causes accounting for the incident attributes and the
characteristics based on the CAAC. These are flight crew, air traffic control, maintenance,
machinery (or mechanical failure), ground support, environment, and other causes. Table 1
displays the meaning of incidents with various causes and gives illustrative examples of
typical incidents due to each cause.

Table 1. Definition of incident cause and typical incidents.

Cause Definition Typical Event

flight crew
incidents caused by human error, unskilled

operation techniques, or improper management of
crew resources.

(1) hard landing
(2) controlled flight into terrain
(3) wipe the tail and wingtips during landing
(4) wrong entry and departure procedure

air traffic control incidents caused by improper command or incorrect
instruction issued by air traffic control.

(1) the aircraft is dangerously close to the route,
less than the safety interval

(2) runway intrusion

maintenance
the maintenance does not follow the manual

requirements or incidents caused by the
wrong operation.

(1) the aircraft hit an obstacle on the ground
(2) the damage to aircraft is not

accurately detected
(3) invasion of foreign objects

machinery incidents caused by equipment failure, damage, or
failure of aircraft components

(1) engine shutdown (single engine)
(2) tire delamination or puncture
(3) fire/smoke/fire in aircraft

ground support incidents caused by imperfect airport infrastructure
and improper operation of ground vehicles

(1) aircraft rubbed against ground vehicles, such
as luggage vehicles, passenger echelon
vehicles and food vehicles

environment incidents caused by weather or unexpected factors
(1) bird strike
(2) lightning strike
(3) severe turbulence caused by airflow

other factors
incidents that cannot be directly attributable to the
above factors, or for which it is difficult to infer a

direct cause

(1) injured by unknown foreign object in
unknown operation stage

(2) incidents caused by design defects of certain
aircraft components

By the end of 2020, the China civil aviation incident standard has been revised six
times. Each version, validity period, and the number of incidents cited in the standard are
listed in Table 2. It should be noted that in each version, there exist about eighty definition
terms or examples of incidents. In the present study, the incidents are based on the effective
standard of the actual occurrence time. Therefore, during the handover period between old
and new standards, the data inevitably fluctuates.
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Table 2. The CAAC incident standard.

Version Validity Period Incidents Cited in the Standard

MH 2001–1996 January 1996–June 2004 85
MH 2001–2004 July 2004–December 2008 85

MH/T 2001–2008 January 2009–February 2012 86
MH/T 2001–2011 March 2012–February 2013 75
MH/T 2001–2013 March 2013–August 2015 78
MH/T 2001–2015 September 2015–December 2018 80
MH/T 2001–2018 January 2019–September 2021 85

Table 3 presents the descriptive statistics of flight hours and incident data. In order to
ensure that the magnitude difference between flight hours and incidents is not too large, the
unit of flight hours is taken as 104 h in the following analysis. According to Table 3, most
of the incidents, about 4032 of them, are caused by environmental factors which account
for about 63.4% of the total incidents. The numbers of incidents caused by machinery and
flight crew in order are 781 and 732, accounting for about 12.3% and 11.5%. The number of
incidents caused by ground support, other causes, maintenance, and air traffic control is
less than 500. Additionally, the minimum value of incidents caused by air traffic control,
maintenance, and other reasons is equal to zero, indicating the discontinuous characteristics
of the aforementioned incidents on the annual scale.

Table 3. Descriptive statistics of various variables.

Variable Abbreviation of the Variable Min Max Mean Median Sum Standard Deviation

flight hours fh 69.5 1231 467.1 368.9 12,612 362.2
incidents inci 93 599 235.4 133 6357 171.8

incidents caused by flight crew inci_fc 16 55 27.1 23 732 10.4
incidents caused by air traffic control inci_atc 0 12 3.6 2 97 2.9

incidents caused by maintenance inci_mt 0 10 4.2 4 112 3.1
incidents caused by machinery inci_mc 11 50 28.9 28 781 9.3

incidents caused by ground support inci_gs 3 33 11.3 9 306 9.0
incidents caused by environmental factors inci_en 15 493 149.3 58 4032 161.6

incidents caused by other causes inci_oth 0 35 11.0 4 297 12.1

Note: the unit of flight hours is 104 h.

The time-series plots of the flight hours and incidents are provided in Figure 1. The
demonstrated graphs can more intuitively present the changing trends and characteristics
of flight hours and incidents in the time dimension.

