Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Approach to the Problem
2.2. Sample
2.3. Instruments
2.4. Procedures
2.4.1. Load Determination
2.4.2. Warm-Up
2.4.3. Dynamic Evaluation
2.4.4. Isometric Force Measurements
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kraemer, W.J.; Ratamess, R.A. Fundamentals of resistance training: Progression and exercise prescription. Med. Sci. Sports Exerc. 2004, 36, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fi tness. A review of the acute programme variables. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Spiering, B.A.; Kraemer, W.J.; Anderson, J.M.; Armstrong, L.E.; Nindl, B.C.; Volek, J.S.; Maresh, C.M. Resistance exercise biology. Manipulation of resistance exercise programme variables determines the responses of cellular and molecular signaling pathways. Sports Med. 2008, 38, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Fleck, S.J.; Deschenes, M. A review: Factors in exercise prescription of resistance training. Strength Cond. J. 1988, 10, 36–41. [Google Scholar] [CrossRef]
- Fry, A.C. The role of resistance exercise intensity on muscle fi bre adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Drinkwater, E.J.; Lawton, T.W.; McKenna, M.J.; Lindsell, R.P.; Hunt, P.H.; Pyne, D.B. Increased number of forced repetitions does not enhance strength development with resistance training. J. Strength Cond. Res. 2007, 21, 841–847. [Google Scholar]
- Folland, J.P.; Irish, C.S.; Roberts, J.C.; Tarr, J.E.; Jones, D.A. Fatigue is not a necessary stimulus for strength gains during resistance training. Br. J. Sports Med. 2002, 36, 370–374. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Ibañez, J.; González-Badillo, J.J.; Häkkinen, K.; Ratamess, N.A.; Kraemer, W.J.; French, D.N.; Eslava, J.; Altadill, A.; Asiain, X.; et al. Differential effects of strength training leading to failure versus not to failure on hormonal responses, strength, and muscle power gains. J. Appl. Physiol. 2006, 100, 1647–1656. [Google Scholar] [CrossRef]
- Stone, M.H.; Chandler, T.J.; Conley, M.S.; Kramer, J.B.; Stone, M.E. Training to muscular failure: Is it necessary? Strength Cond. J. 1996, 18, 44–48. [Google Scholar] [CrossRef]
- Stone, M.H.; Plisk, S.S.; Stone, M.E.; Schilling, B.K.; O’Bryant, H.S.; Pierce, K.C. Athletic performance development: Volume load. One set vs. multiple sets, training velocity and training variation. Strength Cond. J. 1998, 20, 22–31. [Google Scholar] [CrossRef]
- Loturco, I.; Pereira, L.A.; Abad, C.C.; Tabares, F.; Moraes, J.E.; Kobal, R.; Kitamura, K.; Nakamura, F.Y. Bar velocities capable of optimising the muscle power in strength-power exercises. J. Sports Sci. 2017, 35, 734–741. [Google Scholar] [CrossRef] [PubMed]
- Guerra, I.; Aidar, F.J.; Greco, G.; de Almeida-Neto, P.F.; De Candia, M.; de Araújo Tinoco Cabral, B.G.; Poli, L.; Filho, M.M.; Carvutto, R.; Silva, A.F.; et al. Are sEMG, Velocity and Power Influenced by Athletes’ Fixation in Paralympic Powerlifting? Int. J. Environ. Res. Public Health 2022, 19, 4127. [Google Scholar] [CrossRef] [PubMed]
- Aidar, F.J.; Clemente, F.M.; de Lima, L.F.; de Matos, D.G.; Ferreira, A.R.P.; Marçal, A.C.; Moreira, O.C.; Bulhões-Correia, A.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; et al. Evaluation of Training with Elastic Bands on Strength and Fatigue Indicators in Paralympic Powerlifting. Sports 2021, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Winckler, C.; Santos, W.L.; Kobal, R.; McGuigan, M. Load–velocity relationship in national paralympic powerlifters: A case study. Int. J. Sports Physiol. Perform. 2019, 14, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Kobal, R.; McGuigan, M.R. Power output in traditional and ballistic bench press in elite athletes: Influence of training background. J. Sports Sci. 2019, 37, 277–284. [Google Scholar] [CrossRef] [PubMed]
- International Paralympic Comitê (IPC). Sports. Available online: https://www.paralympic.org/sports (accessed on 5 October 2020).