It can be seen from Figure 1a,b that the flight hours (fh) and incidents (inci) generally
show an upward trend. In particular, the incidents before 2017 show an exponential trend
and then decrease in 2018 and after, which reflects that the safety situation of China’s civil
aviation has improved. This is because the number of incidents is sometimes affected by
factors other than airline capacity. In May 2018, a non-fatal aviation incident occurred
in China that shocked the whole country. Sichuan Airlines flight 3U8633 was en route
in a high altitude area, when the front windshield of the cockpit suddenly ruptured,
causing the co-pilot to be sucked out of the cockpit and the aircraft cabin to lose pressure.
Fortunately, no one was killed on this flight. After this incident, CAAC immediately
invested a lot of effort to improve flight safety, strictly reduce operational risks in harsh
environments, and improve flight personnel’s operational skills under adverse weather
conditions and environmental disturbances. Therefore, 2018 became a pivot point for the
number of incidents.

From Figure 1c–i, it can be seen that all the incidents with different causes, except the
environmental factors, show apparent fluctuation characteristics. The incidents produced
by environmental factors accounted for a large proportion compared with incidents of
other causes. Therefore, the variation trend of this type of incident is similar to that of
the total number of incidents. The incidents caused by the crew, air traffic control, and
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maintenance generally demonstrate a downward trend; however, the trend of incidents
caused by mechanical reasons is not obvious. Further, the incidents generated by ground
support and other reasons exhibit an upward trend.
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3.2. Statistical Methods

In order to analyze the relationship between flight hours and incidents more compre-
hensively, it is necessary to exploit a variety of statistical methods to assess the time series of
flight hours and incidents based on various analysis perspectives. The macro-relationship
between flight hours and incidents in China’s civil aviation can be analyzed from three
aspects: cross-correlation, co-integration, and the causality relationship. The flight hours,
incidents, and incidents caused by environmental factors all have a similar exponential
variation trend. The current mainstream statistical analysis methods are more often applied
to linear models to describe the relationship between variables. Therefore, herein, natural
logarithms are taken into account for all data to linearize the nonlinear variation trend.

3.2.1. Cross-Correlation

The cross-correlation is based on Pearson’s correlation coefficient [23] to describe the
correlation between two time-series data with different time lag lengths. For two time
series x(t) and y(t) with the same length T where 1 < t < T, the cross-correlation coefficient
Cor(x(t − d), y(t)) between y(t) and x(t − d) with the time lag d is defined by:

Cor(x(t − d), y(t)) =
∑T

t =1[(x(t − d)− mx)× (y(t)− my)]√
∑T

t =1(x(t − d)− mx)2 ×
√

∑T
t =1(y(t)− my)2

(1)

where mx and my represent the mean values of the corresponding time series. If t − d < 0,
the value of x(t − d) would be equal to zero. In the present study, x(t) corresponds to lnfh(t),
y(t) corresponds to lninci(t), lninci_fc(t), . . . , lninci_oth(t). The lag length values of x(t) (i.e.,
d) is 0, 1, . . . , 6, respectively.

The value of the cross-correlation coefficient is between +1 and −1, and the correlation
coefficient symbol represents the change direction between the two variables. The positive



Sustainability 2022, 14, 4999 7 of 16

correlation coefficient indicates that the change direction of the two variables is the same,
and the negative correlation coefficient represents the opposite direction of the consisting
variables. The larger the absolute value of the correlation coefficient, the higher the linear
correlation between the two variables. Additionally, if the corresponding value of d is not
equal to 0 when Cor(x(t − d), y(t)) reaches the maximum value, it indicates that x(t) has a
leading relationship to y(t). It implies that the current x(t) is more related to y(t + d) with
lag length d.

3.2.2. Engle–Granger Co-Integration Test

As most of the macroscopic variables associated with the socio-economic system are
non-stationary, we will arrive at the spurious-regression problem for the regression model.
Therefore, co-integration has become a powerful approach to examining non-stationary
time series. Generally, if two or more non-stationary time series can be transformed into
stationary time series through some linear combinations, it denotes that there exists a co-
integration relationship between these non-stationary time series [24]. The co-integration
means that there is a long-term equilibrium relationship between time series, and the
regression results between them have high reliability.