- Mendonça, T.P.; Aidar, F.J.; Matos, D.G.; Souza, R.F.; Marçal, A.C.; Almeida-Neto, P.F.; Cabral, B.G.; Garrido, N.D.; Neiva, H.P.; Marinho, D.A.; et al. Force production and muscle activation during partial vs. full range of motion in Paralympic Powerlifting. PLoS ONE 2021, 16, e0257810. [Google Scholar] [CrossRef]
- Teles, L.J.L.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Almeida-Neto, P.F.; Neves, E.B.; Moreira, O.C.; Ribeiro Neto, F.; Garrido, N.D.; Vilaça-Alves, J.; et al. Static and Dynamic Strength Indicators in Paralympic Power-Lifters with and without Spinal Cord Injury. Int. J. Environ. Res. Public Health 2021, 18, 5907. [Google Scholar] [CrossRef]
- Santos, W.Y.H.D.; Aidar, F.J.; Matos, D.G.; Van den Tillaar, R.; Marçal, A.C.; Lobo, L.F.; Marcucci-Barbosa, L.S.; Machado, S.D.C.; Almeida-Neto, P.F.; Garrido, N.D.; et al. Physiological and Biochemical Evaluation of Different Types of Recovery in National Level Paralympic Powerlifting. Int. J. Environ. Res. Public Health 2021, 18, 5155. [Google Scholar] [CrossRef]
- Sanchez-Medina, L.; Perez, C.E.; Gonzalez-Badillo, J.J. Importance of the propulsive phase in strength assessment. Int. J. Sports Med. 2010, 31, 123–129. [Google Scholar] [CrossRef]
- Willick, S.E.; Cushman, D.M.; Blauwet, C.A.; Emery, C.; Webborn, N.; Derman, W.; Schwellnus, M.; Stomphorst, J.; Van de Vliet, P. The epidemiology of injuries in powerlifting at the London 2012 Paralympic Games: An analysis of 1411 athlete-days. Scand. J. Med. Sci. Sports 2016, 26, 1233–1238. [Google Scholar] [CrossRef] [Green Version]
- Jarraya, M.; Blauwet, C.A.; Crema, M.D.; Heiss, R.; Roemer, F.W.; Hayashi, D.; Derman, W.E.; Guermazi, A. Sports injuries at the Rio de Janeiro 2016 Summer Paralympic Games: Use of diagnostic imaging services. Eur. Radiol. 2021, 31, 6768–6779. [Google Scholar] [CrossRef] [PubMed]
- Bernardina, G.R.D.; Dos Santos, M.D.M.; Resende, R.A.; Mello, M.T.; Albuquerque, M.R.; Paolucci, L.A.; Carpes, F.P.; Silva, A.; Andrade, A.G.P. Asymmetric velocity profiles in Paralympic powerlifters performing at different exercise intensities are detected by functional data analysis. J. Biomech. 2021, 123, 110523. [Google Scholar] [CrossRef] [PubMed]
- Ball, R.; Weidman, D. Analysis of USA Powerlifting Federation Data From January 1, 2012–June 11, 2016. J. Strength Cond. Res. 2018, 32, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- De Aquino Resende, M.; Aidar, F.J.; Vasconcelos Resende, R.B.; Reis, G.C.; de Oliveira Barros, L.; de Matos, D.G.; Marçal, A.C.; de Almeida-Neto, P.F.; Díaz-de-Durana, A.L.; Merino-Fernández, M.; et al. Are Strength Indicators and Skin Temperature Affected by the Type of Warm-Up in Paralympic Powerlifting Athletes? Healthcare 2021, 9, 923. [Google Scholar] [CrossRef]
- Soares Freitas Sampaio, C.R.; Aidar, F.J.; Ferreira, A.R.P.; Santos, J.L.D.; Marçal, A.C.; Matos, D.G.; Souza, R.F.; Moreira, O.C.; Guerra, I.; Fernandes Filho, J.; et al. Can Creatine Supplementation Interfere with Muscle Strength and Fatigue in Brazilian National Level Paralympic Powerlifting? Nutrients 2020, 12, 2492. [Google Scholar] [CrossRef]