It should be noticed that the co-integration test requires that the under-analyzed
time series have the same order of integration (i.e., the non-stationary time series can be
transformed into stationary time series after the difference processing with the same order).
Therefore, first of all, the stationary and integration order of time series should be identified
by the unit root test. The most commonly applied unit root test is the Dickey–Fuller (DF)
test [25] and the augmented Dickey–Fuller (ADF) test. The null hypothesis of the ADF
test is that the time series has a unit root (i.e., the series is non-stationary). If the null
hypothesis is rejected, the series can be considered as stationary. The ADF test contains
three test models, which in order are marked as None, Intercept, and Trend, as presented in
Equations (2)–(4). Three models are exploited to test the time series, and an optimal test
model can be selected according to the sequential t rule or AIC information criterion.

∆xt = γxt −1 +

p

∑
i =1

ϕi∆xt − i + εt (2)

∆xt = α+ γxt −1 +

p

∑
i =1

ϕi∆xt − i + εt (3)

∆xt = α+ βt + γxt −1 +

p

∑
i =1

ϕi∆xt − i + εt (4)

The Engle–Granger co-integration test [24] is generally utilized to test the co-integration
relationship between two time series with the same order of integration. Compared with
another co-integration test, the Johansen co-integration rank test [26], the Engle–Granger
co-integration test is more suitable for small samples. The basic steps of the Engle–Granger
co-integration test are commonly divided into two steps:

(1) The linear regression model between independent and dependent variables is es-
tablished by the least square method. In the present scrutiny, the only independent
variable is lnfh, and the dependent variables are lninci, lninci_fc, . . . , lninci_oth.

(2) The ADF test is carried out on the residual sequence of the regression model.

If the residual sequence is stationary, it can be considered that there exists a co-
integration relationship between the two variables. According to the null hypothesis of
the Engle–Granger co-integration test, if prob < 0.1, it can be considered that there is a
co-integration relationship between the two variables at the 10% significance level.
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3.2.3. Toda and Yamamoto (1995) Causality Test

Generally, statistical causality refers to Granger causality [27]. X is said to Granger-
cause Y if Y can be better predicted using the histories of both X and Y than that based on
the history of Y alone. The null hypothesis of the Granger causality test is that X is not the
Granger-cause of Y.

A prerequisite for performing the Granger causality test is that the time series should
be stationary. For non-stationary time series, it is generally necessary to transform the time
series into stationary series by differential processing and then perform the Granger causal-
ity test. Since the meaning of time series is considerably different after differentiating, the
persuasiveness of the causal test on difference series may lessen. Toda and Yamamoto [28]
proposed a simple but robust Granger causality test method on the basis of the vector
autoregressive (VAR) model. This approach relaxes the restriction on the stationarity of
time series and can construct a VAR-based model for the causality test on the time series
integrated of arbitrary order.

A general VAR(p) model without adding exogenous variables can be stated as:

yt = α+∑p

i =1
Aiyt − i + εt (5)

where yt represents a variable composed of endogenous variables. In the present study,
eight VAR-based models are constructed, in which the values of yt in order are set to
(lnfh,lninci), (lnfh,lninci_fc), . . . , (lnfh,lninci_oth) for these suggested models; α denotes a
intercept vector; Ai represents the parameter matrix of lagged variable yt − i with ith order,
and εt denotes the corresponding error vector of yt.

Herein, the steps of the causality test proposed by Toda and Yamamoto can be briefly
stated as:

(1) Determine the integration order of all the time series in the VAR system. Record the
highest integration order as n. In the present study, we set n = 1 (see Section 3.2).

(2) Select a larger lag order, which is set equal to 6 in this work, and the VAR model is
established by the level value of the time series.

(3) According to the information criteria (such as AIC, FPPE, SBIC, and HQIC) and the
obtained results of the residuals auto-correlation test, the optimal lag order p of the
VAR-based model can be determined, and the stability of the characteristic roots of
the VAR(p)-based models can be tested.

(4) Establish the VAR model with the lag order of (p + n), and the additional nth order
lag quantity is taken as an exogenous variable.

(5) Granger causality test is performed on the VAR model of order (p + n). In this step,
the additional n lag coefficients should be ignored.