- Fraga, G.S.; Aidar, F.J.; Matos, D.G.; Marçal, A.C.; Santos, J.L.; Souza, R.F.; Carneiro, A.L.; Vasconcelos, A.B.; Da Silva-Grigoletto, M.E.; van den Tillaar, R.; et al. Effects of Ibuprofen Intake in Muscle Damage, Body Temperature and Muscle Power in Paralympic Powerlifting Athletes. Int. J. Environ. Res. Public Health 2020, 17, 5157. [Google Scholar] [CrossRef]
- Aidar, F.J.; Fraga, G.S.; Getirana-Mota, M.; Marçal, A.C.; Santos, J.L.; de Souza, R.F.; Ferreira, A.R.P.; Neves, E.B.; Zanona, A.F.; Bulhões-Correia, A.; et al. Effects of Ibuprofen Use on Lymphocyte Count and Oxidative Stress in Elite Paralympic Powerlifting. Biology 2021, 10, 986. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Piepoli, A.; Garrido-Blanca, G.; Delgado-García, G.; Balsalobre-Fernández, C.; García-Ramos, A. Precision of 7 Commercially Available Devices for Predicting Bench-Press 1-Repetition Maximum From the Individual Load-Velocity Relationship. Int. J. Sports Physiol. Perform. 2019, 14, 1442–1446. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Cohen, J. Statistics a power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Selya, A.S.; Rose, J.S.; Dierker, L.C.; Hedeker, D.; Mermelstein, R.J. A practical guide to calculation Cohen’s f2, a measure of local effect size, from PROC MIXED. Front. Psychol. 2012, 3, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Badillo, J.J.; Sánchez-Medina, L. Movement velocity as a measure of loading intensity in resistance training. Int. J. Sports Med. 2010, 31, 347–352. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Martínez-Cava, A.; Sánchez-Medina, L.; Mora-Rodríguez, R.; González-Badillo, J.J.; Pallarés, J.G. Movement Velocity as a Measure of Level of Effort During Resistance Exercise. J. Strength Cond. Res. 2019, 33, 1496–1504. [Google Scholar] [CrossRef]
- Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Level of Effort: A Reliable and Practical Alternative to the Velocity-Based Approach for Monitoring Resistance Training. J. Strength Cond. Res. 2021; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Ormsbee, M.J.; Carzoli, J.P.; Klemp, A.; Allman, B.R.; Zourdos, M.C.; Kim, J.S.; Panton, L.B. Efficacy of the Repetitions in Reserve-Based Rating of Perceived Exertion for the Bench Press in Experienced and Novice Benchers. J. Strength Cond. Res. 2019, 33, 337–345. [Google Scholar] [CrossRef]
- Aagaard, P.; Simonsen, E.B.; Andersen, J.L.; Magnusson, P.; Dyhre-Poulsen, P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J. Appl. Physiol. 2002, 93, 1318–1326. [Google Scholar] [CrossRef]
- Zemková, E.; Poór, O.; Pecho, J. Peak Rate of Force Development e Isometric Maximum Strength of Back Muscles estão associados ao desempenho de energia durante tarefas de elevação de carga. Am. J. Mens Health 2019, 13, 1557988319828622. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.M.; Freitas, E.D.; Heishman, A.D.; Kaur, J.; Koziol, K.J.; Galletti, B.A.; Bemben, M.G. Maximal power production as a function of sex and training status. Biol. Sport 2019, 36, 31–37. [Google Scholar] [CrossRef]