4. Results
4.1. Cross-Correlation between Flight Hours and Incidents

The correlation between the flight hours and the total number of incidents, as well
as incidents with seven categories, should be systematically assessed. To this end, the
obvious lag effects of flight hours on incidents with different categories are analyzed,
and the corresponding cross-correlation diagrams have been demonstrated in Figure 2.
The abscissa of the consisting subfigures in Figure 2 represents flight hours with various
lag lengths, and the maximum lag length is set equal to 6. Figure 2 clearly displays the
correlation between the total number of incidents, the incidents with seven categories, and
flight hours at different lag lengths. It implies that the total incidents as well as the incidents
with seven categories are more related to the flight hours at lag 0. The contemporaneous
correlations are larger than the correlations at lags. Therefore, more attention should be
paid to the variable correlation in the current period.
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In general, if the absolute value of the correlation coefficient is higher than 0.5, it can
be rationally considered that there exists a significant correlation between the variables.
From Figure 2b, the correlation coefficient between lninci and lnfh is +0.849, and the
apparent positive correlation indicates that the change trend between them is the same.
The correlations between incidents with different causes and flight hours are then analyzed
carefully. The factors lninci_gs, lninci_en, and lninci_oth are all positively correlated with
lnfh, among which the correlation coefficient between lninci_en and lnfh is the highest,
whose corresponding value would be 0.964 (see Figure 2g). The correlations between
lninci_fc, lninci_atc, lninci_mt, and lnfh are meaningfully negative, which are obtained
as −0.668, −0.685 and −0.617, respectively. The obtained results clarify that the change
trend of these three category incidents is opposite to that of flight hours. The correlation
coefficient between lninci_mc and lnfh is only −0.484; however, the negative correlation is
not obvious.

4.2. The Co-Integration between Flight Hours and Incidents

Before performing the co-integration test, it is necessary to test the unit root or station-
ary of each variable since the premise of the co-integration test is that the variable should
be integrated with the same order. Table 4 shows the results of the ADF unit root test. It
is worth mentioning that the level value of lninci_mc rejects the null hypothesis at the
significance level of 5%, that is, lninci_mc is a stationary process without a unit root. The
level value of lninci_gs also rejects the null hypothesis at a 5% significance level, but the
test model contains trend items, and lninci_gs is not stationary. All the other variables
cannot reject the null hypothesis at the significance level of 10%, showing that the time
series contains unit roots and is non-stationary.
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Table 4. The ADF unit root test results on the understudy variables.

Variables Test Model T-Statistic Prob Stability

Level

lnfh Drift, lag(0) −2.118 0.240 Non-stationary
lninci Trend, lag(0) −1.871 0.640 Non-stationary

Lninci_fc Drift, lag(0) −2.353 0.164 Non-stationary
lninci_atc None, lag(1) −1.409 0.143 Non-stationary
lninci_mt Drift, lag(0) −3.096 ** 0.046 Stationary
lninci_mc Trend, lag(5) −3.120 0.125 Non-stationary
lninci_gs Trend, lag(6) −3.970 ** 0.028 Non-stationary
lninci_en Trend, lag(0) −2.369 0.386 Non-stationary
lninci_oth Drift, lag(0) −1.560 0.483 Non-stationary

First
difference

dlnfh None, lag(0) −1.733 * 0.079 Stationary
dlninci None, lag(0) −3.012 *** 0.004 Stationary

dlninci_fc None, lag(0) −6.988 *** 0.000 Stationary
dlninci_atc None, lag(0) −9.179 *** 0.000 Stationary
dlninci_mt None, lag(1) −5.801 *** 0.000 Stationary
dlninci_mc None, lag(0) −7.806 *** 0.000 Stationary
dlninci_gs Drift, lag(6) −2.663 * 0.099 Stationary
dlninci_en Drift, lag(0) −7.399 *** 0.000 Stationary
dlninci_oth None, lag(0) −2.981 *** 0.005 Stationary

Note: The markers ***, **, and * denote the significance at 1%, 5%, and 10%, respectively.

After performing the first-order difference on all variables, the ADF test is performed
again. All variables reject the null hypothesis within the 10% significance level. It is
indicating that the first-order differences of lninci, lninci_fc, lninci_atc, lninci_mt, lninci_gs,
and lninci_oth are all stationary.

According to the obtained results of correlation analysis in Section 3.1, there exists a
significant negative correlation between lnfh and the variables lninci_fc, lninci_atc, and
lninci_mt. Logically, the reduction in lninci_fc, lninci_atc, and lninci_mt should not be
attributed to the growth of flight hours. Therefore, the significant negative correlation
between lnfh and the abovementioned three dependent variables is expected to be a
spurious correlation, and it is meaningless to perform the co-integration test. Table 5
summarizes the Engle–Granger co-integration test results of lnfh as well as lninci, lninci_gs,
lninci_en, and lninci_oth.

Table 5. The Engle–Granger co-integration test results.

Regression Residual Stationarity Test

Equation Variable Coefficient Std. Error T-Statistic Prob Tau-Statistic Prob Co-Integration

lninci lnfh 0.629 *** 0.121 5.190 0.000 −1.466 0.777 None
C 1.634 ** 0.719 2.274 0.032

lninci_gs lnfh 0.813 *** 0.102 7.976 0.000 −5.597 *** 0.000 Exist
C −2.590 *** 0.604 −4.289 0.000

lninci_en lnfh 1.271 *** 0.106 11.933 0.000 −2.456 0.324 None
C −2.957 *** 0.631 −4.689 0.000

lninci_oth lnfh 1.452 *** 0.239 6.080 0.000 −3.104 0.121 None
C −6.862 *** 1.415 −4.851 0.000

Note: *** and ** denote significance at 1% and 5% respectively.

The Engle–Granger co-integration test can be divided into two steps. In the first
step, lnfh is taken as an independent variable to conduct the regression on the dependent
variable. The second step is to test the stationarity of the regression residual. If the residual
is stationary, there would exist a co-integration relationship between the two variables.
As displayed in Table 4, the significance level of the coefficient of lnfh in the given four
regression equations is less than 1%. In the regression equation with lninci as the dependent
variable, the constant term C represents 5% significance, and the significance level of the
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constant term in the other three regression equations is less than 1%. The parameters
lnfh and C are taken as independent variables to conduct the regression on lninci_gs,
and the standard errors of the regression coefficient are fairly small, which are 0.102 and
0.604, respectively. Through the ADF test of the regression residual, it is found that the
regression residual corresponding to lninci_gs would be stable at the significance level
of 1%. Therefore, there is a co-integration relationship between lninci_gs and lnfh. The
regression residuals corresponding to lninci, lninci_en, and lninci_oth cannot reject the null
hypothesis at the level of 10% significance; hence, there is no co-integration relationship
between lninci, lninci_en, lninci_oth, and lnfh.

The obtained results show that there is a co-integration relationship between lninci_gs
and lnfh, which means that there is a long-term equilibrium relationship between incidents
caused by the ground support and flight hours. Therefore, flight hours can be exploited as
a crucial factor to predict incidents caused by ground support. The regression equation
between lninci_gs and lnfh is also known as a co-integration equation. According to
this relation, lnfh increases about 0.813% when lninci_gs increases by 1%. As there is no
co-integration relationship between lninci, lninci_en, lninci_oth, and lnfh, the regression
equation between these variables and lnfh will not be reliable, and the prediction and
interpretation capability of the regression coefficients in their corresponding equations
cannot be guaranteed.

4.3. Casual Relation between Flight Hours and Incidents

The bivariate VAR models between lninci, lninci_fc, lninci_atc, lninci_mt, lninci_mc,
lninci_gs, lninci_en, lninci_oth, and lnfh are appropriately established. According to the
AIC, FP, HQIC, SBIC, and other information criteria, the optimal lag order of the eight
VAR-based models is set equal to 1. Additionally, the Portmanteau test [29] results indicate
that the residuals of the VAR (1) models are not subject to serial auto-correlation. The
stability of the VAR model is tested, revealing that VAR (1) models satisfy the eigenvalue
stability condition.

Based on the test method proposed by Toda and Yamamoto [28], one additional lag
(n = 1) to VAR (1) models is added, and the Wald test is utilized to check (non-) Granger
causalities. The results of the Toda and Yamamoto causality test have been summarized in
Table 6.

Table 6. The predicted results by Toda and Yamamoto (1995) causality test.

Null Hypothesis Chi2 Df Prob

lnfh does not Granger-cause lninci 0.066 1 0.797
lninci does not Granger-cause lnfh 0.114 1 0.735

lnfh does not Granger-cause lninci_fc 0.065 1 0.798
lninci_fc does not Granger-cause lnfh 0.671 1 0.413
lnfh does not Granger-cause lninci_atc 2.401 1 0.121
lninci_atc does not Granger-cause lnfh 0.221 1 0.639
lnfh does not Granger-cause lninci_mt 1.246 1 0.264
lninci_mt does not Granger-cause lnfh 0.023 1 0.878
lnfh does not Granger-cause lninci_mc 1.211 1 0.271
lninci_mc does not Granger-cause lnfh 0.200 1 0.655
lnfh does not Granger-cause lninci_gs 3.581 * 1 0.058
lninci_gs does not Granger-cause lnfh 1.217 1 0.270
lnfh does not Granger-cause lninci_en 2.809 * 1 0.094
lninci_en does not Granger-cause lnfh 0.007 1 0.936
lnfh does not Granger-cause lninci_oth 1.405 1 0.236
lninci_oth does not Granger-cause lnfh 0.020 1 0.887

Note: * denote significance at 10%, respectively.