- Del Vecchio, A.; Casolo, A.; Negro, F.; Scorcelletti, M.; Bazzucchi, I.; Enoka, R.; Felici, F.; Farina, D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J. Physiol. 2019, 597, 1873–1887. [Google Scholar] [CrossRef] [Green Version]
- Suchomel, T.J.; Nimphius, S.; Bellon, C.R.; Stone, M.H. The Importance of Muscular Strength: Training Considerations. Sports Med. 2018, 48, 765–785. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1—Biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 2—Training considerations for improving maximal power production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, K.; Iwanuma, S.; Ikeda, N.; Yoshikawa, A.; Ema, R.; Kawakami, Y. Plyometric Training Favors Optimizing Muscle-Tendon Behavior during Depth Jumping. Front. Physiol. 2017, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häkkinen, K.; Alén, M.; Komi, P.V. Neuromuscular, anaerobic, and aerobic performance characteristics of elite power athletes. Eur. J. Appl. Physiol. Occup. Physiol. 1984, 53, 97–105. [Google Scholar] [CrossRef] [PubMed]
- McBride, J.M.; Triplett-McBride, N.T.; Davie, A.; Newton, U.K. A comparison of strength and power characteristics between powerlifters, Olympic lifters, and sprinters. J. Force Cond. Res. 1999, 13, 58–66. [Google Scholar]
- Jaric, S. Force-velocity Relationship of Muscles Performing Multi-joint Maximum Performance Tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar] [CrossRef]
- García-Ramos, A.; Pestaña-Melero, F.L.; Pérez-Castilla, A.; Rojas, F.J.; Haff, G.G. Mean velocity vs. mean propulsive velocity vs. peak velocity: Which variable determines bench press relative load with higher reliability? J. Strength Cond. Res. 2018, 32, 1273–1279. [Google Scholar] [CrossRef]
- Fischetti, F.; Vilardi, A.; Cataldi, S.; Greco, G. Effects of plyometric training program on speed and explosive strength of lower limbs in young athletes. J. Phys. Educ. Sport 2018, 18, 2476–2482. [Google Scholar] [CrossRef]
- Fischetti, F.; Camporeale, F.; Greco, G. Effects of high-load resistance training versus pyramid training system on maximal muscle strength in well-trained young men: A randomized controlled study. J. Phys. Educ. Sport 2019, 19, 80–86. [Google Scholar] [CrossRef]
- Fischetti, F.; Cataldi, S.; Greco, G. Lower-limb plyometric training improves vertical jump and agility abilities in adult female soccer players. J. Phys. Educ. Sport 2019, 19, 1254–1261. [Google Scholar] [CrossRef]
- García-Ramos, A.; Jaric, S.; Padial, P.; Feriche, B. Force-velocity relationship of upper-body muscles: Traditional vs. ballistic bench press. J. Appl. Biomech. 2016, 32, 178–185. [Google Scholar] [CrossRef] [PubMed]
Regional Level | National Level | p | ICC | CV | α | |
---|---|---|---|---|---|---|