As shown in Table 6, we can reject the null hypothesis of lnfh that does not Granger-
cause lninci_gs and lninci_en at the significance levels of 5.8% and 9.4%, respectively. It
indicates that there exists a unidirectional causality from flight hours to incidents caused
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by the ground support or the environment factor. Table 6 also displays that there is
no statistical causal relationship between flight hours and the total number of incidents.
Further, there is no causal relationship between the flight hours and incidents caused by the
crew, air traffic control, aircraft maintenance, machinery, and other reasons. The Granger
causality basically represents a statistical causality. The causality test results indicate that
the capability of predicting the number of occurred incidents due to the ground support
and environmental factors can be remarkably enhanced by employing the historical data
of flight hours. For the total number of incidents and the number of incidents associated
with the other five causes, flight hours cannot help to explain the increasing trend. In
other words, flight hours used to explain and predict the total number of incidents and the
number of incidents pertaining to the other five causes would be unreliable.

5. Discussion

There is an exciting finding in the cross-correlation analysis. Generally speaking,
we intuitively assume that the more flight hours, the more the number of incidents with
different causation. It means that there is a positive correlation between flight hours
and incidents with different causation. However, the correlation between the number of
incidents due to the crew, air traffic control, maintenance, and flight hours is considerably
negative, indicating that an increase in the flight hours might lead to a reduction in the
number of incidents caused by the crew, air traffic control, and maintenance. The civil
aviation operation system is a complex man-made system, and this negative correlation
reflects the strong intervention of civil aviation authorities on operation safety. The civil
aviation administration of China has invested a lot of effort in skills training and safety
education for front-line operators, and implemented strict safety management in the whole
process of operation. Thus, in the whole industry, the caused incidents due to human
factors of front-line operators have been effectively controlled and reduced. There is a
significant positive correlation between the incidents caused by the other four causes and
the flight hours. For instance, for the highest positive correlation between the incidents
caused by the environment and the flight hours, a value of 0.964 is observed. Therefore, in
the face of the increase in flight hours, it is necessary to pay more attention to the incidents
caused by environmental factors and prevent and control the number of such incidents.

The co-integration test results show that there is a long-term equilibrium relationship
between incidents caused by the ground support and flight hours such that the regression
residual between them is stationary. Additionally, the co-integration relationship between
the two variables can be understood from a more intuitive perspective, that is, through
regression and residual plots. The scatter diagrams of lninci, lninci_gs, lninci_en, lninci_oth,
and lnfh are plotted, and the corresponding regression lines are added to the plots (see
Figure 3). It is observable in Figure 3c that lninci_en and lnfh demonstrate a very significant
linear trend, and the regression line has the highest fitting degree, followed by that of
lninci_gs, lninci_oth, and lninci. However, as displayed in Figure 4c, the regression residual
corresponding to lninci_en presents a down and then uptrend, which does not satisfy the
characteristics of the stationary sequence. Similarly, the residual plots corresponding to
lninci_oth and lninci cannot pass the stationarity test because of their obvious trends. The
regression residual graph associated with lninci_gs is stable near zero (see Figure 4b), which
meets the requirement of stationarity. Therefore, the conclusion of the co-integration test
was rationally verified by the residual diagrams.

The stationarity of regression residuals also indicates some new enlightenment. The
unstable regression residual between lninci, ninci_en, lninci_oth, and lnfh indicates that
there may be a problem with missing variables in their regression model. For some
categories of incidents, their corresponding numbers are not only related to the airline
capacity (flight hours in this study), but also directly affected by other macro variables, such
as the safety input of civil aviation authorities. In the follow-up study, if the macro variables
that affect the number of incidents in each year can be effectively quantified to establish a
multivariable system including incidents, airline capacity, and related macro factors, the
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residual of their regression model may be stable, resulting in a co-integration relationship.
Through the study of the co-integration relationship, a more accurate prediction of the
number of incidents can be achieved to carry out a forward-looking layout of the accident
prevention work.

Sustainability 2022, 14, x FOR PEER REVIEW 13 of 17 
 

 

aviation operation system is a complex man-made system, and this negative correlation 
reflects the strong intervention of civil aviation authorities on operation safety. The civil 
aviation administration of China has invested a lot of effort in skills training and safety 
education for front-line operators, and implemented strict safety management in the 
whole process of operation. Thus, in the whole industry, the caused incidents due to 
human factors of front-line operators have been effectively controlled and reduced. There 
is a significant positive correlation between the incidents caused by the other four causes 
and the flight hours. For instance, for the highest positive correlation between the inci-
dents caused by the environment and the flight hours, a value of 0.964 is observed. 
Therefore, in the face of the increase in flight hours, it is necessary to pay more attention 
to the incidents caused by environmental factors and prevent and control the number of 
such incidents. 

The co-integration test results show that there is a long-term equilibrium relation-
ship between incidents caused by the ground support and flight hours such that the re-
gression residual between them is stationary. Additionally, the co-integration relation-
ship between the two variables can be understood from a more intuitive perspective, that 
is, through regression and residual plots. The scatter diagrams of lninci, lninci_gs, 
lninci_en, lninci_oth, and lnfh are plotted, and the corresponding regression lines are 
added to the plots (see Figure 3). It is observable in Figure 3c that lninci_en and lnfh 
demonstrate a very significant linear trend, and the regression line has the highest fitting 
degree, followed by that of lninci_gs, lninci_oth, and lninci. However, as displayed in 
Figure 4c, the regression residual corresponding to lninci_en presents a down and then 
uptrend, which does not satisfy the characteristics of the stationary sequence. Similarly, 
the residual plots corresponding to lninci_oth and lninci cannot pass the stationarity test 
because of their obvious trends. The regression residual graph associated with lninci_gs 
is stable near zero (see Figure 4b), which meets the requirement of stationarity. Therefore, 
the conclusion of the co-integration test was rationally verified by the residual diagrams. 

 
Figure 3. The scatter diagrams and regression lines: (a) (lninci, lnfh), (b) (lninci_gs, lnfh), (c) 
(lninci_en, lnfh) and (d) (lninci_oth, infh). 

Figure 3. The scatter diagrams and regression lines: (a) (lninci, lnfh), (b) (lninci_gs, lnfh), (c) (lninci_en,
lnfh) and (d) (lninci_oth, infh).

Sustainability 2022, 14, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 4. The residual diagrams of the regression model: (a) (lninci, lnfh), (b) (lninci_gs, lnfh), (c) 
(lninci_en, lnfh) and (d) (lninci_oth, lnfh). 

The stationarity of regression residuals also indicates some new enlightenment. The 
unstable regression residual between lninci, ninci_en, lninci_oth, and lnfh indicates that 
there may be a problem with missing variables in their regression model. For some cat-
egories of incidents, their corresponding numbers are not only related to the airline ca-
pacity (flight hours in this study), but also directly affected by other macro variables, 
such as the safety input of civil aviation authorities. In the follow-up study, if the macro 
variables that affect the number of incidents in each year can be effectively quantified to 
establish a multivariable system including incidents, airline capacity, and related macro 
factors, the residual of their regression model may be stable, resulting in a co-integration 
relationship. Through the study of the co-integration relationship, a more accurate pre-
diction of the number of incidents can be achieved to carry out a forward-looking layout 
of the accident prevention work. 

In the analysis of the causality relationship between incidents and flight hours, it is 
noted that there is no statistical causality relationship between the total number of inci-
dents and flight hours. The one-way causal relationship only exists between flight hours 
and incidents caused by environments and ground support. This is a very important 
finding because, for the fast-growing aviation market of CAAC, both managers and re-
searchers are always easy to attribute the rising trend of incidents directly to the growth 
of airline capacity. Determining the causality relationship is a complex process. Correct 
and reliable causality needs to be verified by both logical reasoning and statistical data. In 
the case of the increase in airline capacity (flight hours) and the number of incidents, the 
number of incidents is affected by many factors. Thus, it is not comprehensive and rea-
sonable to attribute the growth of incidents only to the growth of airline capacity. As 
flight hours are the Granger-cause of incidents caused by ground support and environ-
mental factors, in the face of the increase in flight hours, policymakers should pay special 
attention to the high trend of these two categories of incidents, and do their best in pre-
venting incidents and accidents. 