Age (years) | 29.25 ± 4.50 | 26.13 ± 7.22 | 0.223 | 0.307 | 3.07 | 0.001 |
Body weight (kg) | 80.86 ± 15.36 | 82.80 ± 31.73 | 0.852 | 0.537 | 0.17 | 0.644 |
Experience (years) | 0.4 ± 0.18 | 4.45 ± 0.31 | 0.001 # | 0.014 | 12.12 | 0.506 |
1RM Bench Press Test (kg) | 87.43 ± 17.24 | 136.88 ± 28.65 | 0.001 # | 0.021 | 11.17 | 0.168 |
1RM/Body mass | 1.08 ± 0.36 | 1.65 ± 0.32 * | 0.007 # | 0.037 | 7.78 | 0.271 |
Regional Level | National Level | t | p | Cohen’s d | |
---|---|---|---|---|---|
MPV (m·s−1) | 0.21 ± 0.10 | 0.13 ± 0.06 | 1.984 | 0.065 | 0.97 c |
VMax (m·s−1) | 0.38 ± 0.14 | 0.27 ± 0.09 | 2.057 | 0.056 | 0.93 c |
Power (W) | 170.78 ± 89.70 | 182.22 ± 106.93 | 0.246 | 0.003 * | 1.69 d |
1RM (kg) | 86.78 ± 19.86 | 129.22 ± 29.56 | 3.576 | 0.809 | 0.12 a |
MIF (N) | 658.94 ± 185.27 | 971.64 ± 122.59 | 4.223 | 0.001 * | 1.99 d |
Time (µs) | 2167.95 ± 1280.83 | 2894.60 ± 1368.17 | 1.163 | 0.262 | 0.55 b |
RFD (N·s−1) | 2208.68 ± 885.42 | 2826.28 ± 1384.03 | 1.128 | 0.276 | 0.53 b |
Impulse (N·s) | 2922.76 ± 838.02 | 4440.89 ± 652.23 | 4.289 | 0.001 * | 2.02 d |
Variability (N) | 51.74 ± 21.54 | 32.84 ± 15.84 | 2.120 | 0.049 * | 1.00 c |
FI (%) | 12.32 ± 5.65 | 9.16 ± 3.71 | 1.412 | 0.180 | 0.66 b |
Load | Regional Level (kg) | Pearson’s r | National Level (kg) | Pearson’s r |
---|---|---|---|---|
40% Pred 1RM | 88.89 ± 28.70 | 0.451 * | 118.78 ± 29.92 | 0.810 # |
50% Pred 1RM | 98.00 ± 23.01 | 0.439 * | 130.33 ± 32.99 | 0.893 # |
60% Pred 1RM | 86.56 ± 18.53 | 0.576 ** | 143.89 ± 52.61 | 0.696 ** |
70% Pred 1RM | 87.56 ± 28.88 | 0.710 # | 121.78 ± 27.91 | 0.963 ## |
80% Pred 1RM | 89.22 ± 22.03 | 0.949 ## | 143.00 ± 45.74 | 0.744 # |
90% Pred 1RM | 89.33 ± 25.25 | 0.920 ## | 138.56 ± 38.49 | 0.824 # |
MIF (kgF) | 67.26 ± 18.88 | 0.575 ** | 98.92 ± 12.50 | 0.585 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aidar, F.J.; Cataldi, S.; Badicu, G.; Silva, A.F.; Clemente, F.M.; Bonavolontà, V.; Greco, G.; Getirana-Mota, M.; Fischetti, F. Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes? Sustainability 2022, 14, 5049. https://doi.org/10.3390/su14095049
Aidar FJ, Cataldi S, Badicu G, Silva AF, Clemente FM, Bonavolontà V, Greco G, Getirana-Mota M, Fischetti F. Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes? Sustainability. 2022; 14(9):5049. https://doi.org/10.3390/su14095049
Chicago/Turabian StyleAidar, Felipe J., Stefania Cataldi, Georgian Badicu, Ana Filipa Silva, Filipe Manuel Clemente, Valerio Bonavolontà, Gianpiero Greco, Márcio Getirana-Mota, and Francesco Fischetti. 2022. "Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes?" Sustainability 14, no. 9: 5049. https://doi.org/10.3390/su14095049
APA StyleAidar, F. J., Cataldi, S., Badicu, G., Silva, A. F., Clemente, F. M., Bonavolontà, V., Greco, G., Getirana-Mota, M., & Fischetti, F. (2022). Does the Level of Training Interfere with the Sustainability of Static and Dynamic Strength in Paralympic Powerlifting Athletes? Sustainability, 14(9), 5049. https://doi.org/10.3390/su14095049