6. Conclusions 
Through the time-series analysis method, this paper reveals the cross-correlation, 

co-integration and causality relationship between aviation incidents and airline capacity 
in China from 1994 to 2020. 

Figure 4. The residual diagrams of the regression model: (a) (lninci, lnfh), (b) (lninci_gs, lnfh),
(c) (lninci_en, lnfh) and (d) (lninci_oth, lnfh).

In the analysis of the causality relationship between incidents and flight hours, it is
noted that there is no statistical causality relationship between the total number of incidents
and flight hours. The one-way causal relationship only exists between flight hours and
incidents caused by environments and ground support. This is a very important finding
because, for the fast-growing aviation market of CAAC, both managers and researchers
are always easy to attribute the rising trend of incidents directly to the growth of airline
capacity. Determining the causality relationship is a complex process. Correct and reliable
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causality needs to be verified by both logical reasoning and statistical data. In the case
of the increase in airline capacity (flight hours) and the number of incidents, the number
of incidents is affected by many factors. Thus, it is not comprehensive and reasonable to
attribute the growth of incidents only to the growth of airline capacity. As flight hours are
the Granger-cause of incidents caused by ground support and environmental factors, in
the face of the increase in flight hours, policymakers should pay special attention to the
high trend of these two categories of incidents, and do their best in preventing incidents
and accidents.

6. Conclusions

Through the time-series analysis method, this paper reveals the cross-correlation,
co-integration and causality relationship between aviation incidents and airline capacity in
China from 1994 to 2020.

The cross-correlation analysis indicates that the incidents are more related to the
number of flight hours in the current period, that is, historical capacity conditions do not
affect the current number of incidents. There is a significant positive correlation between
the total number of incidents and flight hours, that is, there is a co-directional relationship
between their variations. Among the incidents of various causes, there is a significant
positive correlation between the incidents caused by environmental factors, ground support,
other factors, and flight hours. The obtained results indicate that the maximum positive
correlation between incidents caused by environmental factors and flight hours is observed.
Therefore, as the number of flight hours increases, specific attention should be paid to
controlling the number of such incidents. There is an apparent negative correlation between
the number of incidents caused by the crew, air traffic control, aircraft maintenance, and
the number of flight hours. Such a fact reflects that the CAAC has achieved remarkable
results in the operation safety work in terms of human factors.

The co-integration analysis shows that there would be no co-integration relationship
between the total number of incidents and flight hours. Among the incidents of various
causes, the highest co-integration relationship is only observed between the incidents
caused by the ground support and flight hours, indicating a long-term equilibrium rela-
tionship. The stationarity of the regression residual in the co-integration test shows that
there is a problem of missing variables in the regression model between the total number
of incidents or incidents caused by environmental factors, or other factors, and flight hours.
As a result, it is necessary to introduce relevant macro variables, such as safety input into
the co-integration regression, to find the co-integration relationship. The co-integration
relationship is helpful in accurately predicting all kinds of incidents and achieving the
forward-looking layout of accident prevention.

The causality analysis shows that there is no Granger causality between the total
number of incidents and flight hours. Among the incidents of different causes, only the
incidents caused by ground support and environmental factors have a one-way causal
relationship with flight hours. It suggests that the historical data of flight hours can be
employed to interpret and predict these two incidents. Therefore, when the number of
flight hours shows an increasing trend, more attention should be paid to the high incidence
of incidents caused by ground support and environmental factors, and accident prevention
should be accomplished.

The incident is a crucial approach to preventing accidents and enhancing safety. By
examining the longitudinal relationship between incidents and flight hours, this study
may have a particular guiding significance for safety management at the industry level.
The correlation, co-integration, and causality analysis can clarify the relationship between
incidents and their influencing factors, so as to provide solid references for policymakers to
implement scientific safety management.

There are strengths and limitations in the present scrutiny, suggesting the future
research path. In terms of the number of incidents, in addition to the most important factor
of airline capacity, the safety investment of airlines and the supervision of civil aviation
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authorities also have a certain influence on the number of incidents. However, due to
the availability of data, the analysis of such factors was not included in this study. For
complex civil aviation systems, these factors will be considered in future studies, leading to
providing accurate data support for civil aviation safety management.
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